首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
We report here the use of immunomagnetic (IM) electrochemiluminescence (ECL) for quantitative detection of Esherichia coli O157:H7 in water samples following enrichment in minimal lactose broth (MLB). IM beads prepared in-house with four commercial anti-O157 monoclonal antibodies were compared for efficiency of cell capture. IM-ECL responses for E. coli O157:H7 (strain SEA13B88) were similar for all four commercial anti-O157 LPS monoclonal antibodies. The ECL signal was linearly correlated with E. coli O157:H7 cell concentration, indicating a constant ECL response per cell. Twenty-two strains of E. coli O157:H7 or O157:NM gave comparable ECL signals using IM beads prepared in-house. To assess the potential for interference from background bacteria in MLB-enriched water samples, 10(4) cells of E. coli O157:H7 (strain SEA13B88) were added to enriched samples prior to analysis. There was considerable variability in recovery of E. coli O157:H7 cells; net ECL signals ranged from 1% to 100% of expected values (i.e., percent inhibition from 0% to 99%). Cultures of Klebsiella pneumoniae, Klebsiella oxytoca, and Enterobacter cloacae, subsequently isolated from MLB-enriched water samples via IM separation (IMS), were observed to interfere with the binding of E. coli O157:H7 cells to IM beads. Recoveries of 10(4) E. coli O157:H7 cells were 相似文献   

2.
A protocol for the quantitative detection of Escherichia coli O157 in raw and concentrated surface waters using immunomagnetic electrochemiluminescence (IM-ECL) was developed and optimized. Three antibody sandwich formats were tested: commercial anti-O157:H7 IM beads, IM beads made in-house with a polyclonal anti-O157:H7 immunoglobulin G (IgG), or IM beads made in-house with a monoclonal anti-O157:H7 IgG coupled with a polyclonal anti-O157:H7 IgG to which an electrochemiluminescent label (TAG) was attached. The monoclonal IM bead-polyclonal TAG format was chosen for optimization because it gave lower background levels and linear regression slopes of ca. 1.0, indicative of a constant ECL signal per cell. The dynamic range was ca. 10(1) to 10(5) cells ml(-1) in phosphate-buffered saline and in raw water samples. The monoclonal IM beads selectively captured E. coli O157 cells in the presence of ca. 10(8) cells of a non-O157 strain of E. coli ml(-1). Background ECL signals from concentrated (100-fold) water samples were substantially higher and more variable than raw water samples. The background signal was partially eliminated by the addition of polyvinylpolypyrrolidone. Successive cell capture incubations, termed sequential bead capture (SBC), were optimized for establishing baseline ECL values for individual water samples. The linear dynamic range with SBC was ca. 10(2) to 10(5) E. coli O157 cells ml of concentrated water(-1). To validate the protocol, 10-liter surface water samples were spiked with ca. 5,000 E. coli O157 (Odwalla) cells and concentrated by vortex filtration, and 1- or 3-ml aliquots were analyzed by IM-ECL. Differential ECL signals (SBC) from 1- and 3-ml samples were statistically significant and were generally consistent with standard curves for these cell concentrations. Enrichments were conducted with aliquots of spiked raw water and concentrated water using EC broth and minimal lactose broth (MLB). All tubes with concentrated water became turbid and gave a positive ECL response for E. coli O157 (>10,000 ECL units); MLB gave a somewhat higher detection rate with spiked raw water. The potential sensitivity of the IM-ECL assay is ca. 25 E. coli O157 cells ml of raw water(-1), 25 cells 100 ml of 100-fold concentrated water(-1), or 1 to 2 viable cells liter(-1) with concentration and enrichment. The IM-ECL assay appears suitable for routine analysis and screening of water samples.  相似文献   

