首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Detrusor smooth muscle (DSM) contributes to bladder wall tension during filling, and bladder wall deformation affects the signaling system that leads to urgency. The length-passive tension (L-T(p)) relationship in rabbit DSM can adapt with length changes over time and exhibits adjustable passive stiffness (APS) characterized by a L-T(p) curve that is a function of both activation and strain history. Muscle activation with KCl, carbachol (CCh), or prostaglandin E(2) at short muscle lengths can increase APS that is revealed by elevated pseudo-steady-state T(p) at longer lengths compared with prior T(p) measurements at those lengths, and APS generation is inhibited by the Rho Kinase (ROCK) inhibitor H-1152. In the current study, mouse bladder strips exhibited both KCl- and CCh-induced APS. Whole mouse bladders demonstrated APS which was measured as an increase in pressure during passive filling in calcium-free solution following CCh precontraction compared with pressure during filling without precontraction. In addition, CCh-induced APS in whole mouse bladder was inhibited by H-1152, indicating that ROCK activity may regulate bladder compliance during filling. Furthermore, APS in whole mouse bladder was elevated 2 wk after partial bladder outlet obstruction, suggesting that APS may be relevant in diseases affecting bladder mechanics. The presence of APS in mouse bladder will permit future studies of APS regulatory pathways and potential alterations of APS in disease models using knockout transgenetic mice.  相似文献   

2.
One etiology related directly to obstructive urinary bladder dysfunction is ischemia/reperfusion resulting in significant oxidative stress to the bladder. Grapes, a natural source of antioxidants, have been proven effective in preventing obstructive and ischemic bladder dysfunction. Many investigators believe that resveratrol is the primary active antioxidant ingredient in grapes. We compared the ability of a whole-grape suspension with pure resveratrol in their ability to protect the bladder from in vitro oxidative stress mediated by hydrogen peroxide (H2O2). Four male rabbit bladders were used. Two strips from each bladder were incubated in the presence of 1 mg/mL grape suspension for 30 min, another two strips were incubated in the presence of 1 mg/mL resveratrol solution, and the last two strips were incubated in the presence of 1 mg/mL sucrose/and fructose as controls. The rest of the bladder was separated into muscle and mucosa, frozen and stored for biochemical evaluation. (1) Chemically, resveratrol has about 20 times the antioxidant capacity of the grape suspension. (2) The grape suspension had significant protective effects when the rate of tension was quantitated at all concentrations of H2O2, while the resveratrol had no effect. (3) Citrate synthase activities of the muscle and mucosa were significantly protected by the grape suspension but not by resveratrol. These data demonstrate that the grape suspension protects the mitochondria to a significantly greater degree than resveratrol, which suggests that the antioxidant activities are due to the combination of active components found in the grape suspension and not just resveratrol.  相似文献   

3.

Aims

Alterations in properties of the bladder with maturation are relevant physiologically and pathophysiologically. The aim of this study was to investigate alterations in bladder properties with maturation in juvenile vs. adult pig, focussing on differences between layers of the bladder wall (mucosa vs. detrusor) and the presence and functional contribution of interstitial cells (ICs).

Methods

Basal and cholinergic-induced phasic contractions (PCs) in mucosal and denuded-detrusor strips from juvenile and adult pigs were assessed. Expression of c-kit, a marker of ICs, was investigated in the mucosa and the detrusor layers of the pig bladder. The functional role of ICs in mediating PCs was examined using imatinib.

Results

Mucosal strips from juvenile and adult pig bladders demonstrated basal PCs whilst denuded-detrusor strips did not. PCs of mucosal strips from juvenile pigs were significantly greater than those from adult bladders. Immunoreactivity for c-kit was detected in mucosa and detrusor layers of pig bladder. Histological studies demonstrated a distinct layer of smooth muscle between the urothelium and bladder detrusor, termed the muscularis mucosa. Imatinib was only effective in inhibiting PCs in mucosal strips from juvenile pigs. Imatinib inhibited the carbachol-induced PCs of both juvenile and adult denuded-detrusor strips, although strips from juvenile bladders demonstrated a trend towards being more sensitive to this inhibition.

