首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
ATP diphosphohydrolase (EC 3.6.1.5) catalyzes the hydrolysis of diphospho- and triphosphonucleosides and is sensitive to divalent cations. In this paper, we investigated the dependence of ATP hydrolysis on the concentration of free Mg2+ and Ca2+ and the cation ATP complexes. The enzyme was isolated from porcine zymogen granule membranes, solubilized in Triton X-100, and purified on a 5'-AMP-Sepharose 4B affinity column resulting in a 1500-fold purification. Free unprotonated ATP4- was hydrolyzed in the presence of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. When hydrolysis rate was measured at different concentrations of the cation-ATP complex at constant free cation concentrations, normal hyperbolic curves were obtained. In CaCl2, both Kapp and Vapp increased as free Ca2+ increased from 25 to 1000 microM. In MgCl2, Kapp increased and Vapp decreased as free Mg2+ increased from 25 to 500 microM. From the rapid equilibrium rate equation, Ks and Vmax values of the substrates were calculated. We found that free ATP4-, Ca-ATP2-, and Mg-ATP2- are substrates and free cations do not bind the enzyme.  相似文献   

2.
Dias JM  Szegedi C  Jóna I  Vogel PD 《Biochemistry》2006,45(31):9408-9415
Calcium ions are frequently used second messengers in most living organisms. Members of the family of ryanodine sensitive calcium channels (ryanodine receptors, RyRs) are responsible for many important Ca(2+) signaling events in both excitable and nonexcitable cells. The biological activity of these membrane proteins is modulated and regulated by a great variety of different cellular and extracellular effectors, proteins, and small molecules. However, very little is still understood about how the modulators work on a molecular level. The very large size of more than 2 million Da per functional tetrameric RyR unit and its membrane association have made more detailed biochemical and structural analysis extremely challenging.  相似文献   

3.
Two kinds of ATP binding sites were found on the ATPase molecule in deoxycholic acid-treated sarcoplasmic reticulum. One was the catalytic site (1 mol/mol active site) and its affinity was high. Upon addition of Ca2+, all the ATP bound to the catalytic site disappeared at 75 mM KCl, while a significant amount of ATP remained bound to the site at 0–2 mM KCl. The latter binding was found to be due to the formation of a slowly exchanging enzyme-ATP complex, which is in equilibrium with phosphoenzyme + ADP. The other binding site was the regulatory one (1 mol/mol active site) and its affinity was low, changing only insignificantly upon addition of Ca2+. The ATP binding to the regulatory site shifted the equilibrium between the slowly exchanging complex and EP toward EP.  相似文献   

4.
ATP and the divalent cations Mg2+ and Ca2+ regulated K+ stimulation of the Ca2+-transport ATPase of cardiac sarcoplasmic reticulum vesicles. Millimolar concentrations of total ATP increased the K+-stimulated ATPase activity of the Ca2+ pump by two mechanisms. First, ATP chelated free Mg2+ and, at low ionized Mg2+ concentrations, K+ was shown to be a potent activator of ATP hydrolysis. In the absence of K+ ionized Mg2+ activated the enzyme half-maximally at approximately 1 mM, whereas in the presence of K+ the concentration of ionized Mg2+ required for half-maximal activation was reduced at least 20-fold. Second MgATP apparently interacted directly with the enzyme at a low affinity nucleotide site to facilitate K+-stimulation. With a saturating concentration of ionized Mg2+, stimulation by K+ was 2-fold, but only when the MgATP concentration was greater than 2 mM. Hill plots showed that K+ increased the concentration of MgATP required for half-maximal enzymic activation approx. 3-fold. Activation of K+-stimulated ATPase activity by Ca2+ was maximal at an ionized Ca2+ concentration of approx. 1 microM. At very high concentrations of either Ca2+ or Mg2+, basal Ca2+-dependent ATPase activity persisted, but the enzymic response to K+ was completely inhibited. The results provide further evidence that the Ca2+-transport ATPase of cardiac sarcoplasmic reticulum has distinct sites for monovalent cations, which in turn interact allosterically with other regulatory sites on the enzyme.  相似文献   

