首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study focuses on the spatial patterns of transpiration-driven water isotope enrichment (Delta(lw)) along monocot leaves. It has been suggested that these spatial patterns are the result of competing effects of advection and (back-)diffusion of water isotopes along leaf veins and in the mesophyll, but also reflect leaf geometry (e.g. leaf length, interveinal distance) and non-uniform gas-exchange parameters. We therefore developed a two-dimensional model of isotopic leaf water enrichment that incorporates new features, compared with previous models, such as radial diffusion in the xylem, longitudinal diffusion in the mesophyll, non-uniform gas-exchange parameters and non-steady-state effects. The model reproduces well all published measurements of Delta(lw) along monocot leaf blades, except at the leaf tip and given the uncertainties on measurements and model parameters. We show that the longitudinal diffusion in the mesophyll cannot explain the observed reduction in the isotope gradient at the leaf tip. Our results also suggest that the observed differences in Delta(lw) between C(3) and C(4) plants reflect more differences in mesophyll tortuosity rather than in leaf length or interveinal distance. Mesophyll tortuosity is by far the most sensitive parameter and different values are required for different experiments on the same plant species. Finally, using new measurements of non-steady-state, spatially varying leaf water enrichment we show that spatial patterns are in steady state around midday only, just as observed for bulk leaf water enrichment, but can be easily upscaled to the whole leaf level, regardless of their degree of heterogeneity along the leaf.  相似文献   

2.
Farquhar and Gan [10] have proposed a model for the spatial variation in the isotopic enrichment of H218O across a leaf, which is specifically formulated for monocotyledoneous leaves. The model is based on the interaction between mass fluxes longitudinally within the xylem, and fluxes laterally through veinlets into the lamina mesophyll, where moisture leaves the leaf through transpiration. The lighter, more abundant, molecule H216O escapes preferentially with the evaporating water, resulting in the enrichment of H218O at these sites. Enriched water diffuses throughout the leaf, and it is this spatial distribution of enriched water which the model seeks to capture. In this paper we present a general formulation of the model in terms of mass flux, extending it to include variable transpiration rates across the leaf surface, as well as a tapering xylem. Solutions are developed for the general case and, since the solutions present in the form of Kummer functions, properties are established as well as methods for estimating the solutions under certain conditions relevant to the biology. The model output is compared with Gans data ([14, 15]) collected from maize plants.  相似文献   

3.
Cotton (Gossypium hirsutum L. cv. CS50) plants were grown at two levels of relative humidity (RH) and sprayed daily with abscisic acid (ABA) at four concentrations. Plants grown at lower humidity had higher transpiration rates, lower leaf temperatures and lower stomatal conductance. Plant biomass was also reduced at low humidity. Within each humidity environment, increasing ABA concentration generally reduced stomatal conductance, evaporation rates, superficial leaf density and plant biomass, and increased leaf temperature and specific leaf area. As expected, decreased stomatal conductance resulted in decreased carbon isotope discrimination in leaf material ( Δ 13Cl). Plants grown at low humidity were more enriched in 18O than those grown at high RH, as theory predicts. Within each humidity environment, increasing ABA concentration increased oxygen isotope enrichment of leaf cellulose ( Δ 18Oc) and whole‐leaf tissue ( Δ 18Ol). Values of Δ 13Cl and Δ 18Ol predicted by theoretical models were close to those observed, accounting for 79% of the measured variation in Δ 13Cl and 95% of the measured variation in Δ 18Ol. Supporting theory, Δ 13Cl and Δ 18Ol in whole‐leaf tissue were negatively related.  相似文献   

4.
Leaf gas exchange and leaf water (18)O enrichment (Delta(18)O(L)) were measured in three Clusia species under field conditions during dry and wet seasons and in Miconia argentea during the dry season in the Republic of Panama. During the dry season, all three Clusia species used crassulacean acid metabolism (CAM); during the wet season Clusia pratensis operated in the C(3) mode, while Clusia uvitana and Clusia rosea used CAM. Large departures from isotopic steady state were observed in daytime Delta(18)O(L) of the Clusia species, especially during the dry season. In contrast, daytime Delta(18)O(L) was near isotopic steady state in the C(3) tree M. argentea. Across the full data set, non-steady-state predictions explained 49% of variation in observed Delta(18)O(L), whereas steady-state predictions explained only 14%. During the wet season, when Delta(18)O(L) could be compared with Clusia individuals operating in both C(3) and CAM modes, steady-state and non-steady-state models gave contrasting predictions with respect to interspecific variation in daytime Delta(18)O(L). The observed Delta(18)O(L) pattern matched that predicted for the non-steady state. The results provided a clear example of how non-steady-state control of leaf water (18)O dynamics can shift the slope of the relationship between transpiration rate and daytime Delta(18)O(L) from negative to positive.  相似文献   