Conclusions

We confirm the presence of c-kit positive ICs in pig urinary bladder. The enhanced PCs of mucosal strips from juvenile animals could be due to altered properties of ICs or the muscularis mucosa in the bladders of these animals.  相似文献   

4.
Passive and active tension in single cardiac myofibrils.   总被引:15,自引:3,他引:12       下载免费PDF全文
Single myofibrils were isolated from chemically skinned rabbit heart and mounted in an apparatus described previously (Fearn et al., 1993; Linke et al., 1993). We measured the passive length-tension relation and active isometric force, both normalized to cross sectional area. Myofibrillar cross sectional area was calculated based on measurements of myofibril diameter from both phase-contrast images and electron micrographs. Passive tension values up to sarcomere lengths of approximately 2.2 microns were similar to those reported in larger cardiac muscle specimens. Thus, the element responsible for most, if not all, passive force of cardiac muscle at physiological sarcomere lengths appears to reside within the myofibrils. Above 2.2 microns, passive tension continued to rise, but not as steeply as reported in multicellular preparations. Apparently, structures other than the myofibrils become increasingly important in determining the magnitude of passive tension at these stretched lengths. Knowing the myofibrillar component of passive tension allowed us to infer the stress-strain relation of titin, the polypeptide thought to support passive force in the sarcomere. The elastic modulus of titin is 3.5 x 10(6) dyn cm-2, a value similar to that reported for elastin. Maximum active isometric tension in the single myofibril at sarcomere lengths of 2.1-2.3 microns was 145 +/- 35 mN/mm2 (mean +/- SD; n = 15). This value is comparable with that measured in fixed-end contractions of larger cardiac specimens, when the amount of nonmyofibrillar space in those preparations is considered. However, it is about 4 times lower than the maximum active tension previously measured in single skeletal myofibrils under similar conditions (Bartoo et al., 1993).  相似文献   

5.
The present study examined the active and passive length-tension relationship of the abdominal expiratory muscles in vitro during electrically stimulated contractions. Studies were performed on isolated strips of transverse abdominis and external oblique muscle from nine adult hamsters with normal lung function. The effect of chronic hyperinflation on the two muscles was assessed in eight hamsters with elastase-induced emphysema. In normal animals the maximal active tension per cross-sectional area (Po) was equal in the two muscles. The absolute muscle fiber length at which Po occurred (Lo) was less for the external oblique than the transverse abdominis and the length-tension curve operated at shorter fiber lengths. However, the change in tension produced by an increase or decrease in muscle length expressed in relative terms (i.e., as %Lo) was greater for the transverse abdominis than the external oblique. Mean total lung capacity of emphysematous animals was 198% of control. Po of the transverse abdominis and external oblique were the same in emphysematous and control animals. However, Lo and the length-tension curve of the transverse abdominis occurred at shorter fiber lengths in emphysematous animals because of a reduction in the number of sarcomeres in series along the fiber. The length-tension curve and the number of sarcomeres in the external oblique was the same in emphysematous and control animals. These results in normal animals indicate that the magnitude of the change in active and passive tension produced by a change in muscle length differs in the transverse abdominis and external oblique. Moreover, chronic hyperinflation of the thorax produced by elastase injection alters the length-tension relationships of some but not all the expiratory muscles.  相似文献   

6.
Somogyi GT  de Groat WC 《Life sciences》1999,64(6-7):411-418
Presynaptic M1 muscarinic receptors on parasympathetic nerve terminals in rat urinary bladder strips are involved in an autofacilitatory mechanism that markedly enhances acetylcholine release during continuous electrical field stimulation. The facilitatory muscarinic mechanism is dependent upon a PKC mediated second messenger pathway and influx of extracellular Ca2+ into the parasympathetic nerve terminals via L and N-type Ca2+ channels. Prejunctional muscarinic facilitation has also been detected in human bladders. The muscarinic facilitatory mechanism is upregulated in hyperactive bladders from chronic spinal cord transected rats; and the facilitation in these preparations is primarily mediated by M3 muscarinic receptors. Presynaptic muscarinic receptors represent a new target for pharmacological treatment of bladder hyperactivity. If presynaptic facilitation is restricted to the bladder and not present in other tissues then drugs acting at this site might be expected to exhibit uroselectivity.  相似文献   