5.
Wei J  Liu C  Leyh TS 《Biochemistry》2000,39(16):4704-4710
ATP sulfurylase, from E. coli Kappa-12, is a GTPase.target complex that conformationally couples the free energies of GTP hydrolysis and activated sulfate (adenosine 5'-phosphosulfate, or APS) synthesis. Energy coupling is achieved by an allosterically driven isomerization that switches on and off chemistry at specific points in the catalytic cycle. This coupling mechanism is derived from the results of model studies using analogue complexes that mimic different stages of the native catalytic cycle. The current investigation extends the analogue studies to the native catalytic cycle. Isomerization is monitored using the fluorescent, guanine nucleotide analogues mGMPPNP (3'-O-(N-methylanthraniloyl)-2'-deoxyguanosine 5'-[beta, gamma-imido]triphosphate) and mGTP [3'-O-(N-methylanthraniloyl)-2'-deoxyguanosine 5'-triphosphate]. The isomerization is shown to be initiated by an allosteric interaction that requires the simultaneous occupancy of all three substrate-binding sites. Stopped-flow fluorescence and single-turnover studies were used to define and quantitate the isomerization mechanism, and to show that the isomerization precedes and rate-limits both GTP hydrolysis and APS synthesis. These findings are incorporated into a model of the energy-coupling mechanism.  相似文献   

6.
Ubiquitin, a 76 residue protein, occurs in eucaryotic cells either free or covalently joined to a variety of protein species. Previous work suggested that ubiquitin may function as a signal for attack by proteinases specific for ubiquitin-protein conjugates. We show that the mouse cell line ts85 , a previously isolated cell cycle mutant, is temperature-sensitive in ubiquitin-protein conjugation, and that this effect is due to the specific thermolability of the ts85 ubiquitin-activating enzyme (E1). From E1 thermoinactivation kinetics in mixed (wild-type plus ts85 ) extracts, and from copurification of the determinant of E1 thermolability with E1 in ubiquitin-affinity chromatography, we conclude that the determinant of E1 thermolability is contained within the E1 polypeptide. ts85 cells fail to degrade otherwise short-lived intracellular proteins at the nonpermissive temperature (accompanying paper), demonstrating that degradation of the bulk of short-lived proteins in this higher eucaryotic cell proceeds through a ubiquitin-dependent pathway. We discuss possible roles of ubiquitin-dependent pathways in DNA transactions, the cell cycle, and the heat shock response.  相似文献   

7.
Inesi G  Lewis D  Ma H  Prasad A  Toyoshima C 《Biochemistry》2006,45(46):13769-13778
We relate solution behavior to the crystal structure of the Ca2+ ATPase (SERCA). We find that nucleotide binding occurs with high affinity through interaction of the adenosine moiety with the N domain, even in the absence of Ca2+ and Mg2+, or to the closed conformation stabilized by thapsigargin (TG). Why then is Ca2+ crucial for ATP utilization? The influence of adenosine 5'-(beta,gamma-methylene) triphosphate (AMPPCP), Ca2+, and Mg2+ on proteolytic digestion patterns, interpreted in the light of known crystal structures, indicates that a Ca2+-dependent conformation of the ATPase headpiece is required for a further transition induced by nucleotide binding. This includes opening of the headpiece, which in turn allows inclination of the "A" domain and bending of the "P" domain. Thereby, the phosphate chain of bound ATP acquires an extended configuration allowing the gamma-phosphate to reach Asp351 to form a complex including Mg2+. We demonstrate by Asp351 mutation that this "productive" conformation of the substrate-enzyme complex is unstable because of electrostatic repulsion at the phosphorylation site. However, this conformation is subsequently stabilized by covalent engagement of the -phosphate yielding the phosphoenzyme intermediate. We also demonstrate that the ADP product remains bound with high affinity to the transition state complex but dissociates with lower affinity as the phosphoenzyme undergoes a further conformational change (i.e., E1-P to E2-P transition). Finally, we measured low-affinity ATP binding to stable phosphoenzyme analogues, demonstrating that the E1-P to E2-P transition and the enzyme turnover are accelerated by ATP binding to the phosphoenzyme in exchange for ADP.  相似文献   

