首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we make comparisons between the observed stable isotopic composition of leaf water and the predictions of the Craig-Gordon model of isotopic enrichment when plants (Cornus stolonifera L.) were exposed to natural, diurnal changes in temperature and humidity in a glasshouse. In addition, we determined the effects of mild water stress on the isotopic composition of leaf water. The model predicted different patterns of diurnal change for the oxygen and hydrogen isotopic composition of leaf water. The observed leaf water isotopic composition followed qualitatively similar patterns of diurnal change to those predicted by the model. At midday, however, the model always predicted a higher degree of heavy isotope enrichment than was actually observed in leaves. There was no effect of mild water stress on the hydrogen isotopic composition of leaf water. For the oxygen isotopic composition of leaf water, there was either no significant difference between control and water-stressed plants or the stressed plants had lower δ18O values, despite the enriched stem water isotopic composition observed for the stressed plants.  相似文献   

2.
Theory suggests that the level of enrichment of (18)O above source water in plant organic material (Delta) may provide an integrative indicator of control of water loss. However, there are still gaps in our understanding of the processes affecting Delta. One such gap is the observed discrepancy between modeled enrichment of water at the sites of evaporation within the leaf and measured enrichment of the leaf water as a whole (Delta(L)). Farquhar and Lloyd (1993) suggested that this may be caused by a Péclet effect. It is also unclear whether organic material formed in the leaf reflects enrichment of water at the sites of evaporation within the leaf or Delta(L). To investigate this question castor bean (Ricinus communis L.) leaves, still attached to the plant, were sealed into a controlled-environment gas exchange chamber and subjected to a step change in leaf-to-air vapor pressure difference. Sucrose was collected from a cut on the petiole of the leaf in the chamber under equilibrium conditions and every hour for 6 h after the change in leaf-to-air vapor pressure difference. Oxygen isotope composition of sucrose in the phloem sap (Delta(suc)) reflected modeled Delta(L). A model is presented describing Delta(suc) at isotopic steady state, and accounts for 96% of variation in measured Delta(suc). The data strongly support the Péclet effect theory.  相似文献   

3.
The Craig-Gordon evaporative enrichment model of the hydrogen (δD) and oxygen (δ18O) isotopes of water was tested in a controlled-environment gas exchange cuvette over a wide range (400‰ δD and 40‰ δ18O) of leaf waters. (Throughout this paper we use the term “leaf water” to describe the site of evaporation, which should not be confused with “bulk leaf water” a term used exclusively for uncorrected measurements obtained from whole leaf water extractions.) Regardless of how the isotopic composition of leaf water was achieved (i.e. by changes in source water, atmospheric vapor δD or δ18O, vapor pressure gradients, or combinations of all three), a modified version of the Craig-Gordon model was shown to be sound in its ability to predict the δD and δ18O values of water at the site of evaporation. The isotopic composition of atmospheric vapor was shown to have profound effects on the δD and δ18O of leaf water and its influence was dependent on vapor pressure gradients. These results have implications for conditions in which the isotopic composition of atmospheric vapor is not in equilibrium with source water, such as experimental systems that grow plants under isotopically enriched water regimes. The assumptions of steady state were also tested and found not to be a major limitation for the utilization of the leaf water model under relatively stable environmental conditions. After a major perturbation in the δD and δ18O of atmospheric vapor, the leaf reached steady state in approximately 2 h, depending on vapor pressure gradients. Following a step change in source water, the leaf achieved steady state in 24 h, with the vast majority of changes occurring in the first 3 h. Therefore, the Craig-Gordon model is a useful tool for understanding the environmental factors that influence the hydrogen and oxygen isotopic composition of leaf water as well as the organic matter derived from leaf water.  相似文献   