3.
A protocol for the quantitative detection of Escherichia coli O157 in raw and concentrated surface waters using immunomagnetic electrochemiluminescence (IM-ECL) was developed and optimized. Three antibody sandwich formats were tested: commercial anti-O157:H7 IM beads, IM beads made in-house with a polyclonal anti-O157:H7 immunoglobulin G (IgG), or IM beads made in-house with a monoclonal anti-O157:H7 IgG coupled with a polyclonal anti-O157:H7 IgG to which an electrochemiluminescent label (TAG) was attached. The monoclonal IM bead-polyclonal TAG format was chosen for optimization because it gave lower background levels and linear regression slopes of ca. 1.0, indicative of a constant ECL signal per cell. The dynamic range was ca. 101 to 105 cells ml−1 in phosphate-buffered saline and in raw water samples. The monoclonal IM beads selectively captured E. coli O157 cells in the presence of ca. 108 cells of a non-O157 strain of E. coli ml−1. Background ECL signals from concentrated (100-fold) water samples were substantially higher and more variable than raw water samples. The background signal was partially eliminated by the addition of polyvinylpolypyrrolidone. Successive cell capture incubations, termed sequential bead capture (SBC), were optimized for establishing baseline ECL values for individual water samples. The linear dynamic range with SBC was ca. 102 to 105 E. coli O157 cells ml of concentrated water−1. To validate the protocol, 10-liter surface water samples were spiked with ca. 5,000 E. coli O157 (Odwalla) cells and concentrated by vortex filtration, and 1- or 3-ml aliquots were analyzed by IM-ECL. Differential ECL signals (SBC) from 1- and 3-ml samples were statistically significant and were generally consistent with standard curves for these cell concentrations. Enrichments were conducted with aliquots of spiked raw water and concentrated water using EC broth and minimal lactose broth (MLB). All tubes with concentrated water became turbid and gave a positive ECL response for E. coli O157 (>10,000 ECL units); MLB gave a somewhat higher detection rate with spiked raw water. The potential sensitivity of the IM-ECL assay is ca. 25 E. coli O157 cells ml of raw water−1, 25 cells 100 ml of 100-fold concentrated water−1, or 1 to 2 viable cells liter−1 with concentration and enrichment. The IM-ECL assay appears suitable for routine analysis and screening of water samples.  相似文献   

4.
An immunochromatographic-based assay (Quixtrade mark E. coli O157 Sprout Assay) and a polymerase chain reaction (PCR)-based assay (TaqMan E. coli O157:H7 Kit) were used to detect Escherichia coli O157:H7 strain 380-94 in spent irrigation water from alfalfa sprouts grown from artificially contaminated seeds. Ten, 25, 60, or 100 seeds contaminated by immersion for 15 min in a suspension of E. coli O157:H7 at concentrations of 10(6) or 10(8) cfu/ml were mixed with 20 g of non-inoculated seeds in plastic trays for sprouting. The seeds were sprayed with tap water for 15 s every hour and spent irrigation water was collected at intervals and tested. E. coli O157:H7 was detected in non-enriched water by both the TaqMan PCR (30 of 30 samples) and the immunoassay (9 of 24 samples) in water collected 30 h from the start of the sprouting process. However, enrichment of the spent irrigation water in brain heart infusion (BHI) broth at 37 degrees C for 20 h permitted detection of E. coli O157:H7 in water collected 8 h from the start of sprouting using both methods, even in trays containing as few as 10 inoculated seeds. The TaqMan PCR assay was more sensitive (more positive samples were observed earlier in the sprouting process) than the immunoassay; however, the immunoassay was easier to perform and was more rapid. At 72 h after the start of the sprouting process, the sprouts were heated at 100 degrees C for 30 s to determine the effectiveness of blanching for inactivation of E. coli O157:H7. All of the 32 samples tested with the TaqMan assay and 16 of 32 samples tested with the Quixtrade mark assay gave positive results for E. coli O157:H7 after enrichment of the blanched sprouts at 37 degrees C for 24 h. In addition, the organism was detected on Rainbow Agar O157 in 9 of 32 samples after 24 h of enrichment of the blanched sprouts. In conclusion, E. coli O157:H7 was detected in spent irrigation water collected from sprouts grown from artificially contaminated seeds by both the TaqMan and Quixtrade mark assays. The data also revealed that blanching may not be effective to completely inactivate all the E. coli O157:H7 that may be present in sprouts.  相似文献   

