首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2‐C‐Methyl‐d ‐erythritol‐2,4‐cyclodiphosphate (MEcDP) is an intermediate of the plastid‐localized 2‐C‐methyl‐d ‐erythritol‐4‐phosphate (MEP) pathway which supplies isoprenoid precursors for photosynthetic pigments, redox co‐factor side chains, plant volatiles, and phytohormones. The Arabidopsis hds‐3 mutant, defective in the 1‐hydroxy‐2‐methyl‐2‐(E)‐butenyl‐4‐diphosphate synthase step of the MEP pathway, accumulates its substrate MEcDP as well as the free tetraol 2‐C‐methyl‐d ‐erythritol (ME) and glucosylated ME metabolites, a metabolic diversion also occurring in wild type plants. MEcDP dephosphorylation to the free tetraol precedes glucosylation, a process which likely takes place in the cytosol. Other MEP pathway intermediates were not affected in hds‐3. Isotopic labeling, dark treatment, and inhibitor studies indicate that a second pool of MEcDP metabolically isolated from the main pathway is the source of a signal which activates salicylic acid induced defense responses before its conversion to hemiterpene glycosides. The hds‐3 mutant also showed enhanced resistance to the phloem‐feeding aphid Brevicoryne brassicae due to its constitutively activated defense response. However, this MEcDP‐mediated defense response is developmentally dependent and is repressed in emerging seedlings. MEcDP and ME exogenously applied to adult leaves mimics many of the gene induction effects seen in the hds‐3 mutant. In conclusion, we have identified a metabolic shunt from the central MEP pathway that diverts MEcDP to hemiterpene glycosides via ME, a process linked to balancing plant responses to biotic stress.  相似文献   

2.
3.
We herein describe the realization of a genome‐wide association study for scrotal hernia and cryptorchidism in Norwegian and Belgian commercial pig populations. We have used the transmission disequilibrium test to avoid spurious associations due to population stratification. By doing so, we obtained genome‐wide significant signals for both diseases with SNPs located in the pseudo‐autosomal region in the vicinity of the pseudo‐autosomal boundary. By further analyzing these signals, we demonstrate that the observed transmission disequilibria are artifactual. We determine that transmission bias at pseudo‐autosomal markers will occur (i) when analyzing traits with sex‐limited expression and (ii) when the allelic frequencies at the marker locus differ between X and Y chromosomes. We show that the bias is due to the fact that (i) sires will preferentially transmit the allele enriched on the Y (respectively X) chromosome to affected sons (respectively daughters) and (ii) dams will appear to preferentially transmit the allele enriched on the Y (respectively X) to affected sons (respectively daughters), as offspring inheriting the other allele are more likely to be non‐informative. We define the conditions to mitigate these issues, namely by (i) extracting information from maternal meiosis only and (ii) ignoring trios for which sire and dam have the same heterozygous genotype. We show that by applying these rules to scrotal hernia and cryptorchidism, the pseudo‐autosomal signals disappear, confirming their spurious nature.  相似文献   

4.
Plant immunity against pathogens is achieved through rapid activation of defense responses that occur upon sensing of microbe‐ or damage‐associated molecular patterns, respectively referred to as MAMPs and DAMPs. Oligogalacturonides (OGs), linear fragments derived from homogalacturonan hydrolysis by pathogen‐secreted cell wall‐degrading enzymes, and flg22, a 22‐amino acid peptide derived from the bacterial flagellin, represent prototypical DAMPs and MAMPs, respectively. Both types of molecules induce protection against infections. In plants, like in animals, calcium is a second messenger that mediates responses to biotic stresses by activating calcium‐binding proteins. Here we show that simultaneous loss of calcium‐dependent protein kinases CPK5, CPK6 and CPK11 affects Arabidopsis thaliana basal as well as elicitor‐ induced resistance to the necrotroph Botrytis cinerea, by affecting pathogen‐induced ethylene production and accumulation of the ethylene biosynthetic enzymes 1‐aminocyclopropane‐1‐carboxylic acid (ACC) synthase 2 (ACS2) and 6 (ACS6). Moreover, ethylene signaling contributes to OG‐triggered immunity activation, and lack of CPK5, CPK6 and CPK11 affects the duration of OG‐ and flg22‐induced gene expression, indicating that these kinases are shared elements of both DAMP and MAMP signaling pathways.  相似文献   