5.
Understanding the controls on temporal variation in plant leaf δ2H and δ18O values is important for understanding carbon–water dynamics of the biosphere and interpreting a wide range of proxies for past environments. Explaining the enrichment mechanisms under field conditions is challenging. To clarify the leaf water isotopic enrichment process at the ecosystem scale, four models with a range of complexities that were previously conducted at the leaf scale have been tested to simulate canopy foliage water in a multispecies grassland ecosystem. Although the exact importance of considering non-steady-state or/and isotopic diffusion in bulk leaf isotopic simulations has been reported in previous studies, our findings suggested that the steady-state assumption (SSA) is practically acceptable as a first-order approximation. The SSA two-pool model was the best option for reproducing seasonality of the bulk-leaf-water isotopic ratio for a grassland ecosystem. Relative humidity at canopy layer as the most controlling factor for canopy foliage water stable isotope composition because of its high sensitivity and variation. The results highlighted that canopy foliage water was a well-behaved property that was predictable for a multispecies grassland ecosystem at hourly or daily time-scales.  相似文献   

6.
A model has been derived for the enrichment of heavy isotopes of water in leaves, including progressive enrichment along the leaf. In the model, lighter water is preferentially transpired leaving heavier water to diffuse back into the xylem and be carried further along the leaf. For this pattern to be pronounced, the ratio of advection to diffusion (Péclet number) has to be large in the longitudinal direction, and small in the radial direction. The progressive enrichment along the xylem is less than that occurring at the sites of evaporation in the mesophyll, depending on the isolation afforded by the radial Péclet number. There is an upper bound on enrichment, and effects of ground tissue associated with major veins are included. When transpiration rate is spatially nonuniform, averaging of enrichment occurs more naturally with transpiration weighting than with area‐based weighting. This gives zero average enrichment of transpired water, the modified Craig–Gordon equation for average enrichment at the sites of evaporation and the Farquhar and Lloyd (In Stable Isotopes and Plant Carbon‐Water Relations, pp. 47–70. Academic Press, New York, USA, 1993) prediction for mesophyll water. Earlier results on the isotopic composition of evolved oxygen and of retro‐diffused carbon dioxide are preserved if these processes vary in parallel with transpiration rate. Parallel variation should be indicated approximately by uniform carbon isotope discrimination across the leaf.  相似文献   

7.
A model has been derived for the enrichment of heavy isotopes of water in leaves, including progressive enrichment along the leaf. In the model, lighter water is preferentially transpired leaving heavier water to diffuse back into the xylem and be carried further along the leaf. For this pattern to be pronounced, the ratio of advection to diffusion (Péclet number) has to be large in the longitudinal direction, and small in the radial direction. The progressive enrichment along the xylem is less than that occurring at the sites of evaporation in the mesophyll, depending on the isolation afforded by the radial Péclet number. There is an upper bound on enrichment, and effects of ground tissue associated with major veins are included. When transpiration rate is spatially nonuniform, averaging of enrichment occurs more naturally with transpiration weighting than with area-based weighting. This gives zero average enrichment of transpired water, the modified Craig-Gordon equation for average enrichment at the sites of evaporation and the Farquhar and Lloyd (In Stable Isotopes and Plant Carbon-Water Relations, pp. 47-70. Academic Press, New York, USA, 1993) prediction for mesophyll water. Earlier results on the isotopic composition of evolved oxygen and of retro-diffused carbon dioxide are preserved if these processes vary in parallel with transpiration rate. Parallel variation should be indicated approximately by uniform carbon isotope discrimination across the leaf.  相似文献   