4.
Gan KS  Wong SC  Yong JW  Farquhar GD 《Plant physiology》2002,130(2):1008-1021
Three leaf water models (two-pool model, Péclet effect, and string-of-lakes) were assessed for their robustness in predicting leaf water enrichment and its spatial heterogeneity. This was achieved by studying the (18)O spatial patterns of vein xylem water, leaf water, and dry matter in cotton (Gossypium hirsutum) leaves grown at different humidities using new experimental approaches. Vein xylem water was collected from intact transpiring cotton leaves by pressurizing the roots in a pressure chamber, whereas the isotopic content of leaf water was determined without extracting it from fresh leaves with the aid of a purpose-designed leaf punch. Our results indicate that veins have a significant degree of lateral exchange with highly enriched leaf water. Vein xylem water is thus slightly, but progressively enriched in the direction of water flow. Leaf water enrichment is dependent on the relative distances from major veins, with water from the marginal and intercostal regions more enriched and that next to veins and near the leaf base more depleted than the Craig-Gordon modeled enrichment of water at the sites of evaporation. The spatial pattern of leaf water enrichment varies with humidity, as expected from the string-of-lakes model. This pattern is also reflected in leaf dry matter. All three models are realistic, but none could fully account for all of the facets of leaf water enrichment. Our findings acknowledge the presence of capacitance in the ground tissues of vein ribs and highlight the essential need to incorporate Péclet effects into the string-of-lakes model when applying it to leaves.  相似文献   

5.
The oxygen isotope composition in leaf water and organic compounds in different plant tissues is useful for assessing the physiological performance of plants in their environment, but more information is needed on Delta(18)O variation during a diel course. Here, we assessed Delta(18)O of the organic matter in leaves, phloem and xylem in stem segments, and fine roots of Ricinus communis during a full diel cycle. Enrichment of newly assimilated organic matter in equilibrium with leaf water was calculated by applying a nonsteady-state evaporative enrichment model. During the light period, Delta(18)O of the water soluble organic matter pool in leaves and phloem could be explained by a 27 per thousand enrichment compared with leaf water enrichment. Leaf water enrichment influenced Delta(18)O of phloem organic matter during the night via daytime starch synthesis and night-time starch remobilization. Phloem transport did not affect Delta(18)O of phloem organic matter. Diel variation in Delta(18)O in organic matter pools can be modeled, and oxygen isotopic information is not biased during transport through the plant. These findings will aid field studies that characterize environmental influences on plant water balance using Delta(18)O in phloem organic matter or tree rings.  相似文献   

6.
利用稳定同位素技术对植物叶片水18O同位素组成(δL,b)进行研究,可以为植物叶片生理及森林水文的研究提供理论参考。本研究连续监测北京山区侧柏人工林生态系统冠层大气水汽浓度(Wa)和大气水汽18O同位素值组成(δv),结合测定的侧柏枝条水18O同位素组成(δx)和δL,b,分析了动力学分馏系数εk1(32%)和εk2(28%)对δL,b的预测效果。结果表明: 侧柏人工林生态系统Wa日变化无明显规律,大气相对湿度(RH)日变化呈“V”型,气孔导度(gs)在日尺度上先增大后减小;同位素接近稳态时(正午前后),δL,b略有增加,Wa、RH、gs与δL,b均呈显著负相关关系;同位素接近稳态条件下,将不同动力学分馏系数εk1、εk2应用于Craig-Gordon模型,预测δL,b,εk2的预测值更接近δL,b的实测值,表明εk2应用于模型更符合北京山区侧柏叶片水同位素富集情况。研究结果将加深对叶片水同位素富集模型、蒸散拆分模型的认识。  相似文献   