5.
Larvae of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) that survive on genetically modified Bt cotton (Gossypium hirsutum L., Malvaceae) contribute to the risk of widespread resistance to Bt toxins. Current resistance management techniques include pupae busting, which involves deep tilling of the soil to kill overwintering pupae. Unfortunately, pupae busting runs counter to soil and water conserving techniques, such as minimum tillage. This problem could be relieved with biological control methods, whereby predators attack either larvae going to ground to pupate or moths emerging from the ground. We found that the wolf spider Tasmanicosa leuckartii (Thorell) (Araneae: Lycosidae), a common inhabitant of Australian cotton agroecosystems, is an effective predator of H. armigera, attacking and killing most larvae (66%) and emerging moths (77%) in simple laboratory arenas. Tasmanicosa leuckartii also reduced the number of emerging moths by 66% on average in more structurally complex glasshouse arenas. Males, females, and late‐instar juveniles of T. leuckartii were similarly effective. Tasmanicosa leuckartii also imposed non‐consumptive effects on H. armigera, as when a spider was present larvae in the laboratory areas spent less time on the cotton boll and more time on the soil and more mass was lost from the cotton boll. Increased loss of boll mass likely reflects changes in H. armigera foraging behavior induced by the presence of spiders (indirect non‐consumptive effects). Helicoverpa armigera spent more time as pupae when the spider was present in simple laboratory arenas, but not in more complex glasshouse enclosures. Overall, results indicate that T. leuckartii spiders can be effective predators of H. armigera late instars and moths but also suggest that, under some conditions, the presence of spiders could increase the damage to individual cotton bolls.  相似文献   

6.
Davidia involucrata Baill, also known as the dove‐tree, is a living fossil and an endangered species currently restricted to the mountains of southwestern and central China. It has a beautiful and innovative trait of high horticultural value: two white bracts covering the flower caputila. Here, we report on the chromosome‐scale genome of this species using single‐molecule real‐time long reads and chromosome conformation capture (Hi‐C) techniques. This species has a larger genome size of 1,169 Mb and contains relatively more genes (42,554) than the closely related species Camptotheca acuminata (397 Mb and 31,825 genes). Both species shared one recent whole genome duplication before their divergence. The expansion of the repetitive elements after their divergence contributed greatly to the increase in the genome size of the dove‐tree. Photosynthesis‐related genes were almost absent or showed reduced expression in the bracts of the dove‐tree, while defence‐ and chemical‐related genes increased greatly, highlighting the important roles of the bracts in protecting flowers and attracting pollinators. The effective population size of the dove‐tree continuously decreased during the climate changes of the Quaternary. Such climate sensitivity should be fully considered in conservation efforts for this relict endangered species in the context of continuous climate warming in the future.  相似文献   

7.
8.
Body weight is a complex trait in cattle associated with commonly used commercial breeding measurements related to growth. Although many quantitative trait loci (QTL) for body weight have been identified in cattle so far, searching for genetic determinants in different breeds or environments is promising. Therefore, we carried out a genome‐wide association study (GWAS) in two cattle populations from the Russian Federation (Siberian region) using the GGP HD150K array containing 139 376 single nucleotide polymorphism (SNP) markers. Association tests for 107 550 SNPs left after filtering revealed five statistically significant SNPs on BTA5, considering a false discovery rate of less than 0.05. The chromosomal region containing these five SNPs contains the CCND2 gene, which was previously associated with average daily weight gain and body mass index in US beef cattle populations and in humans respectively. Our study is the first GWAS for body weight in beef cattle populations from the Russian Federation. The results provided here suggest that, despite the existence of breed‐ and species‐specific QTL, the genetic architecture of body weight could be evolutionarily conserved in mammals.  相似文献   