8.
Stable oxygen isotope ratio of leaf water (δ18OL) yields valuable information on many aspects of plant–environment interactions. However, current understanding of the mechanistic controls on δ18OL does not provide complete characterization of effective path length (L) of the Péclet effect, – a key component of the leaf water model. In this study, we collected diurnal and seasonal series of leaf water enrichment and estimated L in six field‐grown angiosperm and gymnosperm tree species. Our results suggest a pivotal role of leaf transpiration rate (E) in driving both within‐ and across‐species variations in L. Our observation of the common presence of an inverse scaling of L with E in the different species therefore cautions against (1) the conventional treatment of L as a species‐specific constant in leaf water or cellulose isotope (δ18Op) modelling; and (2) the use of δ18Op as a proxy for gs or E under low E conditions. Further, we show that incorporation of a multi‐species LE scaling into the leaf water model has the potential to both improve the prediction accuracy and simplify parameterization of the model when compared with the conventional approach. This has important implications for future modelling of oxygen isotope ratios.  相似文献   

9.
Abstract. Two cotton species ( Gossypium hirsutum L. cv. SJ-2 and Gossypium barbadence cv. S-5) were grown under irrigated (wet) and non-irrigated (dry) conditions in the same field. Leaf water was enriched in 18O and deuterium in the dry treatment relative to the wet treatment for both species. Only in plants of S-5 was a similar enrichment observed in leaf cellulose. In both species, the isotopic composition of leaf cellulose must reflect the isotopic composition of the actual water pool involved in cellulose synthesis. Therefore, our observations indicate that one species (SJ-2) can maintain a relative isolation of this water pool from direct evapotranspirational effects. Such plant species will more faithfully record, in the isotopic composition of organic matter, the isotopic composition of ground water. In contrast, the isotopic composition of organic matter in plants such as S-5 could be used as an integrated signal reflecting humidity conditions during growth. Water use efficiency, based on seed-cotton yield and total water applied, correlated linearly with differences in carbon isotopic ratios between species in both the wet and dry treatments and between treatments in each species.  相似文献   

10.
After 2, 10 and 24 hr labelling with [1-14C] acetate, radioactivity incorporated into the lipids of cotton leaves is mainly found in phosphatidylcholine, phosphatidylglycerol and neutral lipids. Galactolipids are slowly synthesized and after 24 hr, account for only 10% of the total radioactivity. Under water stress, a marked decrease of precursor incorporation into leaf lipids occurs, particularly in phosphatidylcholine and galactolipids. Relative incorporation into neutral lipids, on the contrary, increases. Water deficits provoke an inhibition of the fatty acid desaturation, resulting in a sharp decrease of linoleic and linolenic acid biosynthesis. The decrease in unsaturated fatty acid biosynthesis occurs in all lipid classes, but is most pronounced in the galactolipid fractions. In the drought-resistant cotton variety (Mocosinho), the variations in lipid and fatty acid metabolism under water stress are less pronounced than in the drought-sensitive variety (Reba), and this attests a greater stability of the membrane system.  相似文献   

11.
Gan KS  Wong SC  Yong JW  Farquhar GD 《Plant physiology》2002,130(2):1008-1021
Three leaf water models (two-pool model, Péclet effect, and string-of-lakes) were assessed for their robustness in predicting leaf water enrichment and its spatial heterogeneity. This was achieved by studying the (18)O spatial patterns of vein xylem water, leaf water, and dry matter in cotton (Gossypium hirsutum) leaves grown at different humidities using new experimental approaches. Vein xylem water was collected from intact transpiring cotton leaves by pressurizing the roots in a pressure chamber, whereas the isotopic content of leaf water was determined without extracting it from fresh leaves with the aid of a purpose-designed leaf punch. Our results indicate that veins have a significant degree of lateral exchange with highly enriched leaf water. Vein xylem water is thus slightly, but progressively enriched in the direction of water flow. Leaf water enrichment is dependent on the relative distances from major veins, with water from the marginal and intercostal regions more enriched and that next to veins and near the leaf base more depleted than the Craig-Gordon modeled enrichment of water at the sites of evaporation. The spatial pattern of leaf water enrichment varies with humidity, as expected from the string-of-lakes model. This pattern is also reflected in leaf dry matter. All three models are realistic, but none could fully account for all of the facets of leaf water enrichment. Our findings acknowledge the presence of capacitance in the ground tissues of vein ribs and highlight the essential need to incorporate Péclet effects into the string-of-lakes model when applying it to leaves.  相似文献   