8.
Ubiquitin-activating enzyme, "E1," is the first enzyme in the pathway leading to formation of ubiquitin-protein conjugates and represents a potential target for regulation in the metabolic control of the conjugation reaction. Antiserum raised against human E1 recognizes two immunoreactive proteins in extracts from several human cell lines and animal tissues. We have characterized these two immunoreactive proteins in HeLa cells and present evidence that they are isoforms of E1. We have designated these isoforms as "E1(110 kDa)" and "E1(117 kDa)" to reflect their apparent molecular masses determined from SDS-polyacrylamide gel electrophoresis. These two immunoreactive proteins are immunologically similar, have nearly identical peptide maps, and comigrate with enzymatic activity characteristic of E1 in native polyacrylamide gel electrophoretic separations. Pulse-labeling experiments reveal that both isoforms are long-lived in vivo with degradation rates which are inconsistent with a proenzyme/enzyme model. Furthermore, their rates of degradation, which vary depending on the cell line studied, are kinetically distinguishable in contact-inhibited human lung fibroblasts. This work represents the first demonstration of E1 isoforms in a non-plant species and carries important implications for studies of the regulatory mechanisms controlling ubiquitin conjugation.  相似文献   

9.
Isoleucyl-tRNA formation catalysed by isoleucine: tRNA ligase is stimulated by both Mg2+ and spermine in the pH-range 7.0 to 8.0 at 310 K. At low [Mg2+] the acceleration caused by both cations together exceeds the sum of their individual effects. 2. The spermine-stimulated reaction has a steeper temperature-dependence than reaction in the presence of Mg2+. Two phases in the kinetics of isoleucyl-tRNA formation are detected in the presence of Mg2+ plus or minus spermine, but only a single step is observed in the presence of spermine alone. Thus the rate-limiting steps under normal assay conditions are different for the two cations. 3. Enzyme-bound isoleucyl-AMP can be formed in the absence of Mg-2+ and plus or minus spermine. 4. It is concluded that there is no evidence for cation-dependent differences in the reaction mechanism of isoleucine: tRNA ligase, though there are certainly differences in the relative rates of some of the individual steps.  相似文献   

10.
ATP has been synthesized by the purified Ca2+ + Mg2+-dependent ATPase from sarcoplasmic reticulum (SR) solubilized in nonionic detergent dodecyloctaoxyethylenglycol-monoether in a solution containing inorganic phosphate and glycerol by changing pH upon addition of ADP. The Ca2+ concentration is kept constant during the experiment. Optimum synthesis is found at CaCl2 = 0.6 mM and the delta pH = 2.9 +/- 0.2. The enzyme has been digested by trypsin for 1 and 20 min, and it is found that synthesis of ATP is correlated with the Ca2+-uptake into SR. The data indicate that the enzyme alone is responsible for active transport of Ca2+ in SR. The driving force for the ATP synthesis of the process may be due to various ion-protein interactions. H+ cannot substitute for Ca2+ in the synthesis of ATP but acts probably through a modification of the Ca2+ binding sites. The data give support that the integrity of the enzyme molecule between its hydrolytic site and the Ca2+-binding sites is essential for the overall Ca2+ transport.  相似文献   

