首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Li WP  Yang FS  Jivkova T  Yin GS 《Annals of botany》2012,109(7):1341-1357

Background and Aims

The classification and phylogeny of Eurasian (EA) Aster (Asterinae, Astereae, Asteraceae) remain poorly resolved. Some taxonomists adopt a broad definition of EA Aster, whereas others favour a narrow generic concept. The present study aims to delimit EA Aster sensu stricto (s.s.), elucidate the phylogenetic relationships of EA Aster s.s. and segregate genera.

Methods

The internal and external transcribed spacers of nuclear ribosomal DNA and the plastid DNA trnL-F region were used to reconstruct the phylogeny of EA Aster through maximum parsimony and Bayesian analyses.

Key Results

The analyses strongly support an Aster clade including the genera Sheareria, Rhynchospermum, Kalimeris (excluding Kalimeris longipetiolata), Heteropappus, Miyamayomena, Turczaninowia, Rhinactinidia, eastern Asian Doellingeria, Asterothamnus and Arctogeron. Many well-recognized species of Chinese Aster s.s. lie outside of the Aster clade.

Conclusions

The results reveal that EA Aster s.s. is both paraphyletic and polyphyletic. Sheareria, Rhynchospermum, Kalimeris (excluding K. longipetiolata), Heteropappus, Miyamayomena, Turczaninowia, Rhinactinidia, eastern Asian Doellingeria, Asterothamnus and Arctogeron should be included in Aster, whereas many species of Chinese Aster s.s. should be excluded. The recircumscribed Aster should be divided into two subgenera and nine sections. Kalimeris longipetiolata, Aster batangensis, A. ser. Albescentes, A. series Hersileoides, a two-species group composed of A. senecioides and A. fuscescens, and a six-species group including A. asteroides, should be elevated to generic level. With the Aster clade, they belong to the Australasian lineages. The generic status of Callistephus should be maintained. Whether Galatella (including Crinitina) and Tripolium should remain as genera or be merged into a single genus remains to be determined. In addition, the taxonomic status of A. auriculatus and the A. pycnophyllus–A. panduratus clade remains unresolved, and the systematic position of some segregates of EA Aster requires further study.  相似文献   

2.

Background and Aims

In the Mascarenes, a young oceanic archipelago composed of three main islands, the Dombeyoideae (Malvaceae) have diversified extensively with a high endemism rate. With the exception of the genus Trochetia, Mascarene Dombeyoideae are described as dioecious whereas Malagasy and African species are considered to be monocline, species with individuals bearing hermaphrodite/perfect flowers. In this study, the phylogenetic relationships were reconstructed to clarify the taxonomy, understand the phylogeographic pattern of relationships and infer the evolution of the breeding systems for the Mascarenes Dombeyoideae.

Methods

Parsimony and Bayesian analysis of four DNA markers (ITS, rpl16 intron and two intergenic spacers trnQ-rsp16 and psbM-trnD) was used. The molecular matrix comprised 2985 characters and 48 taxa. The Bayesian phylogeny was used to infer phylogeographical hypotheses and the evolution of breeding systems.

Key Results

Parsimony and Bayesian trees produced similar results. The Dombeyoideae from the Mascarenes are polyphyletic and distributed among four clades. Species of Dombeya, Trochetia and Ruizia are nested in the same clade, which implies the paraphyly of Dombeya. Additionally, it is shown that each of the four clades has an independent Malagasy origin. Two adaptive radiation events have occurred within two endemic lineages of the Mascarenes. The polyphyly of the Mascarene Dombeyoideae suggests at least three independent acquisitions of dioecy.

Conclusions

This molecular phylogeny highlights the taxonomic issues within the Dombeyoideae. Indeed, the limits and distinctions of the genera Dombeya, Trochetia and Ruizia should be reconsidered. The close phylogeographic relationships between the flora of the Mascarenes and Madagascar are confirmed. Despite their independent origins and a distinct evolutionary history, each endemic clade has developed a different breeding systems (dioecy) compared with the Malagasy Dombeyoideae. Sex separation appears as an evolutionary convergence and may be the consequence of selective pressures particular to insular environments.  相似文献   

3.

