首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evolutionary aspects of the genetic architecture of common human diseases remain enigmatic. The results of more than 200 genome-wide association studies published to date were compiled in a catalog (). We used cataloged data to determine whether derived (mutant) alleles are associated with higher risk of human disease more frequently than ancestral alleles. We placed all allelic variants into ten categories of population frequency (0%-100%) in 10% increments. We then analyzed the relationship between allelic frequency, evolutionary status of the polymorphic site (ancestral versus derived), and disease risk status (risk versus protection). Given the same population frequency, derived alleles are more likely to be risk associated than ancestral alleles, as are rarer alleles. The common interpretation of this association is that negative selection prevents fixation of the risk variants. However, disease stratification as early or late onset suggests that weak selection against risk-associated alleles is unlikely a major factor shaping genetic architecture of common diseases. Our results clearly suggest that the duration of existence of an allele in a population is more important. Alleles existing longer tend to show weaker linkage disequilibrium with neighboring alleles, including the causal alleles, and are less likely to tag a SNP-disease association.  相似文献   

2.
Postzygotic isolation evolves due to an accumulation of substitutions (potentially deleterious alleles in hybrids) in populations that have become geographically isolated. These potentially deleterious alleles might also be maintained in ancestral populations before geographic isolation. We used an individual-based model to examine the effect of the genetic state of an ancestral population on the evolution of postzygotic isolation after geographic isolation of a population. The results showed that the number of loci at which degenerative alleles are fixed in an ancestral population at equilibrium significantly affects the evolutionary rates of postzygotic isolation between descendant allopatric populations. Our results suggest that: (1) a severe decrease in population size (e.g., less than ten individuals) is not necessary for the rapid evolution of postzygotic isolation (e.g., <10,000 generation); (2) rapid speciation can occur when there is a large difference in the equilibrium number of accumulated degenerative alleles between ancestral and descendant populations; and (3) in an ancestral population maintained at a small effective population size for a long period of time, postzygotic isolation rarely evolves if back mutations that restore the function of degenerative alleles are limited.  相似文献   

3.
Many disease-susceptible SNPs exhibit significant disparity in ancestral and derived allele frequencies across worldwide populations. While previous studies have examined population differentiation of alleles at specific SNPs, global ethnic patterns of ensembles of disease risk alleles across human diseases are unexamined. To examine these patterns, we manually curated ethnic disease association data from 5,065 papers on human genetic studies representing 1,495 diseases, recording the precise risk alleles and their measured population frequencies and estimated effect sizes. We systematically compared the population frequencies of cross-ethnic risk alleles for each disease across 1,397 individuals from 11 HapMap populations, 1,064 individuals from 53 HGDP populations, and 49 individuals with whole-genome sequences from 10 populations. Type 2 diabetes (T2D) demonstrated extreme directional differentiation of risk allele frequencies across human populations, compared with null distributions of European-frequency matched control genomic alleles and risk alleles for other diseases. Most T2D risk alleles share a consistent pattern of decreasing frequencies along human migration into East Asia. Furthermore, we show that these patterns contribute to disparities in predicted genetic risk across 1,397 HapMap individuals, T2D genetic risk being consistently higher for individuals in the African populations and lower in the Asian populations, irrespective of the ethnicity considered in the initial discovery of risk alleles. We observed a similar pattern in the distribution of T2D Genetic Risk Scores, which are associated with an increased risk of developing diabetes in the Diabetes Prevention Program cohort, for the same individuals. This disparity may be attributable to the promotion of energy storage and usage appropriate to environments and inconsistent energy intake. Our results indicate that the differential frequencies of T2D risk alleles may contribute to the observed disparity in T2D incidence rates across ethnic populations.  相似文献   

4.
Most founding events entail a reduction in population size, which in turn leads to genetic drift effects that can deplete alleles. Besides reducing neutral genetic variability, founder effects can in principle shift additive genetic variance for phenotypes that underlie fitness. This could then lead to different rates of adaptation among populations that have undergone a population size bottleneck as well as an environmental change, even when these populations have a common evolutionary history. Thus, theory suggests that there should be an association between observable genetic variability for both neutral markers and phenotypes related to fitness. Here, we test this scenario by monitoring the early evolutionary dynamics of six laboratory foundations derived from founders taken from the same source natural population of Drosophila subobscura. Each foundation was in turn three‐fold replicated. During their first few generations, these six foundations showed an abrupt increase in their genetic differentiation, within and between foundations. The eighteen populations that were monitored also differed in their patterns of phenotypic adaptation according to their immediately ancestral founding sample. Differences in early genetic variability and in effective population size were found to predict differences in the rate of adaptation during the first 21 generations of laboratory evolution. We show that evolution in a novel environment is strongly contingent not only on the initial composition of a newly founded population but also on the stochastic changes that occur during the first generations of colonization. Such effects make laboratory populations poor guides to the evolutionary genetic properties of their ancestral wild populations.  相似文献   

