首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The triggering receptor expressed on myeloid cells (TREM) family of single extracellular immunoglobulin receptors includes both activating and inhibitory isoforms whose ligands are unknown. TREM-1 activation amplifies the Toll-like receptor initiated responses to invading pathogens allowing the secretion of pro-inflammatory chemokines and cytokines. Hence, TREM-1 amplifies the inflammation induced by both bacteria and fungi, and thus represents a potential therapeutic target. We report the crystal structure of the human TREM-1 extracellular domain at 1.47 A resolution. The overall fold places it within the V-type immunoglobulin domain family and reveals close homology with Ig domains from antibodies, T-cell receptors and other activating receptors, such as NKp44. With the additional use of analytical ultracentrifugation and 1H NMR spectroscopy of both human and mouse TREM-1, we have conclusively demonstrated the monomeric state of this extracellular ectodomain in solution and, presumably, of the TREM family in general.  相似文献   

2.
Triggering receptor expressed on myeloid cells (TREM) 1 is an activating receptor expressed on myeloid cells whose ligand(s) remain elusive. TREM-1 stimulation activates neutrophils and monocytes and induces the secretion of pro-inflammatory molecules, which amplifies the Toll-like receptor-initiated responses to invading pathogens. In addition, TREM-1 mediates the septic shock pathway, and thus represents a potential therapeutic target. We report the crystal structure of the mouse TREM-1 extracellular domain at 1.76A resolution. The mouse extracellular domain is monomeric, consistent with our previous human TREM-1 structure, and strongly supports the contention that the globular TREM-1 head is a monomer contrary to proposals of a symmetric dimer.  相似文献   

3.
Marburg virus (MARV) and Ebola virus (EBOV), members of the viral family Filoviridae, cause fatal hemorrhagic fevers in humans and nonhuman primates. High viral burden is coincident with inadequate adaptive immune responses and robust inflammatory responses, and virus-mediated dysregulation of early host defenses has been proposed. Recently, a novel class of innate receptors called the triggering receptors expressed in myeloid cells (TREM) has been discovered and shown to play an important role in innate inflammatory responses and sepsis. Here, we report that MARV and EBOV activate TREM-1 on human neutrophils, resulting in DAP12 phosphorylation, TREM-1 shedding, mobilization of intracellular calcium, secretion of proinflammatory cytokines, and phenotypic changes. A peptide specific to TREM-1 diminished the release of tumor necrosis factor alpha by filovirus-activated human neutrophils in vitro, and a soluble recombinant TREM-1 competitively inhibited the loss of cell surface TREM-1 that otherwise occurred on neutrophils exposed to filoviruses. These data imply direct activation of TREM-1 by filoviruses and also indicate that neutrophils may play a prominent role in the immune and inflammatory responses to filovirus infections.  相似文献   

4.
DAP12 is an ITAM-containing adapter that associates with receptors in myeloid and NK cells. DAP12-associated receptors can give activation signals leading to cytokine production; however, in some situations, DAP12 inhibits cytokine production stimulated through TLRs and FcRs. Here we show that Triggering Receptor Expressed on Myeloid cells (TREM)-2 is responsible for the DAP12-mediated inhibition in mouse macrophages. A chimeric receptor composed of the extracellular domain of TREM-2 and the cytoplasmic domain of DAP12 inhibited the TLR- and FcR-induced TNF production of DAP12-deficient macrophages, whereas a TREM-1 chimera did not. In wild-type macrophages, TREM-2 knockdown increased TLR-induced TNF production. A TREM-2 Fc fusion protein bound to macrophages, indicating that macrophages express a TREM-2 ligand. Thus, the interaction of TREM-2 and its ligand results in an inhibitory signal that can reduce the inflammatory response.  相似文献   

5.
We have identified new activating receptors of the Ig superfamily expressed on human myeloid cells, called TREM (triggering receptor expressed on myeloid cells). TREM-1 is selectively expressed on blood neutrophils and a subset of monocytes and is up-regulated by bacterial LPS. Engagement of TREM-1 triggers secretion of IL-8, monocyte chemotactic protein-1, and TNF-alpha and induces neutrophil degranulation. Intracellularly, TREM-1 induces Ca2+ mobilization and tyrosine phosphorylation of extracellular signal-related kinase 1 (ERK1), ERK2 and phospholipase C-gamma. To mediate activation, TREM-1 associates with the transmembrane adapter molecule DAP12. Thus, TREM-1 mediates activation of neutrophil and monocytes, and may have a predominant role in inflammatory responses.  相似文献   