Background and Aims

Previous work on the pantropical genus Ixora has revealed an Afro-Madagascan clade, but as yet no study has focused in detail on the evolutionary history and morphological trends in this group. Here the evolutionary history of Afro-Madagascan Ixora spp. (a clade of approx. 80 taxa) is investigated and the phylogenetic trees compared with several key morphological traits in taxa occurring in Madagascar.

Methods

Phylogenetic relationships of Afro-Madagascan Ixora are assessed using sequence data from four plastid regions (petD, rps16, rpoB-trnC and trnL-trnF) and nuclear ribosomal external transcribed spacer (ETS) and internal transcribed spacer (ITS) regions. The phylogenetic distribution of key morphological characters is assessed. Bayesian inference (implemented in BEAST) is used to estimate the temporal origin of Ixora based on fossil evidence.

Key Results

Two separate lineages of Madagascan taxa are recovered, one of which is nested in a group of East African taxa. Divergence in Ixora is estimated to have commenced during the mid Miocene, with extensive cladogenesis occurring in the Afro-Madagascan clade during the Pliocene onwards.

Conclusions

Both lineages of Madagascan Ixora exhibit morphological innovations that are rare throughout the rest of the genus, including a trend towards pauciflorous inflorescences and a trend towards extreme corolla tube length, suggesting that the same ecological and selective pressures are acting upon taxa from both Madagascan lineages. Novel ecological opportunities resulting from climate-induced habitat fragmentation and corolla tube length diversification are likely to have facilitated species radiation on Madagascar.  相似文献   

4.
BACKGROUND AND AIMS: Passiflora actinia and P. elegans, two markedly parapatric species, have their southern and northern distribution limits, respectively, in the most southern part of the Brazilian Atlantic Rain Forest. Despite the fact that they are classified in different taxonomic series, previous phylogenetic studies of this genus revealed a high genetic similarity between them. The aim of the present work was to analyse in more detail their geographical range in this region of overlap, to investigate intraspecific genetic variability and phylogeographic structure, and to search for possible hybrids. METHODS: Eighty-two localities were searched for these species, and nuclear internal transcribed spacer (ITS) sequences were investigated for 32 individuals of P. actinia, 20 of P. elegans and one putative interspecific hybrid. Plastid trnL-trnF and psbA-trnH were examined for 12 plants of each species and the putative hybrid. KEY RESULTS: Both species showed a high level of intraspecific and intra-individual ITS variability. Network analysis revealed a north-south geographic gradient in their intra and interspecific relationships. Mismatch analyses suggested a recent population expansion of P. elegans. The plastid markers showed restricted variability but, together with the nuclear data, they contributed to the identification of an interspecific hybrid of intermediate morphology at the border of the distribution of these two species. Both genetic and morphological data indicate the absence of an extensive hybridization zone between these species. CONCLUSIONS: Gene flow between lineages is the possible cause for the presence of different ITS sequences within a given plant, the absence of homogenization being due to the high degree of vegetative reproduction in the two species. Differentiation of P. actinia into geographic groups and the origin of P. elegans may have been influenced by the Atlantic Forest migration towards southern Brazil. The genetic pattern of the interspecific hybrid indicates that plastid inheritance in these species is at least sometimes paternal.  相似文献   

5.
Chamaecrista belongs to subtribe Cassiinae (Caesalpinioideae), and it comprises over 330 species, divided into six sections. The section Xerocalyx has been subjected to a profound taxonomic shuffling over the years. Therefore, we conducted a phylogenetic analysis using a cpDNA trnE-trnT intergenic spacer and nrDNA ITS/5.8S sequences from Cassiinae taxa, in an attempt to elucidate the relationships within this section from Chamaecrista. The tree topology was congruent between the two data sets studied in which the monophyly of the genus Chamaecrista was strongly supported. Our analyses reinforce that new sectional boundaries must be defined in the Chamaecrista genus, especially the inclusion of sections Caliciopsis and Xerocalyx in sect. Chamaecrista, considered here paraphyletic. The section Xerocalyx was strongly supported as monophyletic; however, the current data did not show C. ramosa (microphyllous) and C. desvauxii (macrophyllous) and their respective varieties in distinct clades, suggesting that speciation events are still ongoing in these specimens.  相似文献   