5.
Escherichia coli O157 strains starved in sterile deionized water (SDW) and filter-sterilized natural river water (SRW) were investigated with specific reference to their culturability in selective and non-selective media. Growth of the strains starved in both SDW and SRW were markedly suppressed with time in selective liquid media such as modified trypticase soy broth supplemented with novobiocin (mTSB+n) and modified E. coli broth supplemented with novobiocin (mEC+n). This suppression was more pronounced when incubated at 42 C than at 37 C, especially with mEC+n. By contrast, such growth suppression was seldom observed when cultured at 37 C in non-selective liquid media such as trypticase soy broth (TSB) and buffered peptone water. In mEC+n at 42 C, the non-starved cells from overnight cultures with an initial density of less than 10(3) colony-forming units (CFU)/ml grew to the density of over 10(7) CFU/ml after 24 hr incubation, whereas those starved for 6 weeks in SRW were only to maintain their initial density or died off after 24 hr incubation under the same culturing conditions. These results indicated that the isolation of starved cells of E. coli O157 from water samples would be most difficult with selective enrichment or direct plating on the selective plate media. It is thus highly recommended that a "resuscitation" of the cells with non-selective enrichment should be performed as a routine practice for maximum recovery of E. coli O157 from water systems.  相似文献   

6.
A sensitive, specific procedure was developed for detecting Escherichia coli O157:H7 in food in less than 20 h. The procedure involves enrichment of 25 g of food in 225 ml of a selective enrichment medium for 16 to 18 h at 37 degrees C with agitation (150 rpm). The enrichment culture is applied to a sandwich enzyme-linked immunosorbent assay (ELISA) with a polyclonal antibody specific for E. coli O157 antigen as the capture antibody and a monoclonal antibody specific for enterohemorrhagic E. coli of serotypes O157:H7 and O26:H11 as the detection antibody. The ELISA can be completed within 3 h. The sensitivity of the procedure, determined by using E. coli O157:H7-inoculated ground beef and dairy products, including different varieties of cheese, was 0.2 to 0.9 cell per g of food. A survey of retail fresh ground beef and farm raw milk samples with this procedure revealed that 3 (2.8%) of 107 ground beef samples and 11 (10%) of 115 raw milk samples were positive for E. coli O157:H7. Most-probable-number determinations revealed E. coli O157:H7 populations of 0.4 to 1.5 cells per g in the three ground beef samples. In addition to being highly specific, sensitive, and rapid, this procedure is easy to perform and is amenable to use by laboratories performing routine microbiological testing.  相似文献   

7.
A sensitive, specific procedure was developed for detecting Escherichia coli O157:H7 in food in less than 20 h. The procedure involves enrichment of 25 g of food in 225 ml of a selective enrichment medium for 16 to 18 h at 37 degrees C with agitation (150 rpm). The enrichment culture is applied to a sandwich enzyme-linked immunosorbent assay (ELISA) with a polyclonal antibody specific for E. coli O157 antigen as the capture antibody and a monoclonal antibody specific for enterohemorrhagic E. coli of serotypes O157:H7 and O26:H11 as the detection antibody. The ELISA can be completed within 3 h. The sensitivity of the procedure, determined by using E. coli O157:H7-inoculated ground beef and dairy products, including different varieties of cheese, was 0.2 to 0.9 cell per g of food. A survey of retail fresh ground beef and farm raw milk samples with this procedure revealed that 3 (2.8%) of 107 ground beef samples and 11 (10%) of 115 raw milk samples were positive for E. coli O157:H7. Most-probable-number determinations revealed E. coli O157:H7 populations of 0.4 to 1.5 cells per g in the three ground beef samples. In addition to being highly specific, sensitive, and rapid, this procedure is easy to perform and is amenable to use by laboratories performing routine microbiological testing.  相似文献   