5.
Populations can adapt to changing environments by using allelic diversity, yet whether diversity is recently derived or ancestral is often debated. Although evolution could productively use both types of diversity in a changing environment, their relative frequency has not been quantified. We address this question experimentally using budding yeast strains that harbor a tandem repeat containing URA3 gene, which we expose to cyclical selection and counterselection. We characterize and quantify the dynamics of frameshift events in the URA3 gene in eight populations over 12 cycles of selection and find that ancestral alleles account for 10–20% of all adaptive events. Using a general model of fluctuating selection, we determine how these results depend on mutation rates, population sizes, and fluctuation timescales. We quantify the contribution of derived alleles to the adaptation process using the de novo mutation rate along the population's ancestral lineage, a novel measure that is applicable in a wide range of settings. We find that the adaptive dynamics undergoes a sharp transition from selection on ancestral alleles to selection on derived alleles as fluctuation timescales increase. Our results demonstrate that fluctuations can select between different modes of adaptation over evolutionary timescales.  相似文献   

6.
Modern day Saudi Arabia occupies the majority of historical Arabia, which may have contributed to ancient waves of migration out of Africa. This ancient history has left a lasting imprint in the genetics of the region, including the diverse set of tribes that call Saudi Arabia their home. How these tribes relate to each other and to the world’s major populations remains an unanswered question. In an attempt to improve our understanding of the population structure of Saudi Arabia, we conducted genomic profiling of 957 unrelated individuals who self-identify with 28 large tribes in Saudi Arabia. Consistent with the tradition of intra-tribal unions, the subjects showed strong clustering along tribal lines with the distance between clusters correlating with their geographical proximities in Arabia. However, these individuals form a unique cluster when compared to the world’s major populations. The ancient origin of these tribal affiliations is supported by analyses that revealed little evidence of ancestral origin from within the 28 tribes. Our results disclose a granular map of population structure and have important implications for future genetic studies into Mendelian and common diseases in the region.  相似文献   

7.
BACKGROUND/AIMS: The Tobago Afro-Caribbean population is a valuable resource for studying the genetics of diseases that show significant differences in prevalence between populations of African descent and populations of other ancestries. Empirical confirmation of low European and Native American admixture may help in clarifying the ethnic variation in risk for such diseases. We hypothesize that the degree of European and Native American admixture in the Tobago population is low. METHODS: Admixture was estimated in a random sample of 220 men, from a population-based prostate cancer screening survey of 3,082 Tobago males, aged 40 to 79 years. We used a set of six autosomal markers with large allele frequency differences between the major ethnic populations involved in the admixture process, Europeans, Native Americans and West Africans. RESULTS: The ancestral proportions of Tobago population are estimated as 94.0+/-1.2% African, 4.6+/-3.4% European and 1.4+/-3.6% Native American. CONCLUSIONS: We conclude that Tobago Afro-Caribbean men are predominantly of West African ancestry, with minimal European and Native American admixture. The Tobago population, thus, may carry a higher burden of high-risk alleles of African origin for certain diseases than the more admixed African-American population. Conversely, this population may benefit from a higher prevalence of protective alleles of African origin.  相似文献   

8.
One of the main findings derived from the analysis of the Neandertal genome was the evidence for admixture between Neandertals and non-African modern humans. An alternative scenario is that the ancestral population of non-Africans was closer to Neandertals than to Africans because of ancient population substructure. Thus, the study of North African populations is crucial for testing both hypotheses. We analyzed a total of 780,000 SNPs in 125 individuals representing seven different North African locations and searched for their ancestral/derived state in comparison to different human populations and Neandertals. We found that North African populations have a significant excess of derived alleles shared with Neandertals, when compared to sub-Saharan Africans. This excess is similar to that found in non-African humans, a fact that can be interpreted as a sign of Neandertal admixture. Furthermore, the Neandertal''s genetic signal is higher in populations with a local, pre-Neolithic North African ancestry. Therefore, the detected ancient admixture is not due to recent Near Eastern or European migrations. Sub-Saharan populations are the only ones not affected by the admixture event with Neandertals.  相似文献   