7.
This study focuses on the spatial patterns of transpiration-driven water isotope enrichment (Delta(lw)) along monocot leaves. It has been suggested that these spatial patterns are the result of competing effects of advection and (back-)diffusion of water isotopes along leaf veins and in the mesophyll, but also reflect leaf geometry (e.g. leaf length, interveinal distance) and non-uniform gas-exchange parameters. We therefore developed a two-dimensional model of isotopic leaf water enrichment that incorporates new features, compared with previous models, such as radial diffusion in the xylem, longitudinal diffusion in the mesophyll, non-uniform gas-exchange parameters and non-steady-state effects. The model reproduces well all published measurements of Delta(lw) along monocot leaf blades, except at the leaf tip and given the uncertainties on measurements and model parameters. We show that the longitudinal diffusion in the mesophyll cannot explain the observed reduction in the isotope gradient at the leaf tip. Our results also suggest that the observed differences in Delta(lw) between C(3) and C(4) plants reflect more differences in mesophyll tortuosity rather than in leaf length or interveinal distance. Mesophyll tortuosity is by far the most sensitive parameter and different values are required for different experiments on the same plant species. Finally, using new measurements of non-steady-state, spatially varying leaf water enrichment we show that spatial patterns are in steady state around midday only, just as observed for bulk leaf water enrichment, but can be easily upscaled to the whole leaf level, regardless of their degree of heterogeneity along the leaf.  相似文献   

8.
A model has been derived for the enrichment of heavy isotopes of water in leaves, including progressive enrichment along the leaf. In the model, lighter water is preferentially transpired leaving heavier water to diffuse back into the xylem and be carried further along the leaf. For this pattern to be pronounced, the ratio of advection to diffusion (Péclet number) has to be large in the longitudinal direction, and small in the radial direction. The progressive enrichment along the xylem is less than that occurring at the sites of evaporation in the mesophyll, depending on the isolation afforded by the radial Péclet number. There is an upper bound on enrichment, and effects of ground tissue associated with major veins are included. When transpiration rate is spatially nonuniform, averaging of enrichment occurs more naturally with transpiration weighting than with area-based weighting. This gives zero average enrichment of transpired water, the modified Craig-Gordon equation for average enrichment at the sites of evaporation and the Farquhar and Lloyd (In Stable Isotopes and Plant Carbon-Water Relations, pp. 47-70. Academic Press, New York, USA, 1993) prediction for mesophyll water. Earlier results on the isotopic composition of evolved oxygen and of retro-diffused carbon dioxide are preserved if these processes vary in parallel with transpiration rate. Parallel variation should be indicated approximately by uniform carbon isotope discrimination across the leaf.  相似文献   

9.
Deuterium enrichment of bulk water was measured and modeled in snowgum (Eucalyptus pauciflora Sieber ex Sprengel) leaves grown under contrasting air and soil humidity in arid and wet conditions in a glasshouse. A map of the enrichment was constructed with a resolution of 4 mm by using a newly designed cryodistillation method. There was progressively increasing enrichment in both longitudinal (along the leaf midrib) and transversal (perpendicular to the midrib) directions, most pronounced in the arid-grown leaf. The whole-leaf average of the enrichment was well below the value estimated by the Craig-Gordon model. The discrepancy between model and measurements persisted when the estimates were carried out separately for the leaf base and tip, which differed in temperature and stomatal conductance. The discrepancy was proportional to the transpiration rate, indicating the significance of diffusion-advection interplay (Péclet effect) of deuterium-containing water molecules in small veins close to the evaporating sites in the leaf. Combined Craig-Gordon and desert-river models, with or without the Péclet number, P, were used for predicting the leaf longitudinal enrichment. The predictions without P overestimated the measured values of deltadeuterium. Fixed P value partially improved the coincidence. We suggest that P should vary along the leaf length l to reconcile the modeled data with observations of longitudinal enrichment. Local values of P, P(l), integrating the upstream fraction of water used or the leaf area, substantially improved the model predictions.  相似文献   

