首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The [Leu26-psi(CH2O)Leu27] derivative of N-Ac-GRP20-27-peptide amide was prepared and evaluated as a gastrin-releasing peptide antagonist. This psi(CH2O) derivative was found to be a more potent inhibitor of [3H-Phe15]GRP15-24NH2 binding and N-Ac-GRP20-27NH2 induced mitogenesis in Swiss 3T3 fibroblasts than the related nitrogen analog [Leu13-psi(CH2NH)Leu14] bombesin. Possible reasons for the improved activity of the (CH2O) insert relative to the (CH2NH) group include increased hydrophobicity and a reduced tendency of the oxygen derivative to form hydrogen bonds.  相似文献   

2.
The peptide CO-NH function was replaced by a trans carbon-carbon double bond or by a CH2-CH2 isostere in enkephalin analogues of DADLE, DCDCE-NH2 or DPDPE. In DADLE the 2-3 and the 3-4 peptide bond was modified, whereas in the cyclic analogues the Gly3-Phe4 bond was replaced by the isosteres Gly psi (E,CH = CH)Phe [5-amino-2-(phenylmethyl)-3(E)-pentenoic acid] or Gly psi (CH2CH2)Phe [5-amino-2-(phenylmethyl)pentanoic acid]. In general, the modification results in a drop in potency which is the largest for the flexible CH2-CH2 replacement. The Gly3 psi (E,CH = CH)Phe4 DCDCE-NH2 analogue retains considerable potency. These results confirm the importance of the peptide function at the 2-3 and 3-4 position in enkephalin analogues for biological potency.  相似文献   

3.
Zhao QY  Chen Q  Yang DJ  Feng Y  Long Y  Wang P  Wang R 《Life sciences》2005,77(10):1155-1165
Endomorphin 1 (EM1) and endomorphin 2 (EM2) are highly potent and selective mu-opioid receptor agonists and have significant antinociceptive action. In the mu-selective pocket of endomorphins (EMs), Pro2 residue is a spacer and directs the Tyr1 and Trp3/Phe3 side chains into the required orientation. The present work was designed to substitute the peptide bond between Tyr1 and Pro2 of EMs with a reduced (CH2NH) bond and study the agonist potency and antinociception of EM1[psi] (Tyr[psi(CH2NH)]Pro-Trp-Phe-NH2) and EM2[psi] (Tyr[psi(CH2NH)]Pro-Phe-Phe-NH2). Both EM1[psi] and EM2[psi] are partial mu opioid receptor agonists showing significant loss of agonist potency in GPI assay. However, EMs[psi] exhibited potent supraspinal antinociceptive action in vivo. In the mice tail-flick test, EMs[psi] (1, 5, 10 nmol/mouse, i.c.v.) produced potent and short-lasting antinociception in a dose-dependent and naloxone (1 mg/kg) reversed manner. At the highest dose of 10 nmol, the effect of EM2[psi] was prolonged and more significant than that of EM2. In the rat model of formalin injection induced inflammatory pain, EMs[psi] (0.1, 1, 10 nmol/rat, i.c.v.), like EMs, exerted transient but not dose-dependent antinociception. These results suggested that in the mu-selective pocket of EMs, the rigid conformation induced by the peptide bond between Tyr1 and Pro2 is essential to regulate their agonist properties at the mu opioid receptors. However, the increased conformational flexibility induced by the reduced (CH2NH) bond made less influence on their antinociception.  相似文献   