11.
We have studied the fluorescence of the Ca2+ + Mg2+-activated ATPase of sarcoplasmic reticulum labelled with fluorescein isothiocyanate. The change in intensity of fluorescein fluorescence caused by addition of Ca2+ to the labelled ATPase can be interpreted in terms of a two-conformation model for the ATPase, one conformation (E1) having a high affinity for Ca2+, the other (E2) a low affinity. Effects of Ca2+ as a function of pH allow an estimate of the effect of pH on the E1/E2 ratio, consistent with kinetic studies. A model is presented for binding of Ca2+ to the ATPase as a function of pH that is consistent both with the data on the E1/E2 equilibrium and with literature data on Ca2+ binding.  相似文献   

12.
Reversal of the cycle of sarcoplasmic reticulum ATPase starts from ATPase phosphorylation by Pi, in the presence of Mg2+, and leads to ATP synthesis. We show here that ATP can also be synthesized when Ca2+ replaces Mg2+. In the absence of a calcium gradient and in the presence of dimethyl sulfoxide, ATPase phosphorylation from Pi and Ca2+ led to the formation of an unstable phosphoenzyme. This instability was due to a competition between the phosphorylation reaction induced by Pi and Ca2+ and the transition induced by Ca2+ binding to the transport sites, which led to a conformation that could not be phosphorylated from Pi. Dimethyl sulfoxide and low temperature stabilized the calcium phosphoenzyme, which under appropriate conditions, subsequently reacted with ADP to synthesize ATP. Substitution of Co2+, Mn2+, Cd2+, or Ni2+ for Mg2+ induced ATPase phosphorylation from Pi, giving phosphoenzymes of various stabilities. However, substitution of Ba2+, Sr2+, or Cr3+ produced no detectable phosphoenzymes, under the same experimental conditions. Our results show that ATPase phosphorylation from Pi, like its phosphorylation from ATP, does not have a strict specificity for magnesium.  相似文献   

13.
To study the mechanism of active drug efflux in multidrug-resistant cells, the interaction between [3H] vincristine (VCR) and plasma membrane prepared from an adriamycin (ADM)-resistant variant (K562/ADM) of human myelogenous leukemia K562 cells was examined by filtration method. [3H]VCR bound to the plasma membrane prepared from K562/ADM cells, but not from parental K562 cells, depending on the concentrations of ATP and Mg2+. Adenosine 5'-O-(3-thio)triphosphate was not effective in the binding of [3H]VCR, indicating that ATP hydrolysis is required for this binding. Dissociation constant (Kd) of VCR binding was 0.24 +/- 0.04 microM in the presence of 3 mM ATP. In the absence of ATP, specific binding of VCR to K562/ADM membrane was also observed; however, the affinity (Kd = 9.7 +/- 3.1 microM) was 40 times lower than that observed in the presence of ATP. The high affinity VCR binding to K562/ADM membrane was dependent on temperature. The bound [3H]VCR molecules were rapidly released by unlabeled VCR added to the reaction mixture at 25 degrees C. The high affinity binding of [3H]VCR to K562/ADM membrane was inhibited by VCR, vinblastine, actinomycin D, and ADM, to which K562/ADM cells exhibit cross-resistance, whereas 5-fluorouracil and camptothecin, to which K562/ADM cells are equally sensitive as K562 cells, did not inhibit the [3H]VCR binding. Furthermore, verapamil and other agents, which are known to circumvent drug resistance by inhibiting the active efflux of antitumor agents from resistant cells, could also inhibit the high affinity [3H]VCR binding. These results indicate that ATP/Mg2+-dependent high affinity VCR binding to the membrane of resistant cells closely correlates with the active drug efflux of this resistant cell line.  相似文献   