9.
Soil amendment with Silicon (Si) can increase plant resistance against insect herbivores, but the underlying mechanisms remain unclear. The mechanical resistance hypothesis (MRH) states that Si accumulated in epidermal cells directly and passively protects against herbivores by creating a mechanical barrier. The physiological resistance hypothesis (PRH) states that Si enhances resistance by activating plant biochemical and physiological processes. We tested both hypotheses by manipulating Si fertilization of the Si non‐accumulator collard, Brassica oleracea L. cv. acephala (Brassicaceae). Then, we assessed functional and ultrastructural plant responses and the developmental and reproductive performance of the leaf‐chewing larvae of the diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae), and the sap‐sucking cabbage aphid, Brevicoryne brassicae L. (Hemiptera: Aphididae). There was a 20% increase in leaf Si content. Silicon deposition in epidermal cells was identified by confocal microscopy and directly coincided with lower performance of P. xylostella, but did not affect B. brassicae. On the other hand, we found no unequivocal evidence that Si‐mediated changes in primary and secondary metabolism improved plant resistance against the insects. Negative mechanical effects of Si on the insects may have masked beneficial effects of increased water, nitrogen, and mineral contents in Si‐treated collards. Silicon did not change leaf contents of hemicellulose, cellulose, and lignin. Although Si‐mediated increases in leaf glucosinolates (GLS) correlated with lower larval performance and higher oviposition preference of P. xylostella, both P. xylostella and B. brassicae are highly specialized in overcoming such secondary metabolites. Thus, mechanical resistance may have impaired P. xylostella, rather than the Si‐mediated increase in GLS. We suggest that the PRH may depend on the degree of insect feeding specialization, so that toxic Si‐mediated defenses may be more efficient against unadapted polyphagous herbivores. For them, a toxic barrier may be added to the mechanical resistance.  相似文献   

10.
11.
Reed (Phragmites communis) is a potential bioenergy plant. We report on its first Agrobacterium‐mediated transformation using mature seed‐derived calli. The Agrobacterium strains LBA4404, EHA105, and GV3101, each harboring the binary vector pIG121Hm, were used to optimize T‐DNA delivery into the reed genome. Bacterial strain, cocultivation period and acetosyringone concentration significantly influenced the T‐DNA transfer. About 48% transient expression and 3.5% stable transformation were achieved when calli were infected with strain EHA105 for 10 min under 800 mbar negative pressure and cocultivated for 3 days in 200 μm acetosyringone containing medium. Putative transformants were selected in 25 mg l?1 hygromycin B. PCR, and Southern blot analysis confirmed the presence of the transgenes and their stable integration. Independent transgenic lines contained one to three copies of the transgene. Transgene expression was validated by RT‐PCR and GUS staining of stems and leaves.  相似文献   

12.
Sustainable production of biofuels from lignocellulose feedstocks depends on cheap enzymes for degradation of such biomass. Plants offer a safe and cost‐effective production platform for biopharmaceuticals, vaccines and industrial enzymes boosting biomass conversion to biofuels. Production of intact and functional protein is a prerequisite for large‐scale protein production, and extensive host‐specific post‐translational modifications (PTMs) often affect the catalytic properties and stability of recombinant enzymes. Here we investigated the impact of plant PTMs on enzyme performance and stability of the major cellobiohydrolase TrCel7A from Trichoderma reesei, an industrially relevant enzyme. TrCel7A was produced in Nicotiana benthamiana using a vacuum‐based transient expression technology, and this recombinant enzyme (TrCel7Arec) was compared with the native fungal enzyme (TrCel7Anat) in terms of PTMs and catalytic activity on commercial and industrial substrates. We show that the N‐terminal glutamate of TrCel7Arec was correctly processed by N. benthamiana to a pyroglutamate, critical for protein structure, while the linker region of TrCel7Arec was vulnerable to proteolytic digestion during protein production due to the absence of O‐mannosylation in the plant host as compared with the native protein. In general, the purified full‐length TrCel7Arec had 25% lower catalytic activity than TrCel7Anat and impaired substrate‐binding properties, which can be attributed to larger N‐glycans and lack of O‐glycans in TrCel7Arec. All in all, our study reveals that the glycosylation machinery of N. benthamiana needs tailoring to optimize the production of efficient cellulases.  相似文献   