4.
Conformational analysis of the cyclic opioids H-Tyr-D-Pen-Gly-Phe-D-Pen-OH (DPDPE) and H-Tyr-D-Cys-Gly-Phe-D-Cys-OH (DCDCE) have been performed using the AMBER program. DPDPE is considerably more selective for delta-receptors than DCDCE. Using the RNGCFM program, a large number of ways were found to close the 14-membered disulfide-containing ring structure. However, intramolecular hydrogen bonds were only possible in gamma-turn and inverse gamma-turn conformations centered on the glycine residue which were associated with opposite chiralities of the disulfide bond. With the cyclic part of the molecules in either a gamma-turn or inverse gamma-turn, a systematic conformational analysis was performed on the tyrosine and phenylalanine sidechains. This showed that conformers with the tyrosine and phenylalanine phenyl rings in the vicinity of the disulfide bond were preferred due to attractive van der Waals forces. For DPDPE, however, this was only possible with a positive dihedral angle for the disulfide bond due to the presence of the beta-carbon methyls of Pen2. In contrast, these preferred conformers were possible with both chiralities of the disulfide bond in DCDCE. Conformational entropies and free energies were computed from the translational, rotational, and vibrational energy levels available to each conformer. The conformational entropies were found to vary significantly and to result in a re-ordering of the lowest energy minima. Based on these conformational differences in DPDPE and DCDCE and their differing pharmacological selectivities, tentative conformational preferences for delta- and mu-receptor opioid peptides are proposed.  相似文献   

5.
The synthesis of pseudotetrapeptides H-Tyr-D-Ala-Phe-NH-(CH2)2--NH2 (1a), H-Tyr-D-Ala-Phe-psi (CH2--NH)-Gly-NH2 (2a), H-Tyr-D-Ala-psi (CH2--NH)-Phe-Gly-NH2 (3a), and H-Tyr-psi (CH2--NH)-D-Ala-Phe-Gly-NH2 (4a), representing the N-terminal tetrapeptide sequence of dermorphin, in which amide bonds are replaced by CH2--NH bond, is described. N-acetyl-Tyr and desamino-Tyr pseudopeptide analogs (1-4b), (1-3c) are also described. The analogs were assayed in binding studies based on displacement of mu and delta-receptor selective radiolabels from rat brain membrane and in a bioassay using guinea pig ileum (GPI). Pseudopeptides in which the C-terminal (1a) or D-Ala-Phe (3a) amide bond are substituted, exhibit higher mu-affinities and mu-receptor selectivity than the corresponding Phe-Gly or Tyr-D-Ala analogs (2a, 4a). Acetyl-and desamino-Tyr pseudopeptide analogs (1-4b) and (1-3c) did not exhibit mu and delta-opioid receptor affinity at nM concentration. The relevance of the single peptide replacement and of its association to acetylation or amino group elimination of Tyr, is discussed on the basis of a receptor model for mu and delta opioids.  相似文献   

6.
A new derivative of the neuropeptide nociceptin (NC) has recently been developed. This molecule, the pseudopeptide [Phe1psi(CH2-NH)Gly2]-nociceptin(1-13)-NH2 was found to antagonize NC inhibitory effects in peripheral smooth muscle preparations in vitro. However, contrasting results have appeared as regards its pharmacodynamic profile in the CNS. Here, we investigated the pseudopeptide effects, in vivo, on nociceptive responses in the rat. [Phe1psi(CH2-NH)Gly2]-nociceptin(1-13)-NH2 was administered intracerebroventricularly (i.c.v.) or intrathecally (i.t.) (alone or in combination with NC), and tail-flick latencies (TFL) to radiant heat were assessed. I.c.v. [Phe1psi(CH2-NH)Gly2]-nociceptin(1-13)-NH2 (1-10 nmol/rat) caused a short-lasting decrease (5 min) of TFL and did not antagonize the threshold lowering effect of i.c.v. NC (1 nmol/rat). At the spinal level, the i.t. administration (0.2-10 nmol/rat) of [Phe1psi(CH2-NH)Gly2]-nociceptin(1-13)-NH2 produced a dose-dependent and long-lasting antinociceptive effect that was not modified by the administration of a high dose (30 nmol/rat i.t.) of the opioid antagonist naloxone. The i.t. co-administration of the pseudopeptide (10 nmol/rat) did not block the antinociceptive effect of i.t. NC (10 nmol/rat). These data indicate that the pseudopeptide behaves as an NC agonist at supraspinal and spinal levels in the rat tail-flick test of nociception. These different profiles in the periphery and the CNS could suggest differences between central and peripheral NC receptor/s and provide a basis for further development of antagonist molecules suitable for their characterization.  相似文献   