12.
In pea ( Pisum sativum L.) plants the effect of short-term salt stress and recovery on growth, water relations and the activity of some antioxidant enzymes was studied. Leaf growth was interrupted by salt addition. However, during recovery, growth was restored, although there was a delay in returning to control levels. Salt stress brought about a decrease in osmotic potential and in stomatal conductance, but at 48 h and 24 h post-stress, respectively, both parameters recovered control values. In pea leaves, a linear increase in the Na+ concentration was observed in salt treated plants. In the recovered plants, a slight reduction in the Na+ concentration was observed, probably due to a dilution effect since the plant growth was restored and the total Na+ content was maintined in leaves after the stress period. A significant increase of SOD activity occurred after 48 h of stress and after 8 h of the recovery period (53% and 42%, respectively), and it reached control values at 24 h post-stress. APX activity did not change during the stress period, and after only 8 h post-stress it was increased by 48% with respect to control leaves. GR showed a 71% increase after 24 h of salt stress and also a significant increase was observed in the recovered plants. A strong increase of TBARS was observed after 8 h of stress (180% increase), but then a rapid decrease was observed during the stress period. Surprisingly, TBARS again increased at 8 h post-stress (78% increase), suggesting that plants could perceive the elimination of NaCl from the hydroponic cultures as another stress during the first hours of recovery. These results suggest that short-term NaCl stress produces reversible effects on growth, leaf water relations and on SOD and APX activities. This work also suggests that both during the first hours of imposition of stress and during the first hours of recovery an oxidative stress was produced.  相似文献   

13.
The effectiveness of several leaf water models (‘string‐of‐lakes’, ‘desert river’ and the Farquhar–Gan model) are evaluated in predicting the enrichment of leaf water along a maize leaf at different humidities. Progressive enrichment of both vein xylem water and leaf water was observed along the blade. At the tip, the maximum observed enrichment for the vein water was 17.6‰ at 50% relative humidity (RH) whereas that for the leaf water was 50‰ at 34% RH and 19‰ at 75% RH. The observed leaf water maximum was a fraction (0.5–0.6) of the theoretically possible maximum. The ‘string‐of‐lakes’ and ‘desert river’ models predict well the variation of leaf water enrichment pattern with humidity but overestimate the average enrichment of bulk leaf water. However, the Farquhar–Gan model gives good prediction for these two aspects of leaf water enrichment. Using the anatomical dimensions of vein xylem overestimates the effective longitudinal Péclet number (Pl). Possible explanations for this discrepancy between the effective and the xylem‐based estimate of Pl are discussed. The need to characterize the heterogeneity of transpiration rate over the leaf surface in studies of leaf water enrichment is emphasized. The possibility that past atmospheric humidity can be predicted from the slope of the Δ18O spatial variation of leaf macrofossils found in middens is proposed.  相似文献   

14.
Stable oxygen isotope ratios (delta18O) have become a valuable tool in the plant and ecosystem sciences. The interpretation of delta18O values in plant material is, however, still complicated owing to the complex interactions among factors that influence leaf water enrichment. This study investigated the interplay among environmental parameters, leaf physiological properties and leaf water relations as drivers of the isotopic enrichment of leaf water across 17 Eucalyptus species growing in a common garden. We observed large differences in maximum daily leaf water delta18O across the 17 species. By fitting different leaf water models to these empirical data, we determined that differences in leaf water delta18O across species are largely explained by variation in the Péclet effect across species. Our analyses also revealed that species-specific differences in transpiration do not explain the observed differences in delta18O while the unconstrained fitting parameter 'effective path length' (L) was highly correlated with delta18O. None of the leaf morphological or leaf water related parameters we quantified in this study correlated with the L values we determined even though L was typically interpreted as a leaf morphological/anatomical property. A sensitivity analysis supported the importance of L for explaining the variability in leaf water delta18O across different species. Our investigation highlighted the importance of future studies to quantify the leaf properties that influence L. Obtaining such information will significantly improve our understanding of what ultimately determines the delta18O values of leaf water across different plant species.  相似文献   