10.
Leaf water (18)O enrichment (Delta(o)) influences the isotopic composition of both gas exchange and organic matter, with Delta(o) values responding to changes in atmospheric parameters. In order to examine possible influences of plant parameters on Delta(o) dynamics, we measured oxygen isotope ratios (delta(18)O) of leaf and stem water on plant species representing different life forms in Amazonia forest and pasture ecosystems. We conducted two field experiments: one in March (wet season) and another in September (dry season) 2004. In each experiment, leaf and stem samples were collected at 2-h intervals at night and hourly during the day for 50 h from eight species including upper-canopy forest trees, upper-canopy forest lianas, and lower-canopy forest trees, a C(4) pasture grass and a C(3) pasture shrub. Significant life form-related differences were detected in (18)O leaf water values. Initial modeling efforts to explain these observations over-predicted nighttime Delta(o) values by as much as 10 per thousand. Across all species, errors associated with measured values of the delta(18)O of atmospheric water vapor (delta(v)) appeared to be largely responsible for the over-predictions of nighttime Delta(o) observations. We could not eliminate collection or storage of water vapor samples as a possible error and therefore developed an alternative, plant-based method for estimating the daily average delta(v) value in the absence of direct (reliable) measurements. This approach differs from the common assumption that isotopic equilibrium exists between water vapor and precipitation water, by including transpiration-based contributions from local vegetation through (18)O measurements of bulk leaf water. Inclusion of both modified delta(v) and non-steady state features resulted in model predictions that more reliably predicted both the magnitude and temporal patterns observed in the data. The influence of life form-specific patterns of Delta(o) was incorporated through changes in the effective path length, an important but little known parameter associated with the Péclet effect.  相似文献   

11.
In this paper we describe how a model of stable isotope fractionation processes, originally developed by H. Craig and L. I. Gordon ([1965] in E Tongiorgi, ed, Proceedings of a Conference on Stable Isotopes in Oceanographic Studies and Paleotemperature, Spoleto, Italy, pp 9-130) for evaporation of water from the ocean, can be applied to leaf transpiration. The original model was modified to account for turbulent conditions in the leaf boundary layer. Experiments were conducted to test the factors influencing the stable isotopic composition of leaf water under controlled environment conditions. At steady state, the observed leaf water isotopic composition was enriched above that of stem water with the extent of the enrichment dependent on the leaf-air vapor pressure difference (VPD) and the isotopic composition of atmospheric water vapor (AWV). The higher the VPD, the larger was the observed heavy isotope content of leaf water. At a constant VPD, leaf water was relatively depleted in heavy isotopes when exposed to AWV with a low heavy isotope composition, and leaf water was relatively enriched in heavy isotopes when exposed to AWV with a large heavy isotope composition. However, the observed heavy isotope composition of leaf water was always less than that predicted by the model. The extent of the discrepancy between the modeled and observed leaf water isotopic composition was a strong linear function of the leaf transpiration rate.  相似文献   

12.
森林的土壤-植物-大气连续体(SPAC)是陆地重要的水循环连续界面过程。本研究通过分析亚热带常绿阔叶林的降水、大气水汽、土壤水、叶片水的同位素组成,探讨森林SPAC系统水分的氢氧同位素组成特征以及植物蒸腾与叶片性状和环境因子的关系。结果表明: 研究区大气降水、土壤水、竹柏枝条水、竹柏叶片水和大气水汽的δD-δ18O线性回归方程分别为: δDP=7.97δ18OP+12.68(R2=0.97)、δDS=4.29δ18OS-18.62(R2=0.81)、δDB=3.31δ18OB-29.73(R2=0.49)、δDL=1.49δ18OL-10.09(R2=0.81)、δDV=3.89δ18OV-51.29(R2=0.46)。在降水→土壤水→植物水的界面水输送过程中,氢氧同位素逐渐富集,而从土壤蒸发和从植物蒸腾的水汽同位素贫化。在降水和蒸发作用的影响下,土壤水同位素随深度增加有贫化的趋势,而且整体上旱季土壤水同位素比雨季富集。观测期间,枝条水同位素比土壤水略微富集,说明水分在植物体内运输过程中存在受到蒸腾富集作用的可能性。旱季,乔木的枝条水同位素比灌木贫化,说明根系分布更深的乔木植物更倾向于利用深层土壤水。由于在叶片性状、蒸腾速率以及对环境因子的响应程度等方面存在差异,不同植物的叶片水同位素组成随叶龄增长的变化特征有所不同。雨季的环境条件更有利于叶片蒸腾,使雨季的叶片水同位素比旱季富集。叶片水同位素组成与植物叶片含水量呈正相关关系,与相对湿度呈负相关关系,综合反映了植物应对环境变化的水分调控功能。  相似文献   