7.
In the present paper we investigate the influence of sample pH on the conformational and dynamical properties of the pseudotripeptide H-Tyr-TicΨ[CH2NH]Phe-OH(TIP[Ψ]:Tic: l, 2, 3, 4,-tetrahydroisoquinoline-3-carboxylic acid) using various one- and two-dimensional nmt techniques in conjunction with molecular modeling. Studies were conducted at three different pH levels-corresponding to the zwitterionic peptide containing a formal positive charge(pH 3. 1).the deprotonated molecule(pH 9. 1), and a situation at neutral pH(pH 7. 2) involving both protonated and deprotonated states of the reduced peptide bond. Analysis of the one-dimensional1H-nmr spectra reveals that in solution TIP[Ψ]is in slow dynamic exchange between conformations containing cis and trans configurations of the Tyr-Tic bond. An nmr pH dependence study of the cis:trans ratio indicated that the exchange process was governed by the protonation state of the reduced bond amine. From the nmr data, reduced peptide bond pKavalues of 6. 5 and 7. 5 were determined for the cis and trans conformers, respectively. It was concluded that conformations containing a trans Tyr-Tic bond are stabilized at law pH by an intramolecular hydrogen bond between the Tyr carbonyl and the reduced peptide bond protonated amine. This observation was corroborated by molecular mechanics investigations that revealed low energy trans structures compatible with nmr structural data, and furthermore, were consistently characterized by the existence of a strong N+ H?O? C interaction closing a seven-membered cycle. The dynamics of cis-trans isomerization about the Tyr-Tic peptide bond were probed by nmr exchange experiments. The selective presaturation of exchanging resonances carried out at several temperatures between 50 and 70°C allowed the determination of isomerization rate constants as well as thermodynamic activation parameters. ΔG values were in close agreement with the cis → trans energy barrier found in X-Pro peptide fragments (~83 kJ/mol).A large entropic barrier determined for the trans → cis conversion of TIP[Ψ](5. 7 JK?1 mol?1 at pH 3. 1; 6. 5 JK?1 mol?1 at pH 9. 1) is discussed in terms of decreased solvent molecular ordering around the conformers possessing a trans Tyr-Tic bond. Evidence that the neutral form of the reduced peptide bond gains rigidity upon protonation was obtained from relaxation measurements in the rotating frame. TJp measurements of several protons in the vicinity of the reduced peptide bond were made as a function of spin-lock field. Quantitative analysis of the relaxation data indicated that chemical shift fluctuations in the 10?4-10?5s range were more pronounced in the case of deprotonated TIP[Ψ]. Results of molecular dynamics simulations in addition to 3 J αβ coupling constant measurements support the experimentally observed greater flexibility in the C-terminal region of TIP[Ψ]. © 1995 John Wiley & Sons, Inc.  相似文献   

8.
The fully deprotected glutathione analogue containing the aminomethylene unit as transition state isostere of the gamma-Glu-Cys peptide bond was synthesized for the first time and characterized in both the reduced and oxidized forms.  相似文献   

9.
Oligonucleotide analogues were synthesized whose internucleoside linker contains an amide bond and a methylamino group (C3'-NH-CO-CH2-N(CH3)-C5'). Melting curves for duplexes formed by modified oligonucleotides and natural oligonucleotides complementary to them were measured, and the melting temperatures and thermodynamic parameters of duplex formation were calculated. The introduction of one modified dinucleoside linker into the oligonucleotide only slightly decreases the melting temperatures of these duplexes compared with unmodified ones. The CD spectra of modified duplexes were studied, and their spatial structures are discussed.  相似文献   