6.
Subfamily Barnadesioideae (Asteraceae) consists of nine genera and 91 species endemic to South America. They include annual and perennial herbs, arching shrubs and trees up to 30 m tall. Presumed sister to all other Asteraceae, its intergeneric relationships are key to understanding the early evolution of the family. Results of the only molecular study on the subfamily conflict with relationships inferred from morphology. We investigate inter- and intrageneric relationships in Barnadesioideae with novel DNA sequence data and morphological characters using parsimony, likelihood and Bayesian inference. All results verify Barnadesioideae as monophyletic and sister to the rest of the family. A basal split within the subfamily is recognized, with Chuquiraga, Doniophyton and Duseniella in one clade, and Arnaldoa, Barnadesia, Dasyphyllum, Fulcaldea, Huarpea and possibly Schlechtendalia in another. The largest genus, Dasyphyllum, is revealed as biphyletic with the two clades separating along subgeneric and geographic lines. Schlechtendalia, suggested as the earliest diverging lineage of the subfamily by morphological studies and parsimony analyses, is found in a more derived position under model-based inference methods. Competing phylogenetic hypotheses, both previous and present, are evaluated using likelihood-based tests. Evolutionary trends within Barnadesioideae are inferred: hummingbird pollination has developed convergently at least three times. An early vicariance in the subfamily’s distribution is revealed. X = 9 is supported as the ancestral base chromosome number for both Barnadesioideae and the family as a whole.  相似文献   

7.
Symplocos comprises ~300 species of woody flowering plants with a disjunct distribution between the warm-temperate to tropical regions of eastern Asia and the Americas. Phylogenetic analyses of 111 species of Symplocos based on the nuclear ribosomal internal transcribed spacer (ITS) region and the chloroplast genes rpl16, matK, and trnL-trnF yielded topologies in which only one of the four traditionally recognized subgenera (Epigenia; Neotropics) is monophyletic. Section Cordyloblaste (subgenus Symplocos; eastern Asia) is monophyletic and sister to a group comprising all other samples of Symplocos. Section Palura (subgenus Hopea; eastern Asia) is sister to a group comprising all other samples of Symplocos except those of section Cordyloblaste. Symplocos wikstroemiifolia (eastern Asia) and S. tinctoria (southeastern United States), both of subgenus Hopea, form a clade that groups with S. longipes (tropical North America) and the species of subgenus Epigenia. The remaining samples of subgenus Hopea (eastern Asia) form a clade. Section Neosymplocos (subgenus Microsymplocos; Neotropics) is well nested within a clade otherwise comprising the samples of section Symplocastrum (subgenus Symplocos; Neotropics). Section Urbaniocharis (subgenus Microsymplocos; Antilles) groups as sister to the clade comprising Symplocastrum and Neosymplocos. The data support the independent evolution of deciduousness among section Palura and S. tinctoria. The early initial divergence of sections Cordyloblaste and Palura from the main group warrants their recognition at taxonomic levels higher than those at which they are currently placed. An inferred eastern Asian origin for Symplocos with subsequent dispersal to the Americas is consistent with patterns from other phylogenetic studies of eastern Asian-American disjunct plant groups but contrary to a North American origin inferred from the earliest fossil occurrences of the genus.  相似文献   

8.

Background and Aims

Leptochloa (including Diplachne) sensu lato (s.l.) comprises a diverse assemblage of C4 (NAD-ME and PCK) grasses with approx. 32 annual or perennial species. Evolutionary relationships and a modern classification of Leptochloa spp. based on the study of molecular characters have only been superficially investigated in four species. The goals of this study were to reconstruct the evolutionary history of Leptochloa s.l. with molecular data and broad taxon sampling.

Methods

A phylogenetic analysis was conducted of 130 species (mostly Chloridoideae), of which 22 are placed in Leptochloa, using five plastid (rpL32-trn-L, ndhA intron, rps16 intron, rps16-trnK and ccsA) and the nuclear ITS 1 and 2 (ribosomal internal transcribed spacer regions) to infer evolutionary relationships and revise the classification.

Key results

Leptochloa s.l. is polyphyletic and strong support was found for five lineages. Embedded within the Leptochloa sensu stricto (s.s.) clade are two Trichloris spp. and embedded in Dinebra are Drake-brockmania and 19 Leptochloa spp.