9.
To better understand the evolutionary history of the gene region containing the multifunctional adipose tissue hormone leptin, we genotyped 1,957 individuals from 12 world populations for a highly variable tetranucleotide repeat polymorphism located 476 bp 3' of exon 3 of the leptin gene. Common alleles shared among populations, alleles specific to geographically defined populations, and the homologous alleles in the common and pygmy chimpanzee, the gorilla and the orangutan, were sequenced to define the allelic variation at the nucleotide level. These data reveal a common set of alleles shared among world populations, presumed to have arisen from a great ape ancestral allele prior to the divergence of the major geographical subdivisions of the human population, a subset of alleles specific to populations of African ancestry and a second set of alleles that arose by tandem duplication of the core repeat unit following the separation of African and non-African populations. These findings emphasize the complex evolutionary history of this locus and raise cautions about the pooling of alleles at this locus in association studies.  相似文献   

10.
The human histocompatibility system (HLA) is a linked complex of genes on human chromosome 6. Many of the loci in this region are highly polymorphic. This endows the system with unique differentiating powers, both in terms of the population genetics of the reconstruction of evolutionary trees to assess biological divergences (or affinities) in human populations, and in terms of detecting the genetic component of the many diseases which show an association with certain variants (alleles) of the HLA system. Different racial groups often exhibit different HLA disease associations; that is, a different allele is associated with the disease in different populations, although in some cases the same allele is associated with the disease in all populations. The classical example of this latter situation is the association of B27 with ankylosing spondylitis. This disease will be used as an example to illustrate how population observations allow inferences to be made regarding the evolutionary histories of the HLA-associated diseases, as well as the genetic mechanisms of the diseases.  相似文献   

11.
Estimation of the purging of detrimental effects through inbreeding and selection is an important issue in conservation genetics opening new perspectives for the management of small populations. In 1997 Ballou proposed the ancestral inbreeding coefficient, which is calculated recursively via pedigree inbreeding coefficients, as a tool for evaluating the purging of deleterious alleles in zoo populations. The formula of Ballou assumes independence of inbreeding and ancestral inbreeding coefficients at any stage of the recursion. This study investigates the consequences of this inaccuracy on the estimation of true ancestral inbreeding, i.e. the proportion of alleles within a genome that has undergone inbreeding in the past. As an alternative we propose the estimation of ancestral inbreeding by the method of gene dropping. The methods are compared by stochastic simulation for various models with respect to mode of inheritance (neutral, detrimental and lethal alleles) and different settings for population size and initial allele frequencies. In all scenarios the proportion of alleles within a genome that has undergone inbreeding in the past was overestimated by Ballou’s formula. The overestimation was more pronounced in smaller populations but was not affected by genetic model or initial allele frequency. In contrast, the ancestral inbreeding coefficient calculated by gene dropping provided a robust estimate of ancestral inbreeding in most models and settings. A marginal overestimation was observed only in models with lethal alleles. Therefore, we recommend applying the gene dropping approach to estimate ancestral inbreeding coefficients.  相似文献   

12.
13.
A major task in human genetics is to understand the nature of the evolutionary processes that have shaped the gene pools of contemporary populations. Ancient DNA studies have great potential to shed light on the evolution of populations because they provide the opportunity to sample from the same population at different points in time. Here, we show that a sample of mitochondrial DNA (mtDNA) control region sequences from 68 early medieval Icelandic skeletal remains is more closely related to sequences from contemporary inhabitants of Scotland, Ireland, and Scandinavia than to those from the modern Icelandic population. Due to a faster rate of genetic drift in the Icelandic mtDNA pool during the last 1,100 years, the sequences carried by the first settlers were better preserved in their ancestral gene pools than among their descendants in Iceland. These results demonstrate the inferential power gained in ancient DNA studies through the application of population genetics analyses to relatively large samples.  相似文献   

14.
We analyzed our results and literature evidence on variability of nuclear protein genes in 39 populations of eight synanthropic and wild species of house mice (superspecies complexes Mus musculus and M. spicilegus) from Transcaucasia, Eastern and Western Europe, Near and Middle East, Central, South, and East Asia, and Cuba. These data were for the first time ever combined into a single database by unification of nomenclature of 21 loci examined by different authors in 39 populations. Analysis of geographical allele distribution have shown that populations of domestic Transcaucasian mice are close to Indo-Pakistani populations of form oriental of the species M. castaneus, which preserved a high level of ancestral polymorphism. We concluded that a very heterogeneous, rich gene pool of house mice from Transcaucasia could not develop only by secondary contacts of differentiated M. musculus s. str. and M. domesticus forms, since it is similar to the ancestral gene pool of the superspecies complexes M. musculus and M. spicilegus. In this context, unique characteristics of some Central Asian populations were examined; these populations may have served as a "transit station" in the dispersal of synanthropic house mice forms. We suggest that the Transcaucasian populations are genealogically closely related to an early Near East form of M. musculus, which, as M. domesticus and M. castaneus, split from the common ancestor and preserved nondifferentiated pool of ancestral alleles of protein genes. This hypothesis admits the involvement of differentiated species M. musculus s. str. and M. domesticus in the ultimate formation of the gene pool of Transcaucasian house mice. Apparently, these populations resulted from alternation and (or) "overlapping" of different evolutionary processes. A scenario suggesting that hybrid events having occurred in Transcaucasia at different times, were "superposed" on the gene pool of the ancient autochtonous population of house mice from this region seems most plausible. Analysis of allozyme variability in the modern Transcaucasian Mus populations could not always distinguish between ancestral polymorphism and hybridization consequences.  相似文献   