6.
Triggering receptors expressed on myeloid cell (TREM) proteins are a family of cell surface receptors that participate in diverse cellular processes such as inflammation, coagulation, and bone homeostasis. TREM-1, in particular, is expressed on neutrophils and monocytes and is a potent amplifier of inflammatory responses. LPS and other microbial products induce up-regulation of cell surface-localized TREM-1 and the release of its soluble form, sTREM-1. Two hypotheses have been advanced to explain the origin of sTREM-1: alternative splicing of TREM-1 mRNA and proteolytic cleavage(s) of mature, membrane-anchored TREM-1. In this report, we present conclusive evidence in favor of the proteolytic mechanism of sTREM-1 generation. No alternative splicing forms of TREM-1 were detected in monocytes/macrophages. Besides, metalloproteinase inhibitors increased the stability of TREM-1 at the cell surface while significantly reducing sTREM-1 release in cultures of LPS-challenged human monocytes and neutrophils. We conclude that metalloproteinases are responsible for shedding of the TREM-1 ectodomain through proteolytic cleavage of its long juxtamembrane linker.  相似文献   

7.
Polymorphonuclear neutrophils (PMN) are crucial in the innate host defense by their ability to rapidly accumulate in inflamed tissues and clear a site of infection from microbial pathogens by their potent effector mechanisms. The triggering receptor expressed on myeloid cells (TREM)-1 is a recently described activating receptor on PMN with an important role in inflammation. However, the effects of TREM-1 stimulation on a cellular level remain to be further defined. To characterize TREM-1-mediated activation of human PMN, we evaluated the effect of receptor ligation on PMN effector functions. Activation via TREM-1 induces immediate degranulation of neutrophilic granules resulting in the release of IL-8, respiratory burst, and phagocytosis. TREM-1 ligation synergizes with the activation by the Toll-like receptors (TLR) ligands LPS, Pam(3)Cys, and R-848. In contrast, no synergy between TREM-1- and TLR-mediated stimulation was observed concerning PMN survival, whereas TLR-mediated stimuli protect PMN from apoptosis, concurrent TREM-1 activation neutralizes these anti-apoptotic effects. These results give a new perspective for the regulation of neutrophil inflammatory responses emphasizing the importance of TREM-1 in innate immunity.  相似文献   

8.
Triggering receptor expressed on myeloid cells (TREM)-1 is a cell surface molecule expressed on neutrophils and monocytes implicated in the propagation of the inflammatory response. To further characterize the function of this molecule in different phases of the immune response, we examined TREM-1 in the context of host defense against microbial pathogens. In primary human monocytes TREM-1 activation did not trigger innate antimicrobial pathways directed against intracellular Mycobacterium tuberculosis, and only minimally improved phagocytosis. However, activation of TREM-1 on monocytes did drive robust production of proinflammatory chemokines such as macrophage inflammatory protein-1alpha and IL-8. Engagement of TREM-1 in combination with microbial ligands that activate Toll-like receptors also synergistically increased production of the proinflammatory cytokines TNF-alpha and GM-CSF, while inhibiting production of IL-10, an anti-inflammatory cytokine. Expression of TREM-1 was up-regulated in response to TLR activation, an effect further enhanced by GM-CSF and TNF-alpha but inhibited by IL-10. Functionally, primary monocytes differentiated into immature dendritic cells following activation through TREM-1, evidenced by higher expression of CD1a, CD86, and MHC class II molecules. These cells had an improved ability to elicit T cell proliferation and production of IFN-gamma. Our data suggest that activation of TREM-1 on monocytes participates during the early-induced and adaptive immune responses involved in host defense against microbial challenges.  相似文献   

9.
Mammalian immunoregulatory families of genes encoding activating and inhibitory Ig-like receptor pairs have been located on distinct chromosomes. In chicken, a single Ig-like receptor family with many members had been described so far. By looking at sequence similarity and synteny conservations in the chicken genome, the signal-regulatory protein (SIRP), triggering receptor expressed on myeloid cells (TREM), and CMRF35/CD300L Ig-like gene families were identified on chromosomes 20, 26, and 3, respectively. Further analysis of the three corresponding genomic regions and partial bacterial artificial chromosome sequencing were used to identify more members and to realign several contigs. All putative genomic sequences were monitored by investigating existing expressed sequence tag and cloning cDNA. This approach yielded a single pair of activating and inhibitory SIRP, two inhibitory, and one activating TREM as well as one inhibitory CMRF35/CD300L with a potentially soluble variant and an additional member lacking categorizing motifs. The CMRF35/CD300L and TREM receptors were composed of one or two V-set Ig domains, whereas in SIRP, either a single Ig V domain was present or a combination of a V and C1 domains. Like in many Ig superfamily members, separate exons encode individual Ig domains. However, in two CMRF35/CD300L genes, the signal peptide and the distal Ig domain were encoded by a single exon. In conclusion, the mammalian diversity of immunoregulatory molecules is present the chicken suggesting an important role for TREM, SIRP, and CMRF35/CD300L in a functionally conserved network.  相似文献   