13.
14.
15.
Induction of plant defences, specifically in response to herbivore attack, can save costs that would otherwise be needed to maintain defences even in the absence of herbivores. However, plants may suffer considerable damage during the time required to mount these defences against an attacker. This could be resolved if plants could respond to early cues, such as egg deposition, that reliably indicate future herbivory. We tested this hypothesis in a field experiment and found that egg deposition by the butterfly Pieris brassicae on black mustard (Brassica nigra) induced a plant response that negatively affected feeding caterpillars. The effect cascaded up to the third and fourth trophic levels (larval parasitoids and hyperparasitoids) by affecting the parasitisation rate and parasitoid performance. Overall, the defences induced by egg deposition had a positive effect on plant seed production and may therefore play an important role in the evolution of plant resistance to herbivores.  相似文献   

16.
The perennial energy crop Miscanthus × giganteus is recognized for its extraordinary nitrogen‐use efficiency. While the remobilization of nitrogen (N) to the rhizome after the growth phase contributes to this efficiency, the plant‐associated microbiome might also contribute, as N‐fixing bacterial species had been isolated from this grass. Here, we studied established Miscanthus × giganteus plots in southern Germany that either received 80 kg N ha?1 a?1 or that were not N‐fertilized for 14 years. The bacterial communities of the bulk soil, rhizosphere, roots and rhizomes were analysed. Major differences were encountered between plant‐associated fractions. Nitrogen had little effect on soil communities. The roots and rhizomes showed less microbial diversity than soil fractions. In these compartments, Actinobacteria and N‐fixing symbiosis‐associated Proteobacteria depended on N. Intriguingly, N2‐fixing‐related bacterial families were enriched in the rhizomes in long‐term zero N plots, while denitrifier‐related families were depleted. These findings point to the rhizome as a potentially interesting plant organ for N fixation and demonstrate long‐term differences in the organ‐specific bacterial communities associated with different N supply, which are mainly shaped by the plant.  相似文献   

17.
18.
19.
20.
Integrative studies of plant growth require spatially and temporally resolved information from high‐throughput imaging systems. However, analysis and interpretation of conventional two‐dimensional images is complicated by the three‐dimensional nature of shoot architecture and by changes in leaf position over time, termed hyponasty. To solve this problem, Phytotyping4D uses a light‐field camera that simultaneously provides a focus image and a depth image, which contains distance information about the object surface. Our automated pipeline segments the focus images, integrates depth information to reconstruct the three‐dimensional architecture, and analyses time series to provide information about the relative expansion rate, the timing of leaf appearance, hyponastic movement, and shape for individual leaves and the whole rosette. Phytotyping4D was calibrated and validated using discs of known sizes, and plants tilted at various orientations. Information from this analysis was integrated into the pipeline to allow error assessment during routine operation. To illustrate the utility of Phytotyping4D, we compare diurnal changes in Arabidopsis thaliana wild‐type Col‐0 and the starchless pgm mutant. Compared to Col‐0, pgm showed very low relative expansion rate in the second half of the night, a transiently increased relative expansion rate at the onset of light period, and smaller hyponastic movement including delayed movement after dusk, both at the level of the rosette and individual leaves. Our study introduces light‐field camera systems as a tool to accurately measure morphological and growth‐related features in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号