7.
Changes in spontaneous activity of the urinary bladder during postnatal development were examined in muscle strips from the base and dome of bladders from 1- to 5-wk-old rats. Activity was analyzed using fast Fourier transformation (FFT), nonlinear cross prediction, and the Shannon entropy test. Spontaneous activity was not detected in strips from 1- to 5-day-old rats but was observed in 50% of strips from 6- to 7-day-old rats and was prominent in strips from 2-wk-old animals. FFT analysis revealed one peak in activity, which was significantly faster in the bladder base (0.21 +/- 0.03 Hz) than in the dome (0.08 +/- 0.01 Hz). A second peak at approximately 0.5 Hz was detected at 3-5 wk of age. Atropine but not tetrodotoxin decreased the amplitude of spontaneous contractions, whereas carbachol, a muscarinic agonist, unmasked or stimulated spontaneous activity. These data suggest that slow rhythmic activity observed previously in neonatal whole bladders is generated by pacemaker cells in the bladder base or dome. The emergence of faster activity in bladders from older animals may reflect the development of multiple pacemaker sites, which would reduce coordination within the bladder wall and improve storage function in the mature bladder.  相似文献   

8.
The length-tension relationship was determined for strips of guinea pig taenia coli and correlated with the length and ultrastructural organization of the component fibers. The mean fiber length in "stretched" strips (passive ≥ active tension) was 30% greater than that for fibers in "unstretched" strips (active >> passive tension). In stretched fibers the dense bodies and 100 A diameter myofilaments were consolidated into a mass near the center of fibers in cross-sectional profile. The thick myofilaments were segregated into the periphery of the fiber profiles. In unstretched fibers the dense bodies-100 A diameter filaments and the thick myofilaments were uniformly distributed throughout cross-sectional profiles. A tentative model is proposed to account for the change in fiber length and ultrastructural organization that accompanies stretch. The basic features of the model require the dense bodies to be linked together into a network by the 100 A diameter filaments. The functional consequences of stretching the fibers are discussed in relation to the model proposed for this network.  相似文献   

9.
The active and passive isometric tension-length (internal circumference) relation of vascular smooth muscle has been investigated using a 100-200-micron lumen diameter artery from the rat mesenteric bed. Conditions were established under which maximal activation was obtained at all lengths. Below L0 (the length at which maximum tension, delta T0, was developed) the active tension fell with decreasing length along a line which extrapolated to 0.38 L0; below 1.1 L0 the relation was reversible regardless of the protocol used. Above L0 the active tension fell linearly with increasing length along a line which extrapolated to zero tension at 1.82 L0. At the longer lengths investigated (up to 1.6 L0) the passive tension upon which the active responses were superimposed was as high as 4.4 delta T0. However, measurements of the dynamic characteristics of the preparation (with a time resolution of 2 ms) suggest that the active tension measured is nevertheless a measure of the active properties of the contractile apparatus. Direct light microscopic observation of the effect of length change on the cells within the walls of the preparation showed that changes in vessel length produced, on average, the same percentage change in cell length. Histological examination showed no signs of cell destruction following large extensions. The results suggest that the decrease in tension with extension above L0 is due to changes in the properties of the contractile apparatus, rather than to cellular damage.  相似文献   

10.
31P NMR spectra of isolated rabbit bladder and uterus were obtained under steady-state arterial perfusion in vitro at rest and while stimulated. The spectra contained seven major peaks: phosphoethanolamine, sn-glycero(3)phosphocholine, inorganic phosphate (Pi), phosphocreatine, and the gamma, alpha, and beta peaks of ATP. Chemical analyses, high-pressure liquid chromatography, and NMR spectroscopy of aqueous extracts of bladders identified a number of other components that also made contributions to, but were not resolved in, the spectra of the intact tissues: UTP, GTP, UDP-Glc, NAD+, phosphocholine, and sn-glycero(3)phosphoethanolamine. Intracellular pH of unstimulated bladders and uteri, measured from the chemical shift of the Pi peak, was 7.10 +/- 0.09 S.D. and 7.01 +/- 0.12 S.D., respectively. The chemical shift of the beta-ATP peak in the smooth muscles was significantly upfield (-0.3 ppm) compared to the chemical shift observed in striated muscles (cat biceps and rat myocardium). An ADP peak was identified in stimulated and ischemic bladders. The chemical shifts of the nucleotides observed in perfused bladders were calibrated as a function of free Mg2+ concentration in solutions containing phosphocreatine, Pi, ADP, and ATP at an ionic strength of 180 mM. We derived the following estimates for the intracellular free Mg2+ concentration: uterus, 0.40 mM; unstimulated bladder, 0.46 mM; stimulated and ischemic bladder, 0.50 mM (from the ATP chemical shift) and 0.45 (from the ADP chemical shift); cat biceps, 1.5 mM; and rat myocardium, 1.4 mM.  相似文献   