10.
The three-dimensional structure of an immunoglobulin light chain dimer (Mcg) crystallized in deionized water (orthorhombic form) was determined at 2.0 A resolution by phase extension and crystallographic refinement. This structure was refined side-by-side with that of the same molecule crystallized in ammonium sulfate (trigonal form). The dimer adopted markedly different structures in the two solvents. "Elbow bend" angles between pseudo 2-fold axes of rotation relating pairs of "variable" (V) and "constant" (C) domains were found to be 132 degrees in the orthorhombic form and 115 degrees in the trigonal form. Modes of association of the V domains and, to a lesser extent, the pairing interactions of the C domains were different in the two structures. Alterations in the V domain pairing were reflected in the shapes of the binding regions and in the orientations of the side-chains lining the walls of the binding sites. In the trigonal form, for instance, the V domain interface was compartmentalized into a main binding cavity and a deep pocket, whereas these spaces were continuous in the orthorhombic structure. Patterns of ordered water molecules were quite distinct in the two crystal types. In some cases, the solvent structures could be correlated with conformational changes in the proteins. For example, close contacts between V and C domains of monomer 1 of the trigonal form were not retained in orthorhombic crystals. Ordered water molecules filled the space created when the two domains moved apart.  相似文献   

11.
12.
Pattern recognition by TREM-2: binding of anionic ligands   总被引:1,自引:0,他引:1  
We recently described the cloning of murine triggering receptor expressed by myeloid cells (TREM) 2, a single Ig domain DNAX adaptor protein 12-associated receptor expressed by cells of the myeloid lineage. In this study, we describe the identification of ligands for TREM-2 on both bacteria and mammalian cells. First, by using a TREM-2A/IgG1-Fc fusion protein, we demonstrate specific binding to a number of Gram-negative and Gram-positive bacteria and to yeast. Furthermore, we show that fluorescently labeled Escherichia coli and Staphylococcus aureus bind specifically to TREM-2-transfected cells. The binding of TREM-2A/Ig fusion protein to E. coli can be inhibited by the bacterial products LPS, lipoteichoic acid, and peptidoglycan. Additionally, binding can be inhibited by a number of other anionic carbohydrate molecules, including dextran sulfate, suggesting that ligand recognition is based partly on charge. Using a sensitive reporter assay, we demonstrate activation of a TREM-2A/CD3zeta chimeric receptor by both bacteria and dextran sulfate. Finally, we demonstrate binding of TREM-2A/Ig fusion to a series of human astrocytoma lines but not to a variety of other cell lines. The binding to astrocytomas, like binding to bacteria, is inhibited by anionic bacterial products, suggesting either a similar charge-based ligand recognition method or overlapping binding sites for recognition of self- and pathogen-expressed ligands.  相似文献   

13.
Triggering receptor expressed on myeloid cells (TREM)-1 is a cell surface molecule on neutrophils and monocytes/macrophages implicated in the amplification of inflammatory responses by enhancing degranulation and secretion of proinflammatory mediators. Macrophages play an important role in the intestinal mucosal immune system, because they are preferentially localized in the subepithelial region. Despite the presence of enormous numbers of bacteria in the colonic mucosa and the close proximity between mucosal macrophages and luminal bacteria, the intestinal mucosa normally displays minimal signs of inflammation. In this study, we show that the resident macrophage population in normal human small and large intestine contains only few TREM-1-expressing macrophages (<10%), whereas the overwhelming majority of monocytes (>90%) and macrophages from lymph nodes or tonsils (>80%) express TREM-1 on the cell surface. These findings were confirmed by FACS analysis and immunostainings of frozen tissue sections. The differential expression of TREM-1 greatly affects the functional capacities of monocytes and tissue macrophages. Although monocytes and macrophages from spleen, lymph nodes, or tonsils show a substantial increase in oxidative burst after TREM-1 cross-linking, no effect is seen in intestinal macrophages. Intriguingly, in contrast to monocytes, intestinal macrophages fail to up-regulate TREM-1 in response to TNF. This refractory state may be induced in intestinal macrophages by the local presence of IL-10 and TGF-beta, because these two immunoregulatory cytokines synergistically down-regulate TREM-1 expression on monocytes in vitro. The absence of TREM-1 expression on lamina propria macrophages is likely to prevent excessive inflammatory reactions, and thus, excessive tissue damage in the intestine.  相似文献   