14.
The sarcoplasmic reticulum Ca2+-ATPase was reacted with vanadate in the presence of Mg2+ and EGTA, and the effect of Ca2+, Mg2+ and ATP on the kinetics of vanadate release from the enzyme vanadate complex was studied after dilution with vanadate-free media. Ca2+ increased, whereas ATP decreased the rate of vanadate release. In absence of free Mg2+ in the release media ATP was bound to the vanadate-reacted Ca2+-ATPase with high affinity (Kd 4–5 μM), and full saturation with ATP resulted in complete inhibition of vanadate release. In media containing free Mg2+, where ATP predominantly was present as MgATP, binding of the nucleotide to vanadate-reacted Ca2+-ATPase occurred with low apparent affinity. Mg2+ alone did not affect the rate of vanadate release. At saturating ATP concentrations the release rate in the presence of free Mg2+ was less inhibited than in its absence. These results indicate that uncomplexed ATP interacts with the same Mg2+ at the catalytic site, which is involved in formation of the enzyme-vanadate complex (EMgV), and thereby hinders dissociation of vanadate. Destabilization of the complex by free Mg2+ may be caused by the presence of an additional magnesium ion in the catalytic site together with ATP.  相似文献   

15.
Residues in conserved motifs (625)TGD, (676)FARXXPXXK, and (701)TGDGVND in domain P of sarcoplasmic reticulum Ca(2+)-ATPase, as well as in motifs (601)DPPR and (359)NQR(/K)MSV in the hinge segments connecting domains N and P, were examined by mutagenesis to assess their roles in nucleotide and Mg(2+) binding and stabilization of the Ca(2+)-activated transition state for phosphoryl transfer. In the absence of Mg(2+), mutations removing the charges of domain P residues Asp(627), Lys(684), Asp(703), and Asp(707) increased the affinity for ATP and 2',3'-O-(2,4,6-trinitrophenyl)-8-azidoadenosine 5'-triphosphate. These mutations, as well as Gly(626)--> Ala, were inhibitory for ATP binding in the presence of Mg(2+) and for tight binding of the beta,gamma-bidentate chromium(III) complex of ATP. The hinge mutations had pronounced, but variable, effects on ATP binding only in the presence of Mg(2+). The data demonstrate an unfavorable electrostatic environment for binding of negatively charged nucleotide in domain P and show that Mg(2+) is required to anchor the phosphoryl group of ATP at the phosphorylation site. Mutants Gly(626) --> Ala, Lys(684) --> Met, Asp(703) --> Ala/Ser/Cys, and mutants with alteration to Asp(707) exhibited very slow or negligible phosphorylation, making it possible to measure ATP binding in the pseudo-transition state attained in the presence of both Mg(2+) and Ca(2+). Under these conditions, ATP binding was almost completely blocked in Gly(626) --> Ala and occurred with 12- and 7-fold reduced affinities in Asp(703) --> Ala and Asp(707) --> Cys, respectively, relative to the situation in the presence of Mg(2+) without Ca(2+), whereas in Lys(684) --> Met and Asp(707) --> Ser/Asn the affinity was enhanced 14- and 3-5-fold, respectively. Hence, Gly(626) and Asp(703) seem particularly critical for mediating entry into the transition state for phosphoryl transfer upon Ca(2+) binding at the transport sites.  相似文献   

16.
Summary The effect of phospholipase A2 and of related agents on ouabain binding and Na,K-ATPase activity were studied in intact and detergent-treated membrane preparations of rat brain cortex and pig kidney medulla. It was found that phospholipase A2 (PLA2) may distinguish or dissociate ouabain binding complexes I (ATP+Mg+Na) and II (Pi+Mg), stimulating the former and inhibiting the latter. Procedures which break the permeability barriers of vesicular membrane preparations, such as repeated freezing-thawing, sonication or hypoosmotic shock failed to mimic the effect of PLA2, indicating that it was not acting primarily by opening the inside-out oriented vesicles. The detergent digitonin exhibited similar effects on ouabain binding in both ATP+Mg+Na and Pi+Mg media. Other detergents were ineffective.The ability of PLA2 to distinguish between ouabain binding type I and II can be manifested even in SDS-treated, purified preparations of Na,K-ATPase. The number of ATP+Mg+Na-dependent sites is unchanged, while the Pi+Mg-dependent sites are decreased in number in a manner similar to that seen in original membranes. This inhibition is completely lost in the reconstituted Na,K-ATPase system, where the ATP- as well as Pi-oriented ouabain sites are inhibited by PLA2.  相似文献   