Conclusions

The molecular results support the dissolution of Leptochloa s.l. into the following five genera: Dinebra with 23 species, Diplachne with two species, Disakisperma with three species, Leptochloa s.s. with five species and a new genus, Trigonochloa, with two species.  相似文献   

9.

Background and Aims

Nickel (Ni) hyperaccumulation is a rare form of physiological specialization shared by a small number of angiosperms growing on ultramafic soils. The evolutionary patterns of this feature among European members of tribe Alysseae (Brassicaceae) are investigated using a phylogenetic approach to assess relationships among Ni hyperaccumulators at the genus, species and below-species level.

Methods

Internal transcribed spacer (ITS) sequences were generated for multiple accessions of Alysseae. Phylogenetic trees were obtained for the genera of the tribe and Alyssum sect. Odontarrhena. All accessions and additional herbarium material were tested for Ni hyperaccumulation with the dimethylglyoxime colorimetric method.

Key Results

Molecular data strongly support the poorly known hyperaccumulator endemic Leptoplax (Peltaria) emarginata as sister to hyperaccumulator species of Bornmuellera within Alysseae. This is contrary to current assumptions of affinity between L. emarginata and the non-hyperaccumulator Peltaria in Thlaspideae. The lineage Bornmuellera–Leptoplax is, in turn, sister to the two non-hyperaccumulator Mediterranean endemics Ptilotrichum rupestre and P. cyclocarpum. Low ITS sequence variation was found within the monophyletic Alyssum sect. Odontarrhena and especially in A. murale sensu lato. Nickel hyperaccumulation was not monophyletic in any of three main clades retrieved, each consisting of hyperaccumulators and non-hyperaccumulators of different geographical origin.

Conclusions

Nickel hyperaccumulation in Alysseae has a double origin, but it did not evolve in Thlaspideae. In Bornmuellera–Leptoplax it represents an early synapomorphy inherited from an ancestor shared with the calcicolous, sister clade of Mediterranean Ptilotrichum. In Alyssum sect. Odontarrhena it has multiple origins even within the three European clades recognized. Lack of geographical cohesion suggests that accumulation ability has been lost or gained over the different serpentine areas of south Europe through independent events of microevolutionary adaptation and selection. Genetic continuity and strong phenotypic plasticity in the A. murale complex call for a reduction of the number of Ni hyperaccumulator taxa formally recognized.  相似文献   

10.
Melanthiaceae (Liliales) comprise 17 genera of rhizomatous or bulbous perennials and are distributed across the Northern Hemisphere. The relationships among the five tribes in this family have been evaluated in many molecular and morphological studies. In this study, we performed a phylogenetic analysis of the 17 genera, including 106 species of Melanthiaceae sensu APG III and nine related species as outgroups, based on sequences of five plastid regions (atpB, rbcL, matK, ndhF and trnL‐F). Support values for the monophyly of the family (BSMP = 96%, BSML = 100%, PPBI = 1.00) and each tribe were improved in comparison with previous studies. Among the tribes, Melanthieae were sister to the remainder of the family and sister relationships between Xerophylleae and Parideae (BSMP = 96%, BSML = 100%, PPBI = 1.00) and Chionographideae and Heloniadeae (BSMP = 96%, BSML = 100%, PPBI = 1.00) were confirmed. Notably, the generic concept of Veratrum s.l. including Melanthium was not supported in the present study and these genera should be treated as distinct. In the case of Parideae, the relationship of Trillium govanianum to the other species remains uncertain and requires further studies. Finally, we mapped seven representative morphological characters onto the molecular phylogenetic tree for Melanthiaceae.  相似文献   

11.

Background and Aims

Wild Sorghum species provide novel traits for both biotic and abiotic stress resistance and yield for the improvement of cultivated sorghum. A better understanding of the phylogeny in the genus Sorghum will enhance use of the valuable agronomic traits found in wild sorghum.

Methods

Four regions of chloroplast DNA (cpDNA; psbZ-trnG, trnY-trnD, trnY-psbM and trnT-trnL) and the internal transcribed spacer (ITS) of nuclear ribosomal DNA were used to analyse the phylogeny of sorghum based on maximum-parsimony analyses.