10.
A series of benzimidazole CB2 receptor agonists were prepared and their properties investigated. Optimisation of the three benzimidazole substituents led to the identification of compound 23, a potent CB2 full agonist (EC50 2.7 nM) with excellent selectivity over the CB1 receptor (>3000-fold). Compound 23 demonstrated good CNS penetration in rat. Further optimisation led to the identification of compound 34 with improved selectivity over hERG and excellent CNS penetration in rat.  相似文献   

11.
The reaction of the ruthenium complexes RuCl2(PPh3)3, RuCl2(PPh3)4, RuCl2(PMe3)4, RuCl2(Me2SO)4, or RuBr2(PPh3)3 with the tripod tetrakis(tertiary) phosphine P(CH2CH2CH2PMe2)3 gave the compounds cis-RuCl2 [P(CH2CH2CH2PMe2)3] (1) and cis-RuBr2[P(CH2CH2CH2PMe2)3] (2). The coordination geometry of 1 and 2 was derived from the ABX2 type 31P NMR patterns of the complexes, as well as from an X-ray structure determination for the chloride 1. Crystals of 1 were found to be monoclinic, space group P21/n (Z = 4), with a = 942.0(3), b = 1446.2(4), c = 1680(1) pm, and β = 104.99(4)°. Anisotropic refinement of the structure converged at R = 0.040 and Rw = 0.034 (3318 data). Selected bond lengths are (in pm): RuP(CH2−)Me2 (trans-atom P), 235.8(1) and 239.3(1); RuP(CH2−)Me2 (trans-atom Cl), 227.9(1); RuP(CH2−)3, 225.3(1); RuCl (trans-group P(CH2−)3), 252.1(1); and RuCl (trans-group P(CH2)Me2), 250.5(1). Reaction of 1 with LiAlH4 yielded the hydro derivatives cis-Ru(H)Cl[P(CH2CH2CH2PMe2)3] (3) and cis-RuH2[P(CH2CH2CH2PMe2)3] (4), which were characterized by IR and 1H and 31p NMR spectroscopy.  相似文献   

12.
The Michaelis-Arbuzov reaction of methyl 5-deoxy-5-iodo-2,3-O-isopropylidene-β-D-ribofuranoside (4) with diethyl ethylphosphonite gave methyl 5-deoxy-5-(ethoxyethylphosphinyl)-2,3-O-isopropylidene-β-D-ribofuranoside (5) which, on treatment with sodium dihydrobis(2-methoxyethoxy)aluminate, afforded methyl-5-deoxy-5-(ethylphosphinyl)-2,3-O-isopropylidene-β-D-ribofuranoside (9). Hydrolysis of 9 with hydrochloric acid yielded a mixture of the anomeric 5-deoxy-5-(ethylphosphinyl)-D-ribopyranoses (10). The hygroscopic, syrupy mixture 10 was converted into a syrup consisting of the two 1,2,3,4-tetra-O-acetyl-5-deoxy-5-(ethylphosphinyl)-D-ribopyranoses (11).  相似文献   

13.
Racemic "carba" pseudo-dipeptide units such as Gly-psi(CH2-CH2)-D,L-Xaa were obtained either through the Horner-Emmons condensation of N-tert.-butyloxycarbonyl-beta alaninal with the appropriate substituted triethyl phosphonacetate, or from commercially available 3-carbethoxy-2-piperidone.  相似文献   

14.
To examine the effect on biological activity of replacing D-Cys in the opioid peptide H-Tyr-c[D-Cys-Gly-Phe(pNO(2))-D-Cys]-NH(2) in position 2 or/and 5 with alpha-hydroxymethylcysteine (alpha-Hmc), three analogues were synthesized. These compounds exhibit agonist activity at both mu and delta receptors. However, the most active analogue, with (S)-alpha-Hmc residue in position 5, was 3360- and 2190-fold less active than the parent peptide in the GPI and MVD assays, respectively.  相似文献   