8.
AIMS: To evaluate the suitability of a multiplex PCR-based assay for sensitive and rapid detection of Escherichia coli O157:H7 in soil and water. METHODS AND RESULTS: Soil and water samples were spiked with E. coli O157:H7 and subjected to two stages of enrichment prior to multiplex PCR. Detection sensitivities were as high as 1 cfu ml(-1) drinking water and 2 cfu g(-1) soil. Starvation of E. coli O157:H7 for 35 d prior to addition to soil did not affect the ability of the assay to detect initial cell numbers as low as 10 cfu g(-1) soil. Use of an 8-h primary enrichment enabled detection of as few as 6 cfu g(-1) soil, and 10(4) cfu g(-1) soil with a 6-h primary enrichment. When soil was inoculated with 10(5) cfu g(-1), the PCR assay indicated persistence of E. coli O157:H7 during a 35 d incubation. However, when soil was inoculated with lower numbers of pathogen, PCR amplification signals indicated survival to be dependent on cell concentration. CONCLUSIONS: A multiplex PCR-based assay, in combination with an enrichment strategy enabled sensitive and rapid detection of E. coli O157:H7 in soil and water. SIGNIFICANCE AND IMPACT OF THE STUDY: The ability to sensitively detect E.coli O157:H7 in environmental material within one working day represents a considerable advancement over alternative more time-consuming methods for detection of this pathogen.  相似文献   

9.
We found effective enrichment procedures for detecting Escherichia coli O26 in foods using methods that are used for E. coli O157. Ground beef or radish sprouts inoculated with approximately 6 colony-forming units of E. coli O26 were homogenized in 225 ml of various broths. After static incubation at 37 degrees C or 42 degrees C for 6 h or 18 h, we isolated the inoculated bacterium by plating onto Rainbow Agar O157 with novobiocin. In combination with the immunomagnetic separation method, E. coli O26 was isolated from all samples by using enrichment in tryptone soy broth at 37 degrees C for 6 h and in modified E. coli broth with novobiocin (mEC + n) at 42 degrees C for 18 h in ground beef and radish sprouts, respectively. Enrichment in mEC + n at 42 degrees C for 18 h was effective for isolating both E. coli O26 and E. coli O157 from both ground beef and radish sprouts.  相似文献   

10.
AIMS: To apply the real-time Polymerase chain reaction (PCR) method to detect and quantify Escherichia coli O157:H7 in soil, manure, faeces and dairy waste washwater. METHODS AND RESULTS: Soil samples were spiked with E. coli O157:H7 and subjected to a single enrichment step prior to multiplex PCR. Other environmental samples suspected of harbouring E.coli O157:H7 were also analysed. The sensitivity of the primers was confirmed with DNA from E.coli O157:H7 strain 3081 spiked into soil by multiplex PCR assay. A linear relationship was measured between the fluorescence threshold cycle (C T ) value and colony counts (CFU ml(-1)) in spiked soil and other environmental samples. The detection limit for E.coli O157:H7 in the real-time PCR assay was 3.5 x 10(3) CFU ml(-1) in pure culture and 2.6 x 10(4) CFU g(-1) in the environmental samples. Use of a 16-h enrichment step for spiked samples enabled detection of <10 CFU g(-1) soil. E. coli colony counts as determined by the real-time PCR assay, were in the range of 2.0 x 10(2) to 6.0 x 10(5) CFU PCR (-1) in manure, faeces and waste washwater. CONCLUSIONS: The real-time PCR-based assay enabled sensitive and rapid quantification of E. coli O157:H7 in soil and other environmental samples. SIGNIFICANCE AND IMPACT OF THE STUDY: The ability to quantitatively determine cell counts of E.coli O157:H7 in large numbers of environmental samples, represents considerable advancement in the area of pathogen quantification for risk assessment and transport studies.  相似文献   