11.
This is a report of experiments carried out on the medial gastrocnemius muscle of the anesthetized cat, investigating the effects of eccentric contractions carried out at different muscle lengths on the passive and active length-tension relationships. In one series of experiments, the motor supply to the muscle was divided into three approximately equal parts; in the other, whole muscles were used. Fifty eccentric contractions were carried out over different regions of the active length-tension curve for each partial or whole muscle. Active and passive length-tension curves were measured before and after the eccentric contractions. When eccentric contractions were carried out at longer lengths, there was a larger shift of the optimum length for active tension in the direction of longer muscle lengths and a larger fall in peak isometric tension. Passive tension was higher immediately after the eccentric contractions, and if the muscle was left undisturbed for 40 min, it increased further to higher values, particularly after contractions at longer lengths. A series of 20 passive stretches of the same speed and amplitude and covering the same length range as the active stretches, reduced the passive tension which redeveloped over a subsequent 40-min period. It is hypothesized that there are two factors influencing the level of passive tension in a muscle after a series of eccentric contractions. One is injury contractures in damaged muscle fibers tending to raise passive tension; the other is the presence of disrupted sarcomeres in series with still-functioning sarcomeres tending to reduce it.  相似文献   

12.
To determine whether airway smooth muscle undergoes a maturational change regarding force generation, length-tension relationships were determined in isolated trachealis strips from adult and preterm sheep. At the length of maximum force generation, passive active and total tensions of the adult muscle were 2.5 times greater than preterm values (P less than 0.001). KCl stimulation yielded a greater peak tension in the adult strips than in the preterm strips (P less than 0.01). Preterm strips required higher concentrations of KCl to initiate contractions and higher concentrations to reach peak tension. Acetylcholine- (ACh) induced contraction resulted in greater force development at each dose in the adult strips compared with preterm strips (P less than 0.001). The dose of ACh required to reach a half-maximal response was significantly less for the adult strips than for the preterm strips (P less than 0.005). These data demonstrate that both force generation and receptor sensitivity increase with age. This inability of immature smooth muscle to generate as much force as adult smooth muscle may help explain why very preterm neonates requiring intermittent positive-pressure ventilation are at risk for developing structural airway problems.  相似文献   

13.
Developmental changes in the regulation of smooth muscle contraction were examined in urinary bladder smooth muscle from mice. Maximal active stress was lower in newborn tissue compared with adult, and it was correlated with a lower content of actin and myosin. Sensitivity to extracellular Ca2+ during high-K+ contraction, was higher in newborn compared with 3-wk-old and adult bladder strips. Concentrations at half maximal tension (EC50) were 0.57 +/- 0.01, 1.14 +/- 0.12, and 1.31 +/- 0.08 mM. Force of the newborn tissue was inhibited by approximately 45% by the nonmuscle myosin inhibitor Blebbistatin, whereas adult tissue was not affected. The calcium sensitivity in newborn tissue was not affected by Blebbistatin, suggesting that nonmuscle myosin is not a primary cause for increased calcium sensitivity. The relation between intracellular [Ca2+] and force was shifted toward lower [Ca2+] in the newborn bladders. This increased Ca2+ sensitivity was also found in permeabilized muscles (EC50: 6.10 +/- 0.07, 5.77 +/- 0.08, and 5.55 +/- 0.02 pCa units, in newborn, 3-wk-old, and adult tissues). It was associated with an increased myosin light chain phosphorylation and a decreased rate of dephosphorylation. No difference was observed in the myosin light chain phosphorylation rate, whereas the rate of myosin light chain phosphatase-induced relaxation was about twofold slower in the newborn tissue. The decreased rate was associated with a lower expression of the phosphatase regulatory subunit MYPT-1 in newborn tissue. The results show that myosin light chain phosphatase activity can be developmentally regulated in mammalian urinary bladders. The resultant alterations in Ca2+ sensitivity may be of importance for the nervous and myogenic control of the newborn bladders.  相似文献   