15.
1. The breakdown of leaf litter in streams is influenced strongly by leaf quality and the concentration of dissolved nutrients, primarily inorganic nitrogen (N) and phosphorus (P) in the water. We examined the effect of nutrient enrichment on the breakdown of three species of leaves in a hardwater, nutrient‐rich stream. The rate of microbial respiration was also measured on the decomposing leaves. 2. The breakdown rates of dogwood (Cornus stolonifera), aspen (Populus tremuloides) and birch (Betula occidentalis), k‐values of 0.0461, 0.0307 and 0.0186 day–1, respectively, were unaffected by nutrient enrichment and generally faster than reported previously. Microbial respiration on the leaves was greater than reported previously for leaves of congeneric species. It appears that leaf breakdown in the study stream was not nutrient limited. 3. Nitrogen‐based measures of leaf quality, such as percentage N and carbon (C)/nitrogen ratio, did not correspond to measured breakdown rates among the three leaf types. The best predictors of relative breakdown rates were percentage lignin and the percentage of the total carbon that occurred as lignin. We suggest that, when leaf breakdown is not nutrient limited, measures of carbon quality (i.e. lignin‐based measures) are a better assessment of overall leaf quality than are N‐based measures. 4. Previous studies have indicated that the enzymes produced by aquatic hyphomycetes (microfungi) operate most efficiently at a basic pH and in the presence of calcium ions. The hardwater conditions (pH=8.6, total hardness > 300 mg CaCO3 L–1) and abundance of dissolved NO3 and soluble reactive phosphorous (SRP) (approximately 50 μg L–1, each) in the study stream appear to have provided conditions that resulted in a high respiration rate and rapid breakdown of leaf litter.  相似文献   

16.
Summary Water-stress experiments withPhaseolus vulgaris L. were undertaken to determine the transpiration rate dependency of the naturally occurring leaf H2 18O fractionation process. Water-stress leaf H2 18O levels were observed to be unexpectedly higher than controls. Speculations on the cause of this phenomenon are discussed. Since transpiration rate variations should theoretically affect only the rate and not the extent of leaf H2 18O fractionation, the respective time courses for water-stressed and control leaf H2 18O accumulations were compared. Water-stressed leaves displayed a slower rate of isotopic enrichment relative to controls, as was predicted from their reduced transpiration rates. In an absolute sense, however, both control and water-stress leaf H2 18O fractionation rates were markedly greater than projected values from the existing model. Consequently, transpiration rates cannot be derived accurately at present from the observed rates of leaf H2 18O discrimination. Several modifications of the theory are also considered.  相似文献   

17.
Deuterium enrichment of bulk water was measured and modeled in snowgum (Eucalyptus pauciflora Sieber ex Sprengel) leaves grown under contrasting air and soil humidity in arid and wet conditions in a glasshouse. A map of the enrichment was constructed with a resolution of 4 mm by using a newly designed cryodistillation method. There was progressively increasing enrichment in both longitudinal (along the leaf midrib) and transversal (perpendicular to the midrib) directions, most pronounced in the arid-grown leaf. The whole-leaf average of the enrichment was well below the value estimated by the Craig-Gordon model. The discrepancy between model and measurements persisted when the estimates were carried out separately for the leaf base and tip, which differed in temperature and stomatal conductance. The discrepancy was proportional to the transpiration rate, indicating the significance of diffusion-advection interplay (Péclet effect) of deuterium-containing water molecules in small veins close to the evaporating sites in the leaf. Combined Craig-Gordon and desert-river models, with or without the Péclet number, P, were used for predicting the leaf longitudinal enrichment. The predictions without P overestimated the measured values of deltadeuterium. Fixed P value partially improved the coincidence. We suggest that P should vary along the leaf length l to reconcile the modeled data with observations of longitudinal enrichment. Local values of P, P(l), integrating the upstream fraction of water used or the leaf area, substantially improved the model predictions.  相似文献   