15.
The gamma-aminobutyric acid type-A (GABA(A)) receptor plays a major role in inhibitory neurotransmissions. Intronic SNPs and haplotypes in GABRB2, the gene for GABA(A) receptor beta(2) subunit, are associated with schizophrenia and correlated with the expression of two alternatively spliced beta(2) isoforms. In the present study, using chimpanzee as an ancestral reference, high frequencies were observed for the derived (D) alleles of the four SNPs rs6556547, rs187269, rs1816071 and rs1816072 in GABRB2, suggesting the occurrence of positive selection for these derived alleles. Coalescence-based simulation showed that the population frequency spectra and the frequencies of H56, the haplotype having all four D alleles, significantly deviated from neutral-evolution expectation in various demographic models. Haplotypes containing the derived allele of rs1816072 displayed significantly less diversity compared to haplotypes containing its ancestral allele, further supporting positive selection. The variations in DD-genotype frequencies in five human populations provided a snapshot of the evolutionary history, which suggested that the positive selections of the D alleles are recent and likely ongoing. The divergence between the DD-genotype profiles of schizophrenic and control samples pointed to the schizophrenia-relevance of positive selections, with the schizophrenic samples showing weakened selections compared to the controls. These DD-genotypes were previously found to increase the expression of beta(2), especially its long isoform. Electrophysiological analysis showed that this long beta(2) isoform favored by the positive selections is more sensitive than the short isoform to the inhibition of GABA(A) receptor function by energy depletion. These findings represent the first demonstration of positive selection in a schizophrenia-associated gene.  相似文献   

16.
Genome-wide association studies (GWAS) have generated sufficient data to assess the role of selection in shaping allelic diversity of disease-associated SNPs. Negative selection against disease risk variants is expected to reduce their frequencies making them overrepresented in the group of minor (<50%) alleles. Indeed, we found that the overall proportion of risk alleles was higher among alleles with frequency <50% (minor alleles) compared to that in the group of major alleles. We hypothesized that negative selection may have different effects on environment (or lifestyle)-dependent versus environment (or lifestyle)-independent diseases. We used an environment/lifestyle index (ELI) to assess influence of environmental/lifestyle factors on disease etiology. ELI was defined as the number of publications mentioning “environment” or “lifestyle” AND disease per 1,000 disease-mentioning publications. We found that the frequency distributions of the risk alleles for the diseases with strong environmental/lifestyle components follow the distribution expected under a selectively neutral model, while frequency distributions of the risk alleles for the diseases with weak environmental/lifestyle influences is shifted to the lower values indicating effects of negative selection. We hypothesized that previously selectively neutral variants become risk alleles when environment changes. The hypothesis of ancestrally neutral, currently disadvantageous risk-associated alleles predicts that the distribution of risk alleles for the environment/lifestyle dependent diseases will follow a neutral model since natural selection has not had enough time to influence allele frequencies. The results of our analysis suggest that prediction of SNP functionality based on the level of evolutionary conservation may not be useful for SNPs associated with environment/lifestyle dependent diseases.  相似文献   

17.
Body fat deposition and distribution differ between East Asians and Europeans, and for the same level of obesity, East Asians are at higher risks of Type 2 diabetes (T2D) and other metabolic disorders. This observation has prompted the reclassifications of body mass index thresholds for the definitions of “overweight” and “obese” in East Asians. However, the question remains over what evolutionary mechanisms have driven the differences in adiposity morphology between two population groups that shared a common ancestor less than 80,000 years ago. The Thrifty Gene hypothesis has been suggested as a possible explanation, where genetic factors that allowed for efficient food-energy conversion and storage are evolutionarily favoured by conferring increased chances of survival and fertility. Here, we leveraged on the existing findings from genome-wide association studies and large-scale surveys of positive natural selection to evaluate whether there is currently any evidence to support the Thrifty Gene hypothesis. We first assess whether the existing genetic associations with obesity and T2D are located in genomic regions that are reported to be under positive selection, and if so, whether the risk alleles sit on the extended haplotype forms. In addition, we interrogate whether these risk alleles are the derived forms that differ from the ancestral alleles, and whether there is significant evidence of population differentiation at these SNPs between East Asian and European populations. Our systematic survey did not yield conclusive evidence to support the Thrifty Gene hypothesis as a possible explanation for the differences observed between East Asians and Europeans.  相似文献   