15.
Although there is extensive literature to indicate that many different types of P2 purinoceptors are present in the lower urinary tract, the physiological role of these receptors in micturition is still uncertain. In part, this uncertainty has been caused by a lack of P2 subtype selective ligands. In this paper we report the discovery, gram scale synthesis, and binding results for 1, the first potent, drug-like, selective P2X(1) receptor antagonist described. Compound 1 was shown to be more than 30-fold selective over other purinergic receptor subtypes.  相似文献   

16.
A series of analogs of the ORL1 receptor antagonist [Nphe1]-NC(1-13)-NH2 was prepared and tested for agonistic and antagonistic activities in the mouse vas deferens, a preparation that shows high sensitivity to nociceptin and related peptides. The purpose of this study was to determine the role of the aromatic residue at the N-terminal for antagonism and eventually identify compounds with improved potency. Results indicated that all 23 compounds are inactive as agonists, and the antagonistic potency of the initial template [Nphe1]-NC(1-13)-NH2 is high (pKB 6.43) compared with those of all other compounds except [(S)(betaMe)Nphe1]NC(1-13)-NH2 (pK(B) 6.48). The other 22 compounds can be divided into two groups: 10 show antagonistic potencies (pK(B)) ranging from 5.30 to 5.86, whereas the other 12 compounds are inactive. This study clearly shows that the aromatic ring of Nphe is very critical for the interaction with the ORL1 receptor and can not be enlarged or sterically modified without significant loss of antagonistic potency.  相似文献   

17.
Two analogues of the 29 amino acid sequence of human growth hormone-releasing hormone, namely [Nle27]hGH-RH(1-29)-NH2 and [Orn(12,21),Nle27]hGH-RH(1-29)-NH2, have been synthesized and subjected to digestion by trypsin. The course of degradation was followed using RP-HPLC and ESI-MS. Several intermediates and final products of degradation were identified and conclusions regarding the rate of cleavages at different positions occupied by Lys and Arg residues were drawn. The analogue containing ornithine was found to be less susceptible to hydrolysis by trypsin: the 12-13 and 21-22 peptide bonds were completely resistant to the cleavage. The results show that by replacing Lys with Orn, a possibility exists to design new peptides, which could be more stable in biological fluids.  相似文献   

18.
Previously we demonstrated that Ni(II) complexes of Ac-Thr-Glu-Ser-His-His-Lys-NH2 hexapeptide, representing residues 120-125 of human histone H2A, and some of its analogs undergo E-S peptide bond hydrolysis. In this work we demonstrate a similar coordination and reactivity pattern in Ni(II) complexes of Ac-Thr-Glu-Thr-His-His-Lys-NH2, its threonine analogue, studied using potentiometry, electronic absorption spectroscopy and HPLC. For the first time we present the detailed temperature and pH dependence of such Ni(II)-dependent hydrolysis reactions. The temperature dependence of the rate of hydrolysis yielded activation energy E(a) = 92.0 kJ mol(-1) and activation entropy DeltaS# = 208 J mol(-1) K(-1). The pH profile of the reaction rate coincided with the formation of the four-nitrogen square-planar Ni(II) complex of Ac-Thr-Glu-Thr-His-His-Lys-NH2. These results expand the range of protein sequences susceptible to Ni(II) dependent cleavage by those containing threonine residues and permit predictions of the course of this reaction at various temperatures and pH values.  相似文献   

19.
Rothman RB  Vu N  Wang X  Xu H 《Peptides》2003,24(3):413-417
  相似文献   

20.
The application of a novel solid-phase synthesis of 2,3-disubstituted indoles utilizing a carbamate indole linker is described resulting in the identification of the novel, high-affinity, selective h5-HT2A antagonist 19.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号