Key Results

Parsimony analyses of the ITS and cpDNA regions as separate or combined sequence datasets formed trees with strong bootstrap support with two lineages: the Eu-sorghum species S. laxiflorum and S. macrospermum in one and Stiposorghum and Para-sorghum in the other. Within Eu-sorghum, S. bicolor-3, -11 and -14 originating from southern Africa form a distinct clade. S. bicolor-2, originally from Yemen, is distantly related to other S. bicolor accessions.

Conclusions

Eu-sorghum species are more closely related to S. macrospermum and S. laxiflorum than to any other Australian wild Sorghum species. S. macrospermum and S. laxiflorum are so closely related that it is inappropriate to classify them in separate sections. S. almum is closely associated with S. bicolor, suggesting that the latter is the maternal parent of the former given that cpDNA is maternally inherited in angiosperms. S. bicolor-3, -11 and -14, from southern Africa, are closely related to each other but distantly related to S. bicolor-2.  相似文献   

12.
A molecular phylogenetic study of the genusCyclamen L. (Primulaceae) has been undertaken, based on sequence data from the 5.8S gene in the ribosomal nuclear DNA and its flanking internal transcribed spacers ITS1 and ITS2. Sequence data from 15 species ofCyclamen and seven outgroup taxa selected from Primulaceae and Myrsinaceae were analyzed phylogenetically. A second analysis based on a combined morphological and molecular dataset was performed to evaluate earlier hypotheses of character evolution in the genus. The results indicate that four monophyletic subgroups may be recognized in the genus, viz.Cyclamen, Psilanthum Schwarz,Eucosme Schwarz andGyrophoebe Schwarz. Each of the four subgenera is diagnosed by distinct basic chromosome number, as well as by morphological and molecular characteristics.  相似文献   

13.

A phylogenetic analysis was performed based on ITS DNA sequences of fourteen samples from different sources of six species of Salicornia, the three allied genera Arthrocnemum, Sarcocornia and Halocnemum of the same tribe Salicornieae, and other genera of the subfamily Salicornioideae used in previous studies. Bassia hirsuta, Camphorosma monspeliaca (subfamily Chenopodioideae) and four species of Suaeda (subf. Suaedoideae) were chosen as outgroups. Results show that the annual genus Salicornia is a sister group to the perennial genera Sarcocornia, Arthrocnemum and Halocnemum. Moreover, the phylogenetic analysis based on ITS results distinguished two groups of Salicornia species which fitted with ploidy level: one group consisted of diploid species, and the second of tetraploid ones. Sarcocornia and Arthrocnemum are shown to be closely related, even though the species investigated here exhibited an evident distance between their ITS sequences. On the basis of our results, these two genera should be united. Bienertia (already separated as Bienertieae) was confirmed as probable outgroup to the subf. Salicornioideae, while Kalidium (subf. Salicornioideae, tribe Halopeplideae) was an outgroup to the rest of the Salicornioideae (tribe Salicornieae). The group Allenrolfea plus Halocnemum was the most basal of the tribe Salicornieae amongst those investigated in this study. The two samples of Halocnemum strobilaceum used in this work displayed numerous changes (transitions and transversions) in their respective sequences, probably related to their morphological and chorological differentiation. On the basis of our analysis, the most probable basal chromosome number for Salicornieae appears to be 2n = 18. The same number would also be the base number for the annual genus Salicornia and the perennial Arthrocnemum ( + Sarcocornia), with polyploidy arising independently in the two groups.  相似文献   

14.
15.
Li QQ  Zhou SD  He XJ  Yu Y  Zhang YC  Wei XQ 《Annals of botany》2010,106(5):709-733

Background and Aims

The genus Allium comprises more than 800 species, placing it among the largest monocotyledonous genera. It is a variable group that is spread widely across the Holarctic region. Previous studies of Allium have been useful in identifying and assessing its evolutionary lineages. However, there are still many gaps in our knowledge of infrageneric taxonomy and evolution of Allium. Further understanding of its phylogeny and biogeography will be achieved only through continued phylogenetic studies, especially of those species endemic to China that have often been excluded from previous analyses. Earlier molecular studies have shown that Chinese Allium is not monophyletic, so the goal of the present study was to infer the phylogeny and biogeography of Allium and to provide a classification of Chinese Allium by placement of Chinese species in the context of the entire phylogeny.