14.
Crystal structures of the BAR-PH and PTB domains of human APPL1   总被引:2,自引:0,他引:2  
APPL1 interacts with adiponectin receptors and other important signaling molecules. It contains a BAR and a PH domain near its N terminus, and the two domains may function as a unit (BAR-PH domain). We report here the crystal structures of the BAR-PH and PTB domains of human APPL1. The structures reveal novel features for BAR domain dimerization and for the interactions between the BAR and PH domains. The BAR domain dimer of APPL1 contains two four-helical bundles, whereas other BAR domain dimers have only three helices in each bundle. The PH domain is located at the opposite ends of the BAR domain dimer. Yeast two-hybrid assays confirm the interactions between the BAR and PH domains. Lipid binding assays show that the BAR, PH, and PTB domains can bind phospholipids. The ability of APPL1 to interact with multiple signaling molecules and phospholipids supports an important role for this adaptor in cell signaling.  相似文献   

15.
The Toll/interleukin-1 receptor (TIR) domains are conserved modules in the intracellular regions of the Toll-like receptors (TLRs) and interleukin-1 receptors (IL-1Rs). The domains are crucial for the signal transduction by these receptors, through homotypic interactions among the receptor and the downstream adapter TIR domains. Previous studies showed that the BB loop in the structure of the TIR domain forms a prominent conserved feature on the surface and is important for receptor signaling. Here we report the crystal structure of the C713S mutant of the TIR domain of human TLR2. An extensively associated dimer is observed in the crystal structure and mutations of several residues in this dimer interface abolished the function of the receptor. Moreover, the structure shows that the BB loop can adopt different conformations, which are required for the formation of this dimer. This asymmetric dimer might represent the TLR2:TLRx heterodimer in the function of this receptor.  相似文献   

16.
Members of the immunoglobulin superfamily (IgSF) include a group of innate immune receptors located in the leukocyte receptor complex (LRC) and other small clusters such as the TREM/NKp44 cluster. These receptors are characterised by the presence of immunoglobulin domains, a stalk, a transmembrane domain, and a cytoplasmic region containing either an immunoreceptor tyrosine-based inhibitory motif (ITIM) or are linked to an adapter molecule with an activation motif (ITAM) for downstream signalling. We have isolated two carp cDNA sequences encoding receptors in which the extracellular Ig domain structurally resembles the novel V-type Ig domain of NKp44. This is supported by a homology model. The cytoplasmic regions contain either an ITAM (Cyca-NILT1) or ITIMs (Cyca-NILT2). The tissue expression of these receptors is nearly identical, with the highest expression in the immunological organs. Peripheral blood leucocytes showed no detectable expression, but upon in vitro culture expressed NILT1, the activating receptor, and not the inhibitory NILT2 receptor. Southern blot analysis indicated that the NILT1 and NILT2 sequences belong to a multigene family. Analysis of the NILT Ig domain-encoding sequences amplified from both genomic DNA and cDNA revealed extensive haplotypic and allelic polymorphism. Database mining of the zebrafish genome identified several homologs on Chromosome 1, which also contains a cluster of class I major histocompatibility genes. This constellation is reminiscent of the TREM/NKp44 gene cluster and the HLA complex located on human Chromosome 6. The carp NILT genes form a unique cluster of innate immune receptors, which are highly polymorphic, and characterised by a new Ig structural subfamily and are distinct from the novel immune-type receptors (Nitrs) found in other fish species.  相似文献   

17.
18.
Fc gamma receptors bind IgG to initiate cellular responses against pathogens and soluble antigens. We have determined the three-dimensional structure of the extracellular portion of human Fc gammaRIIa to 2.0 A resolution providing a structural basis for the unique functions of the leukocyte FcR family. The receptor is composed of two immunoglobulin domains and arranged to expose the ligand-binding site at one end of domain 2. Using alanine mutants we find that the binding sites for IgG1 and 2 are similar but the relative importance of specific regions on the receptor varies. In crystals, Fc gammaRIIa molecules associate to resemble V(L)V(H) dimers, suggesting that two Fc gammaRIIa molecules could cooperate to bind IgG in an asymmetric manner.  相似文献   

19.
A heretofore-unrecognized multigene family encoding diverse immunoglobulin (Ig) domain-containing proteins (DICPs) was identified in the zebrafish genome. Twenty-nine distinct loci mapping to three chromosomal regions encode receptor-type structures possessing two classes of Ig ectodomains (D1 and D2). The sequence and number of Ig domains, transmembrane regions and signaling motifs vary between DICPs. Interindividual polymorphism and alternative RNA processing contribute to DICP diversity. Molecular models indicate that most D1 domains are of the variable (V) type; D2 domains are Ig-like. Sequence differences between D1 domains are concentrated in hypervariable regions on the front sheet strands of the Ig fold. Recombinant DICP Ig domains bind lipids, a property shared by mammalian CD300 and TREM family members. These findings suggest that novel multigene families encoding diversified immune receptors have arisen in different vertebrate lineages and affect parallel patterns of ligand recognition that potentially impact species-specific advantages.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号