13.
The Craig–Gordon type (C–G) leaf water isotope enrichment models assume a homogeneous distribution of enriched water across the leaf surface, despite observations that Δ18O can become increasingly enriched from leaf base to tip. Datasets of this ‘progressive isotope enrichment’ are limited, precluding a comprehensive understanding of (a) the magnitude and variability of progressive isotope enrichment, and (b) how progressive enrichment impacts the accuracy of C–G leaf water model predictions. Here, we present observations of progressive enrichment in two conifer species that capture seasonal and diurnal variability in environmental conditions. We further examine which leaf water isotope models best capture the influence of progressive enrichment on bulk needle water Δ18O. Observed progressive enrichment was large and equal in magnitude across both species. The magnitude of this effect fluctuated seasonally in concert with vapour pressure deficit, but was static in the face of diurnal cycles in meteorological conditions. Despite large progressive enrichment, three variants of the C–G model reasonably successfully predicted bulk needle Δ18O. Our results thus suggest that the presence of progressive enrichment does not impact the predictive success of C–G models, and instead yields new insight regarding the physiological and anatomical mechanisms that cause progressive isotope enrichment.  相似文献   

14.
植物水的稳定同位素分馏过程是水在土壤-植物-大气连续体中循环的重要环节。以往研究由于叶片水18O同位素比值(δ18O l,b)和氘(D)同位素比值(δDl,b)(合称δl,b)实测数量少只能作为模型验证数据, 导致δl,b富集机制研究多集中于模型研究, 缺乏基于野外试验条件的δl,b富集的控制机制研究。叶片水δDl,bδ18O l,b的富集程度(ΔDl,bΔ18O l,b, 合称Δl,b)通常表示为δl,b与茎秆水D同位素比值(δDx)和18O同位素比值(δ18Ox) (合称δx)之差, 即Δl,b = δl,b - δx。该研究以黑河中游沙漠绿洲春玉米(Zea mays)生态系统为研究对象, 重点采集和分析了季节和日尺度δl,bδx数据, 配套开展了大气水汽δ18O和δD (合称δv)等辅助变量的原位连续观测, 探讨了季节和日尺度上的δl,b富集特征及其影响因素。结果表明: 叶片水δl,bΔl,b的季节变化趋势不明显, 而受蒸腾作用影响表现出白天富集夜间贫化的单峰日变化特征。对于D来说, 无论季节尺度上还是日尺度上, 大气水汽δv和相对湿度是δDl,bΔDl,b的主要环境控制因素; 而对于18O来说, 无论季节尺度上还是日尺度上, 相对湿度是δ18O l,bΔ18O l,b的主要环境控制因素。由于D和18O在热力学平衡分馏上有约8倍差异, 直接分析叶片水ΔDl,bΔ18Ol,b与影响因素的差异性, 有助于理解叶片水δD和δ18O富集过程以及对模型发展有一定的指导意义。  相似文献   