17.
1. The binding of the fluorescent ATP analogue, Mg2+-1,N6-etheno-ATP, to the catalytic site of rabbit skeletal muscle phosphofructokinase has been studied by stopped-flow fluorimetry [Roberts & Kellet (1979) Biochem. J. 183, 349--360]. 2. Binding of Mg2+-1,N6-etheno-ATP to the catalytic site is consistent with a two-step mechanism of the type: (formula: see text); in which the diffusion-controlled binding of ligand, L, is accompanied by prior interconversion of enzyme from one form, E, to another, E. 3. The allosteric activators, phosphate and cyclic AMP, which promote an R-type conformation, appear to stabilize slightly different conformations, R and R' respectively. 4. The binding of Mg2+-1,N6-etheno-ATP to the catalytic site is strongly affected by its binding to the inhibitory site. The rate constant for the displacement of Mg2+-1,N6-ethenol-ATP from the catalytic site, k32, is 470 +/- 35 s-1 for the R' conformation, whereas it is 6.0 +/- 0.09 s-1 for the T conformation induced by binding of Mg2+-1,N6-ethenol-ATP to the inhibitory site.  相似文献   

18.
Preprotein translocation in E. coli requires ATP, the membrane electrochemical potential delta mu H+, and translocase, an enzyme with an ATPase domain (SecA) and the membrane-embedded SecY/E. Studies of translocase and proOmpA binds to the SecA domain. Second, SecA binds ATP. Third, ATP-binding energy permits translocation of approximately 20 residues of proOmpA. Fourth, ATP hydrolysis releases proOmpA. ProOmpA may then rebind to SecA and reenter this cycle, allowing progress through a series of transmembrane intermediates. In the absence of delta mu H+ or association with SecA, proOmpA passes backward through the membrane, but moves forward when either ATP and SecA or a membrane electrochemical potential is supplied. However, in the presence of delta mu H+ (fifth step), proOmpA rapidly completes translocation. delta mu H(+)-driven translocation is blocked by SecA plus nonhydrolyzable ATP analogs, indicating that delta mu H+ drives translocation when ATP and proOmpA are not bound to SecA.  相似文献   

19.
The extra uptake of Ca2+ by vesicles of sarcoplasmic reticulum (SR) observed in the presence of Pi, attributable to transport of Pi by the Pi-transporter, has been studied. It has been shown that the Pi transporter is stimulated by ATP. Single channel conductance measurements have shown that the Cl- channel in the SR membrane is impermeable to Pi. It is suggested that the transporter could be an ion antiporter system. Studies of uptake as a function of pH and Mg2+ concentration suggest that transport of MgHPO4 and H2PO-4 are faster than transport of HPO2-4. For oxalate and pyrophosphate, Mg2+ binding inhibits transport. It is suggested that protonation of lysine residue(s) at the anion binding site increase the rate of transport.  相似文献   

20.
The Pb2+-catalyzed cleavage of tRNAPhe has been used to probe the effect of Na+ and Mg2+ binding to tRNA. Na+ is a noncompetitive inhibitor of the Pb2+-catalyzed cleavage. Millimolar Mg2+ is also a noncompetitive inhibitor. Analysis of the Mg2+ data show that at least two sites are involved in binding and that there is an interaction between the sites (cooperativity). Low-affinity Mg2+ binding is thus different from "weak" and "strong" Mg2+ binding to tRNA characterized previously. We postulate that the alterations induced by low-affinity Mg2+ binding in tRNA mimic to some extent those brought about in RNA by the interaction with a protein factor and that at appropriate [Mg2+] the whole structure of tRNA is able to respond in a concerted way to a signal from the environment such as aminoacylation or codon binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号