18.
A positional cloning study of type 2 diabetes in Mexican Americans identified a region, termed "NIDDM1," on chromosome 2q37 with significant linkage evidence. Haplotype combinations at the calpain-10 gene (CAPN10) within this region were shown to increase diabetes risk in several populations. On the basis of the thrifty genotype hypothesis, variants that increase susceptibility to type 2 diabetes under modern lifestyle conditions provided a survival advantage in past environments by increasing the efficiency of energy use and storage. Here, our goal is to make inferences about the evolutionary forces shaping variation in genes in the NIDDM1 region and to investigate the population genetics models that may underlie the thrifty genotype hypothesis. To this end, we surveyed sequence variation in CAPN10 and in an adjacent gene, G-protein-coupled receptor 35 (GPR35), in four population samples from different ethnic groups. These data revealed two distinct deviations from the standard neutral model in CAPN10, whereas GPR35 variation was largely consistent with neutrality. CAPN10 showed a significant deficit of variation in the haplotype class defined by the derived allele at SNP44, a polymorphism that is significantly associated with diabetes in meta-analysis studies. This suggests that this haplotype class was quickly driven to high frequency by positive natural selection. Interestingly, the derived allele at SNP44 is protective against diabetes. CAPN10 also showed a local excess of polymorphism and linkage disequilibrium decay in intron 13. Simulations show that this pattern may be explained by long-standing balancing selection that maintains multiple selected alleles. Alternatively, it is possible that the local mutation and recombination rates changed since the divergence of human and chimpanzee; this scenario does not require the action of natural selection on intron 13 variation.  相似文献   

19.
Baudry E  Derome N  Huet M  Veuille M 《Genetics》2006,173(2):759-767
African populations of Drosophila simulans are thought to be ancestral in this model species and are increasingly used for testing general hypotheses in evolutionary genetics. It is often assumed that African populations are more likely to be at a neutral mutation drift equilibrium than other populations. Here we examine population structuring and the demographic profile in nine populations of D. simulans. We surveyed sequence variation in four X-linked genes (runt, sevenless, Sex-lethal, and vermilion) that have been used in a parallel study in the closely related species D. melanogaster. We found that an eastern group of populations from continental Africa and Indian Ocean islands (Kenya, Tanzania, Madagascar, and Mayotte Island) is widespread, shows little differentiation, and has probably undergone demographic expansion. The other two African populations surveyed (Cameroon and Zimbabwe) show no evidence of population expansion and are markedly differentiated from each other as well as from the populations from the eastern group. Two other populations, Europe and Antilles, are probably recent invaders to these areas. The Antilles population is probably derived from Europe through a substantial bottleneck. The history of these populations should be taken into account when drawing general conclusions from variation patterns.  相似文献   

20.
Successful latitudinal expansions into temperate climates depend largely upon the evolution of novel adaptive traits or the presence of pre-adaptive or exapted mechanisms for survival in seasonal climates. Geographic comparisons of ancestral (pre-expansion) and derived (post-expansion) populations provide a useful framework for understanding the evolutionary conditions that facilitate geographic expansions. Using a common agricultural pest, the Colorado Potato Beetle, Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae) as a model, we conducted a regional comparison of cold hardiness and overwintering success among ancestral (southern Mexico) and derived (Vermont and Kansas, USA) L. decemlineata populations. In order to determine if ancestral and derived beetle populations vary physiologically for cold hardiness, we compared supercooling points (SCPs) of three geographic populations of L. decemlineata. We also tested if ancestral and derived beetle populations differed in their overwintering behavior and success by performing an overwintering field experiment. Ancestral and derived populations did not express different physiological responses (i.e. SCPs) to freezing temperatures. However, ancestral and derived populations responded differently to the onset of winter conditions and displayed dissimilar overwintering behaviors. The majority of ancestral beetles failed to initiate diapause and dug upward within experimental mesocosms. Differences in overwintering behavior also resulted in significant variation in overwintering success as derived populations displayed higher overwintering survivorship when compared with ancestral populations. Given our results, it is evident that research exploring the interaction of the ecological factors and evolutionary processes is necessary to fully realize the dynamics of biological invasions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号