Methods

Phylogenetic studies were based on sequence data of the nuclear ribosomal internal transcribed spacer (ITS) and chloroplast rps16 intron, analysed using parsimony and Bayesian approaches. Biogeographical patterns were conducted using statistical dispersal–vicariance analysis (S-DIVA).

Key Results

Phylogenetic analyses indicate that Allium is monophyletic and consists of three major clades. Optimal reconstructions have favoured the ancestors of Amerallium, Anguinum, Vvedenskya, Porphyroprason and Melanocrommyum as originating in eastern Asia.

Conclusions

Phylogenetic analyses reveal that Allium is monophyletic but that some subgenera are not. The large genetic distances imply that Allium is of ancient origin. Molecular data suggest that its evolution proceeded along three separate evolutionary lines. S-DIVA indicates that the ancestor of Amerallium, Anguinum, Vvedenskya, Porphyroprason and Melanocrommyum originated from eastern Asia and underwent different biogeographical pathways. A taxonomic synopsis of Chinese Allium at sectional level is given, which divides Chinese Allium into 13 subgenera and 34 sections.  相似文献   

16.
Wang A  Yang M  Liu J 《Annals of botany》2005,96(3):489-498
BACKGROUND AND AIMS: Rheum, a highly diversified genus with about 60 species, is mainly confined to the mountainous and desert regions of the Qinghai-Tibetan plateau and adjacent areas. This genus represents a good example of the extensive diversification of the temperate genera in the Qinghai-Tibetan plateau, in which the forces to drive diversification remain unknown. To date, the infrageneric classification of Rheum has been mainly based on morphological characters. However, it may have been subject to convergent evolution under habitat pressure, and the systematic position of some sections are unclear, especially Sect. Globulosa, which has globular inflorescences, and Sect. Nobilia, which has semi-translucent bracts. Recent palynological research has found substantial contradictions between exine patterns and the current classification of Rheum. Two specific objectives of this research were (1) to evaluate possible relationships of some ambiguous sections with a unique morphology, and (2) to examine possible occurrence of the radiative speciation with low genetic divergence across the total genus and the correlation between the extensive diversification time of Rheum and past geographical events, especially the recent large-scale uplifts of the Qinghai-Tibetan Plateau. METHODS: The chloroplast DNA trnL-F region of 29 individuals representing 26 species of Rheum, belonging to seven out of eight sections, was sequenced and compared. The phylogenetic relationships were further constructed based on the sequences obtained. KEY RESULTS: Despite the highly diversified morphology, the genetic variation in this DNA fragment is relatively low. The molecular phylogeny is highly inconsistent with gross morphology, pollen exine patterns and traditional classifications, except for identifying all samples of Sect. Palmata, three species of Sect. Spiciformia and a few species of Sect. Rheum as corresponding monophyletic groups. The monotypic Sect. Globulosa showed a tentative position within the clade comprising five species of Sect. Rheum. All of the analyses revealed the paraphyly of R. nobile and R. alexandrae, the only two species of Sect. Nobilia circumscribed by the possession of large bracts. The crude calibration of lineages based on trnL-F sequence differentiation implied an extensive diversification of Rheum within approx. 7 million years. CONCLUSIONS: Based on these results, it is suggested that the rich geological and ecological diversity caused by the recent large-scale uplifts of the Qinghai-Tibetan Plateau since the late Tertiary, coupled with the oscillating climate of the Quaternary stage, might have promoted rapid speciation in small and isolated populations, as well as allowing the fixation of unique or rare morphological characters in Rheum. Such a rapid radiation, combined with introgressive hybridization and reticulate evolution, may have caused the transfer of cpDNA haplotypes between morphologically dissimilar species, and might account for the inconsistency between morphological classification and molecular phylogeny reported here.  相似文献   

17.
The interrelationship of the ten species of the genusTyphonium and related genera in subtribe Arinae of the Araceae was inferred by chloroplast DNA restriction fragment analysis. A total of 42 site mutations were observed and 26 site mutations were shared by two or more species. A majority rule consensus tree was made by performing 100 bootstrap replicates using Wagner Parsimony. Two groups ofTyphonium were recognized significantly as monophyletic groups, i.e. 1)Typhonium larsenii andT. kunmingense, and 2)T. trilobatum, T. blumei andT. flagelliforme.  相似文献   