18.
The combined use of a gas‐exchange system and laser‐based isotope measurement is a tool of growing interest in plant ecophysiological studies, owing to its relevance for assessing isotopic variability in leaf water and/or transpiration under non‐steady‐state (NSS) conditions. However, the current Farquhar & Cernusak (F&C) NSS leaf water model, originally developed for open‐field scenarios, is unsuited for use in a gas‐exchange cuvette environment where isotope composition of water vapour (δv) is intrinsically linked to that of transpiration (δE). Here, we modified the F&C model to make it directly compatible with the δv–δE dynamic characteristic of a typical cuvette setting. The resultant new model suggests a role of ‘net‐flux’ (rather than ‘gross‐flux’ as suggested by the original F&C model)‐based leaf water turnover rate in controlling the time constant (τ) for the approach to steady sate. The validity of the new model was subsequently confirmed in a cuvette experiment involving cotton leaves, for which we demonstrated close agreement between τ values predicted from the model and those measured from NSS variations in isotope enrichment of transpiration. Hence, we recommend that our new model be incorporated into future isotope studies involving a cuvette condition where the transpiration flux directly influences δv. There is an increasing popularity among plant ecophysiologists to use a gas‐exchange system coupled to laser‐based isotope measurement for investigating non‐steady state (NSS) isotopic variability in leaf water (and/or transpiration); however, the current Farquhar & Cernusak (F&C) NSS leaf water model is unsuited for use in a gas‐exchange cuvette environment due to its implicit assumption of isotope composition of water vapor (δv) being constant and independent of that of transpiration (δE). In the present study, we modified the F&C model to make it compatible with the dynamic relationship between δv and δE as is typically associated with a cuvette setting. Using an experiment conducted on cotton leaves, we show that the modified NSS model performed well in predicting the time constant for the exponential approach of leaf water toward steady state under cuvette conditions. Such a result demonstrates the applicability of this new model to gas‐exchange cuvette conditions where the transpiration flux directly influences δv, and therefore suggests the need to incorporate this model into future isotope studies that employ a laser‐cuvette coupled system.  相似文献   

19.
Summary The enrichment of18O in the water of transpiring leaves under natural conditions is described. In the first series two, later three species at the same location and at the same time are compared (birchBetula pubescens L., oakQuercus robur Ehrh., larchLarix decidua Mill., and sprucePicea abies Karst). All four show parallel enrichment properties. In addition two beeches (Fagus silvatica L.) were observed, one at Jülich, the other at the Solling hills. They show a similar18O/16O ratio fluctuation in their leaves during the time of observation. Three plant communities (beech forest B1, spruce forest F1, and meadow W, sites of the Solling-Project, German Research Foundation, part of International Biological Program, at the Solling hills) show a daily course of the18O enrichment comparable to each other.  相似文献   

20.
Leaf curl disease caused by Cotton Leaf Curl Burewala virus (CLCuBuV) has been recognized as serious threat to cotton in Indian subcontinent. However, information about cotton–CLCuBuV interaction is still limited. In this study, the level of phenolic compounds, total soluble proteins, and malondialdehyde (MDA) and the activities of phenylalanine ammonia-lyase (PAL), peroxidase (POX), catalase (CAT), proteases, superoxide dismutase (SOD), and polyphenol oxidase (PPO) were studied in leaves of two susceptible (CIM-496 & NIAB-111) and two resistant (Ravi and Co Tiep Khac) cotton genotypes. Disease symptoms were mild in the resistant genotypes but were severe in highly susceptible genotypes. The results showed that phenolic compounds, proteins, PAL, POX, CAT, proteases, SOD, PPO, and MDA play an active role in disease resistance against CLCuBuV. The amount of total phenols, proteases, MDA, and PPO was significantly higher in leaves of CLCuBuV-inoculated plants of both resistant genotypes as in non-inoculated plants, and decreased in CLCuBuV-inoculated plants of both susceptible genotypes over their healthy plants. POX, protein content, SOD, and PAL activities showed lower values in resistant genotypes, while they decreased significantly in susceptible genotypes as compared to the noninoculated plants except PAL, which showed non-significant decrease. CAT was found to be increased in both susceptible and resistant genotypes with maximum percent increase in resistant genotype Ravi, as compared to non-inoculated plants. The results showed significantly higher concentrations of total phenols and higher activity of protease, MDA, SOD, and PPO in resistant genotype Ravi after infection with CLCuBuV, suggesting that there is a correlation between constitutive induced levels of these enzymes and plant resistance that could be considered as biochemical markers for studying plant-virus compatible and incompatible interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号