15.
《植物生态学报》2020,44(4):350
水分是生态系统的重要因子, 水同位素自然示踪和人工标记是研究生态系统水循环过程的重要方法, 利用水同位素所具有的示踪、整合和指示等功能特征, 通过测量和分析生态系统中不同组分所含水分的氢氧同位素比值的变化情况, 可实现生态系统蒸散发的拆分、植物水分来源判定和叶片水同位素富集机理研究, 是研究生态系统水循环过程机理和生态学效应不可或缺的技术手段。该文首先简要回顾了生态系统水同位素发展和应用的历史, 在此基础上阐述了水同位素技术和方法在生态学研究热点领域应用的基本原理, 概述了水同位素在植物水分来源判定、蒸散发拆分、露水来源拆分、降水的水汽来源拆分以及 17O-excess的研究进展, 并介绍了植物叶片水富集机理及基于稳定同位素的碳水耦合研究。最后, 指出了水同位素研究亟待解决的问题, 展望了水同位素应用的前沿方向, 旨在利用水同位素分析加深对生态系统的水分动态、植被格局和生理过程的理解。  相似文献   

16.
The impact of leaf vein blockage on leaf hydraulic conductance (K(L)), gas exchange (g(L)) and water potential (Psi(L)) was studied in Prunus laurocerasus L., a broad-leaved evergreen. For this purpose, leaves were measured for the three variables above, either with an intact leaf blade (controls) or with the midrib cut a third of the way up (cut a), or with the midrib cut at three different points and the first-order veins cut through near their insertion to the midrib (cut b), or with the midrib cut at 2 mm from the leaf base (cut c). All the cut surfaces were sealed with cyanoacrylate. A serial decrease of K(L) was recorded from cut a to cut c with respect to that measured for the controls, i.e. a K(L) loss of about 37% (cut a), 57% (cut b) and 87% (cut c). A positive linear relationship appeared to exist between g(L) and K(L) with a high correlation coefficient (r(2)=0.99) and a high statistical significance (P <0.01). Even under a severe drop in K(L) (as that induced by cut c), leaf water potential remained approximately constant and not statistically different from Psi(L) measured for the controls. In fact, Psi(L) ranged between -0.83 and -0.98 MPa, i.e. within the cavitation threshold of leaves in terms of the critical Psi(L) inducing a significant production of ultrasound acoustic emissions which was -0.94+/-0.09 MPa. The conclusion was that stomata were very sensitive to changes in K(L) and that stomatal closure led to the homeostatic maintenance of Psi(L) and cavitation avoidance.  相似文献   

17.
Gillon JS  Yakir D 《Plant physiology》2000,123(1):201-214
(18)O discrimination in CO(2) stems from the oxygen exchange between (18)O-enriched water and CO(2) in the chloroplast, a process catalyzed by carbonic anhydrase (CA). A proportion of this (18)O-labeled CO(2) escapes back to the atmosphere, resulting in an effective discrimination against C(18)OO during photosynthesis (Delta(18)O). By constraining the delta(18)O of chloroplast water (delta(e)) by analysis of transpired water and the extent of CO(2)-H(2)O isotopic equilibrium (theta(eq)) by measurements of CA activity (theta(eq) = 0.75-1.0 for tobacco, soybean, and oak), we could apply measured Delta(18)O in a leaf cuvette attached to a mass spectrometer to derive the CO(2) concentration at the physical limit of CA activity, i.e. the chloroplast surface (c(cs)). From the CO(2) drawdown sequence between stomatal cavities from gas exchange (c(i)), from Delta(18)O (c(cs)), and at Rubisco sites from Delta(13)C (c(c)), the internal CO(2) conductance (g(i)) was partitioned into cell wall (g(w)) and chloroplast (g(ch)) components. The results indicated that g(ch) is variable (0.42-1.13 mol m(-2) s(-1)) and proportional to CA activity. We suggest that the influence of CA activity on the CO(2) assimilation rate should be important mainly in plants with low internal conductances.  相似文献   