18.
BACKGROUND AND AIMS: The precise generic delimitation of the Rhaponticum group is not totally resolved. The lack of knowledge of the relationships between the basal genera of Centaureinae could imply that genera whose position is as yet unresolved could belong to the Rhaponticum group. On the other hand, the affinities among the genera that are considered as members of this group are not well known. The aim of the study is to contribute to the phylogenetic and generic delineation of the Rhaponticum group on the basis of molecular data. METHODS: Parsimony and Bayesian analyses of the combined sequences of one plastid (trnL-trnF) and two nuclear (ITS region and ETS) molecular markers were carried out. The results of these analyses are discussed in the light of the biogeographic history. KEY RESULTS: The Rhaponticum group appears as monophyletic, and closely related to the genus Klasea. The results confirm the preliminary generic delimitation of the Rhaponticum group, with the new incorporation of the genus Centaurothamnus. Ochrocephala is supported as a separate genus from Rhaponticum and, contrary to this, Acroptilon and Leuzea appear as merged into the genus Rhaponticum. Several nomenclatural rearrangements are made in Klasea and Rhaponticum. CONCLUSIONS: The new molecular evidence is consistent with the morphological and karyological data, and suggests particularly coherent biogeographic routes of migration and speciation processes for the genus Rhaponticum. The biogeographic inference proposes a Near East and/or Caucasian origin for the genus. Furthermore, representatives of Rhaponticum could have reached Europe in two different ways: (1) expansion across central Asia to eastern Europe, and (2) expansion through the Near East, North Africa and then to the Iberian Peninsula and the Alps.  相似文献   

19.
Although some molecular phylogenies of Patella species have been published in recent years, unresolved questions concerning the phylogeny and taxonomy of this genus still remain. We sequenced the mitochondrial genes cytochrome c oxidase subunit I, 12S rRNA and 16S rRNA for all Patella species (Patella vulgata, Patella depressa, Patella candei, Patella caerulea, Patella lugubris, Patella ferruginea, Patella pellucida and the continental and Macaronesian forms of Patella ulyssiponensis and Patella rustica) and Cymbula safiana. Our results revealed the occurrence of five strongly supported clades, although relationships between these are not well supported. According to our data P. vulgata is a genetically distinct lineage and the close phylogenetic relationship between this species and P. depressa, found in previous mitochondrial DNA studies, is not supported. The Mediterranean Sea and the Macaronesian Islands seem to have played an important role in the speciation and diversification of this genus, although different clades show different phylogeographic patterns. Our dataset point to the necessity of a taxonomic revision, as P. candei is paraphyletic relative to P. lugubris.  相似文献   

20.
Li B  Liu Z  Zheng ZM 《ZooKeys》2011,(148):209-255
The grasshopper family Catantopidae is a well-known group, whose members include some of the most notorious agricultural pests. The existing classifications of the family are mostly utilitarian rather than being based on phylogenetic analysis and therefore unable to provide the stability desired for such an economically important group. In the present study, we present the first comprehensive phylogenetic analysis of the family based on morphology. By extensively sampling from the Chinese fauna, we included in the present analysis multiple representatives of each of the previously recognized tribes in the family. In total, we examined 94 genera represented by 240 species and evaluated 116 characters, including 84 for external morphology and 32 for male genitalia. The final matrix consists of 86 ingroup taxa and 88 characters. Our phylogenetic analyses resulted in a high resolution of the basal relationships of the family while showed considerable uncertainty about the relationships among some crown taxa. We further evaluated the usefulness of morphological characters in phylogeny reconstruction of the catantopids by examining character fit to the shortest trees found, and contrary to previous suggestions, our results suggest that genitalia characters are not as informative as external morphology in inferring higher-level relationship. We further suggest that earlier classification systems of grasshoppers in general and Catantopidae in particular most probably consist of many groups that are not natural due the heavy reliance on genitalia features and need to be revised in the light of future phylogenetic studies. Finally, we outlined a tentative classification scheme based on the results of our phylogenetic analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号