14.
Insulin has been localized immunocytochemically to cells in the main and accessory urinary bladders of the painted turtle, Chrysemys picta, and represents an unusual addition to the specturm of regulatory peptides associated with the urinary bladder. These stellate to fibroblastoid cells often possess neural-like processes and are similar in morphology to neurotensin cells found in Chrysemys and Pseudemys urinary bladders. Radioimmunoassay of 2M acetic acid extracts of bladder tissue indicate that the insulin concentration of accessory bladder is several-fold greater than main bladder but considerably lower than the insulin content of pancreas. Pieces of accessory bladder incubated in vitro exhibit a stable insulin release into the medium over 1 hour, but release is unaltered by known insulin secretagogues. It is tempting to postulate an endocrine or paracrine regulatory function for these cells, but at present their role in Chrysemys bladder function remains unknown.  相似文献   

15.
The in vitro mechanical properties of smooth muscle strips from 10 human main stem bronchi obtained immediately after pneumonectomy were evaluated. Maximal active isometric and isotonic responses were obtained at varying lengths by use of electrical field stimulation (EFS). At the length (Lmax) producing maximal force (Pmax), resting tension was very high (60.0 +/- 8.8% Pmax). Maximal fractional muscle shortening was 25.0 +/- 9.0% at a length of 75% Lmax, whereas less shortening occurred at Lmax (12.2 +/- 2.7%). The addition of increasing elastic loads produced an exponential decrease in the shortening and velocity of shortening but increased tension generation of muscle strips stimulated by EFS. Morphometric analysis revealed that muscle accounted for 8.7 +/- 1.5% of the total cross-sectional tissue area. Evaluation of two human tracheal smooth muscle preparations revealed mechanics similar to the bronchial preparations. Passive tension at Lmax was 10-fold greater and maximal active shortening was threefold less than that previously demonstrated for porcine trachealis by us of the same apparatus. We attribute the limited shortening of human bronchial and tracheal smooth muscle to the larger load presumably provided by a connective tissue parallel elastic component within the evaluated tissues, which must be overcome for shortening to occur. We suggest that a decrease in airway wall elastance could increase smooth muscle shortening, leading to excessive responses to contractile agonists, as seen in airway hyperresponsiveness.  相似文献   

16.
Edman et al. (J. General Physiol. 80 (1982) 769) observed in single fibres of frog that the steady-state forces following active fibre stretch were greater than the purely isometric force obtained at the length from which the stretch was initiated. Operating on the descending limb of the force-length relationship, such a result can only be explained within the framework of the sarcomere length non-uniformity theory, if some fibre segments shortened during the fibre stretch. However, such a result was not found, leaving Edman's observation unexplained. Force enhancement above the initial isometric force has not been investigated systematically in whole muscle, and therefore it is not known whether this property is also part of whole muscle mechanics. The purpose of this study was to test if the steady-state forces following active stretch of cat semitendinosus were greater than the corresponding purely isometric forces at the muscle length from which the stretch was started. Cat semitendinosus was stretched by various amounts on the descending limb of the force-length relationship, and the steady-state forces following these stretches were compared to the corresponding isometric forces at the initial and final muscle lengths. In 109 of 131 tests, the steady-state forces following stretching were greater than the isometric forces at the initial muscle lengths. Force enhancement increased with increasing amounts of stretching, and force enhancement above the initial isometric force was more likely to occur following stretches of great compared to small amplitude. Passive forces following active muscle stretching were often significantly greater than the passive forces at the same muscle length following an isometric contraction or a passive stretching of the muscle. This observation was made consistently at the longest muscle lengths tested. It appears, therefore, that there is a passive force that accounts for part of the force enhancement above the isometric force at the initial muscle length, and that provides increased passive force when a muscle is actively, rather than passively, stretched at long muscle lengths. We conclude that cat semitendinosus demonstrates steady-state force enhancement above the corresponding purely isometric force at the initial muscle length on the descending limb of the force-length relationship for many contractile conditions, and that a unique, and so far undetected, passive, parallel element contributes to this force enhancement, particularly at long muscle lengths where muscle is assumed to be most vulnerable to injuries associated with sarcomere length instability.  相似文献   

17.

Background

Patients with neurodegenerative diseases such as multiple sclerosis, Parkinson’s, and Alzheimer’s often present with lower urinary tract symptoms (LUTS, urinary frequency, urgency, nocturia and retention) resulting from damage to the peripheral and central nervous systems. These studies were designed to examine the changes in the function of the bladder that may underlie neurogenic bladder dysfunction using a mouse model of demyelination in the CNS.