11.
Surface water and groundwater are continuously used as sources of drinking water in many metropolitan areas of the United States. The quality of water from these sources may be reduced due to increases in contaminants such as Escherichia coli from urban and agricultural runoffs. In this study, a multiplex fluorogenic PCR assay was used to quantify E. coli O157:H7 in soil, manure, cow and calf feces, and dairy wastewater in an artificial wetland. Primers and probes were designed to amplify and quantify the Shiga-like toxin 1 (stx1) and 2 (stx2) genes and the intimin (eae) gene of E. coli O157:H7 in a single reaction. Primer specificity was confirmed with DNA from 33 E. coli O157:H7 and related strains with and without the three genes. A direct correlation was determined between the fluorescence threshold cycle (C(T)) and the starting quantity of E. coli O157:H7 DNA. A similar correlation was observed between the C(T) and number of CFU per milliliter used in the PCR assay. A detection limit of 7.9 x 10(-5) pg of E. coli O157:H7 DNA ml(-1) equivalent to approximately 6.4 x 10(3) CFU of E. coli O157:H7 ml(-1) based on plate counts was determined. Quantification of E. coli O157:H7 in soil, manure, feces, and wastewater was possible when cell numbers were >/=3.5 x 10(4) CFU g(-1). E. coli O157:H7 levels detected in wetland samples decreased by about 2 logs between wetland influents and effluents. The detection limit of the assay in soil was improved to less than 10 CFU g(-1) with a 16-h enrichment. These results indicate that the developed PCR assay is suitable for quantitative determination of E. coli O157:H7 in environmental samples and represents a considerable advancement in pathogen quantification in different ecosystems.  相似文献   

12.
In this study, enrichment procedures and two recovery methods, a membrane surface adhesion technique and an immunomagnetic separation (IMS), were compared for use in conjunction with a multiplex polymerase chain reaction (PCR) method with a view to describing a fast (24 h) and economical test for detection of Escherichia coli O157:H7 in meat samples. The study showed no significant difference between three different enrichment media (BHI, E. coli (E.C.) broth+novobiocin, modified tryptone soya broth (mTSB)+novobiocin) or two incubation temperatures (37 or 41.5 degrees C) for growth of E. coli O157:H7 in minced beef. Minced beef samples inoculated with E. coli O157:H7 at 40 cfu g(-1) were incubated at 37 degrees C for 16 h in E.C. broth+novobiocin reaching numbers of (log(10)7.82-8.70). E. coli O157:H7 were recovered by attachment to polycarbonate membranes immersed in the enriched cultures for 15 min or by immunomagnetic separation. Subsequent treatment of recovered membranes or IMS beads with lysis buffer and phenol/chloroform/isoamyl alcohol was used to extract the DNA from the extracted E. coli O157:H7 cells. The results show when E. coli O157:H7 was present at high levels in the enriched meat sample (log(10)9.6-7.5 cfu ml(-1); >16-h enrichment), the membrane and IMS techniques recovered similar levels of the pathogen and the microorganism was detectable by PCR using both methods. At lower levels of E. coli O157:H7 (log(10)6.4), only the IMS method could recover the pathogen but at levels below this neither method could recover sufficient numbers of the pathogens to allow detection. The conclusion of the study is that with sufficient enrichment time (16 h) the membrane surface adhesion membrane extraction method used in combination with multiplex PCR has the potential for a rapid and economical detection method.  相似文献   