18.
During daylight hours, the isotope composition of leaf water generally approximates steady‐state leaf water isotope enrichment model predictions. However, until very recently there was little direct confirmation that isotopic steady‐state (ISS) transpiration in fact exists. Using isotope ratio infrared spectroscopy (IRIS) and leaf gas exchange systems we evaluated the isotope composition of transpiration and the rate of change in leaf water isotopologue storage (isostorage) when leaves were exposed to variable environments. In doing so, we developed a method for controlling the absolute humidity entering the gas exchange cuvette for a wide range of concentrations without changing the isotope composition of water vapour. The measurement system allowed estimation of 18O enrichment both at the evaporation site and for bulk leaf water, in the steady state and the non‐steady state. We show that non–steady‐state effects dominate the transpiration isoflux even when leaves are at physiological steady state. Our results suggest that a variable environment likely prevents ISS transpiration from being achieved and that this effect may be exacerbated by lengthy leaf water turnover times due to high leaf water contents.  相似文献   

19.
The oxygen isotope composition of atmospheric CO(2) is an important signal that helps distinguish between ecosystem photosynthetic and respiratory processes. In C(4) plants the carbonic anhydrase (CA)-catalyzed interconversion of CO(2) and bicarbonate (HCO(3)(-)) is an essential first reaction for C(4) photosynthesis but also plays an important role in the CO(2)-H(2)O exchange of oxygen as it enhances the rate of isotopic equilibrium between CO(2) and water. The C(4) dicot Flaveria bidentis containing genetically reduced levels of leaf CA (CA(leaf)) has been used to test whether changing leaf CA activity influences online measurements of C(18)OO discrimination (Delta(18)O) and the proportion of CO(2) in isotopic equilibrium with leaf water at the site of oxygen exchange (theta). The Delta(18)O in wild-type F. bidentis, which contains high levels of CA relative to the rates of net CO(2) assimilation, was less than predicted by models of Delta(18)O. Additionally, Delta(18)O was sensitive to small decreases in CA(leaf). However, reduced CA activity in F. bidentis had little effect on net CO(2) assimilation, transpiration rates (E), and stomatal conductance (g(s)) until CA levels were less than 20% of wild type. The values of theta determined from measurements of Delta(18)O and the (18)O isotopic composition of leaf water at the site of evaporation (delta(e)) were low in the wild-type F. bidentis and decreased in transgenic plants with reduced levels of CA activity. Measured values of theta were always significantly lower than the values of theta predicted from in vitro CA activity and gas exchange. The data presented here indicates that CA content in a C(4) leaf may not represent the CA activity associated with the CO(2)-H(2)O oxygen exchange and therefore may not be a good predictor of theta during C(4) photosynthesis. Furthermore, uncertainties in the isotopic composition of water at the site of exchange may also limit the ability to accurately predict theta in C(4) plants.  相似文献   

20.
The 18O signals in leaf water (delta18O(lw)) and organic material were dominated by atmospheric water vapour 18O signals (delta18O(vap)) in tank and atmospheric life forms of epiphytic bromeliads with crassulacean acid metabolism (CAM), from a seasonally dry forest in Mexico. Under field conditions, the mean delta18O(lw) for all species was constant during the course of the day and systematically increased from wet to dry seasons (from 0 to +6 per thousand), when relative water content (RWC) diminished from 70 to 30%. In the greenhouse, progressive enrichment from base to leaf tip was observed at low night-time humidity; under high humidity, the leaf tip equilibrated faster with delta18O(vap) than the other leaf sections. Laboratory manipulations using an isotopically depleted water source showed that delta18O(vap) was more rapidly incorporated than liquid water. Our data were consistent with a Craig-Gordon (C-G) model as modified by Helliker and Griffiths predicting that the influx and exchange of delta18O(vap) control delta18O(lw) in certain epiphytic life forms, despite progressive tissue water loss. We use delta18O(lw) signals to define water-use strategies for the coexisting species which are consistent with habitat preference under natural conditions and life form. Bulk organic matter (delta18O(org)) is used to predict the deltaO18(vap) signal at the time of leaf expansion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号