Methods

Bladders from 12 week old male C57BL/6J mice with coronavirus-induced encephalomyelitis (CIE, a chronic, progressive demyelinating disease model of human MS), and age-matched controls, were cut into 5–7 strips and suspended in physiological muscle baths for tension measurement in response to agonists and electric field stimulation (EFS). Experiments were performed on intact and denuded (with mucosa removed) bladder strips.

Results

The maximum effect of EFS was not significantly different between CIE and control bladders. Nerve-evoked EFS contractions (tetrodotoxin-sensitive) were blocked by a combination of atropine (cholinergic antagonist) and α,β-methylene ATP (an ATP analog that desensitizes purinergic receptors). In response to EFS, the α,β-methylene ATP-resistant (cholinergic) component of contraction was significantly reduced, while the atropine-resistant (purinergic) component was significantly increased in CIE bladders. Removal of the mucosa in CIE bladders restored the cholinergic component. Bethanechol (muscarinic receptor agonist) potency was significantly increased in CIE bladders.

Conclusions

Our data demonstrate a deficit in the nerve-evoked cholinergic component of contraction that is not due to the ability of the smooth muscle to respond to acetylcholine. We conclude that neurodegenerative bladder dysfunction in this model of multiple sclerosis may be due, in part, to pathologic changes in the mucosa that causes suppression of muscarinic receptor-mediated contractile response and augmentation of purinergic response of the underlying muscle. Further studies utilizing CIE mice should help elucidate the pathological changes in the mucosa resulting from demyelination in the CNS.  相似文献   

18.
The full functional length range of trachealis muscle was measured to identify a precise reference length and to assess the length changes that the myofilament lattice can accommodate. The initial reference length (L(10%)) was that where rest tension equaled 10% of total force (passive tension plus active force). Total force at this length served as a force reference (F(ref) = 219 +/- 12 kPa, N = 7). Muscles initially adapted at L(10%) for 30-60 min had no rest tension when shortened to <0.9 L(10%). Passive tension rose steeply and linearly with slope 11.2 F(ref)/L(10%) at lengths >1.04 L(10%). Rest tension at 1.1 L(10%) declined by <10% over 1 h. The steep slope and stability of rest tension at long lengths suggest that a parameter of the slope could serve as a precise, reproducible reference length. Active force was nearly constant at lengths 0.33-1.0 L(10%) and declined steeply at lengths between 0.1 and 0.2 L(10%), extrapolating to zero at 0.076 L(10%). Muscles visibly reextended during relaxation at lengths <0.25 L(10%). At long lengths, force extrapolated to zero at 1.175 L(10%). The >15-fold length range (0.076-1.175 L(10%)) for force generation and nearly constant force over a greater than threefold length range is likely produced by several structural accommodations, including filament sliding, an increased number of sliding filaments in series, and increased length of passive structures in series with the sliding filaments. Visible reextension during relaxation suggests that the lattice does not undergo plastic adaptations at lengths <25% L(10%) and that lattice plasticity is limited to a three- to fourfold length range.  相似文献   

19.
The mechanism responsible for active sodium transport in the urinary bladder of the toad appears to be located at the serosal boundary of the epithelial cell layer of the bladder. Studies of the potential step observed at the serosal boundary in the open-circuited state were undertaken in an attempt to define the factors responsible for its production. Glass micropipettes were used to measure the serosal potential step in bladders exposed on the serosal side to solutions of high potassium or of high potassium and low chloride concentration. Observed potentials exceed the maximum values which would have been expected if the serosal potential step were a potassium or chloride diffusion potential. Measurements of net cation flux exclude the possibility of a diffusion potential at this border due to the passive movement of any anionic species. The observed independence of transbladder potential and short-circuit current from the pH of the serosal medium over a wide range of pH makes it unlikely that the observed serosal potential step is a hydrogen ion diffusion potential. We conclude that the active sodium transport mechanism in toad bladder is "electrogenic."  相似文献   

20.
The vertebrate urinary bladder: osmoregulatory and other uses   总被引:1,自引:0,他引:1  
The bladder may serve more biological uses than simple storage. The importance of bladder functions can be inferred from its presence among vertebrates, its anatomy and histology. From an evolutionary perspective, bladders have evolved at least twice in the vertebrates. The variability of permeability of the urinary bladder to water and solutes among species is discussed. Finally, the urinary bladder may play an osmoregulatory role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号