13.
We studied injury of Escherichia coli O157:H7 cells in 11 food items during freeze storage and methods of isolating freeze-injured E. coli O157:H7 cells from foods. Food samples inoculated with E. coli O157:H7 were stored for 16 weeks at -20 degrees C in a freezer. Noninjured and injured cells were counted by using tryptic soy agar and sorbitol MacConkey agar supplemented with cefixime and potassium tellurite. Large populations of E. coli O157:H7 cells were injured in salted cabbage, grated radish, seaweed, and tomato samples. In an experiment to detect E. coli O157:H7 in food samples artificially contaminated with freeze-injured E. coli O157:H7 cells, the organism was recovered most efficiently after the samples were incubated in modified E. coli broth without bile salts at 25 degrees C for 2 h and then selectively enriched at 42 degrees C for 18 h by adding bile salts and novobiocin. Our enrichment method was further evaluated by isolating E. coli O157:H7 from frozen foods inoculated with the organism prior to freezing. Two hours of resuscitation at 25 degrees C in nonselective broth improved recovery of E. coli O157:H7 from frozen grated radishes and strawberries, demonstrating that the resuscitation step is very effective for isolating E. coli O157:H7 from frozen foods contaminated with injured E. coli O157:H7 cells.  相似文献   

14.
AIMS: To develop improved methods for the detection of Escherichia coli O157 from water and sediments. METHODS AND RESULTS: The effects of different broth enrichment media (unsupplemented tryptic soya broth, tryptic soya broth with antibiotics, and gram-negative broth), incubation durations (5 and 24 hrs), incubation temperatures (37 and 44.5 degrees C) and the use of immunomagnetic separation (IMS) on the sensitivity of E. coli O157 detection were evaluated on artificially and naturally-contaminated water and sediment samples. The sensitivity of recovery of E. coli O157 from samples was dependent upon the media composition, temperature duration of incubation and the use of IMS. CONCLUSION: Use of high temperature (44.5 degrees C) incubation for 24 hrs in unsupplemented tryptic soya broth and the use of IMS improved the sensitivity of E. coli O157 culture from water and sediment samples. SIGNIFICANCE AND IMPACT OF THE STUDY: The methods described can be used to increase the sensitivity of E. coli O157 detection from water and sediments.  相似文献   

15.
T Zhao  M P Doyle    R E Besser 《Applied microbiology》1993,59(8):2526-2530
A strain of enterohemorrhagic Escherichia coli serotype O157:H7 isolated from a patient in an apple cider-related outbreak was used to study the fate of E. coli O157:H7 in six different lots of unpasteurized apple cider. In addition, the efficacy of two preservatives, 0.1% sodium benzoate and 0.1% potassium sorbate, used separately and in combination was evaluated for antimicrobial effects on the bacterium. Studies were done at 8 or 25 degrees C with ciders having pH values of 3.6 to 4.0. The results revealed that E. coli O157:H7 populations increased slightly (ca. 1 log10 CFU/ml) and then remained stable for approximately 12 days in lots inoculated with an initial population of 10(5) E. coli O157:H7 organisms per ml and held at 8 degrees C. The bacterium survived from 10 to 31 days or 2 to 3 days at 8 or 25 degrees C, respectively, depending on the lot. Potassium sorbate had minimal effect on E. coli O157:H7 populations, with survivors detected for 15 to 20 days or 1 to 3 days at 8 or 25 degrees C, respectively. In contrast, survivors in cider containing sodium benzoate were detected for only 2 to 10 days or less than 1 to 2 days at 8 or 25 degrees C, respectively. The highest rates of inactivation occurred in the presence of a combination of 0.1% sodium benzoate and 0.1% potassium sorbate. The use of 0.1% sodium benzoate, an approved preservative used by some cider processors, will substantially increase the safety of apple cider in terms of E. coli O157:H7, in addition to suppressing the growth of yeasts and molds.  相似文献   

16.
AIMS: To compare a range of enrichment broths and enrichment temperatures for the isolation of Escherichia coli O157 by immunomagnetic separation (IMS) from sandy, loam and clay soils. METHODS AND RESULTS: Soils were spiked with cocktails of four atoxigenic strains of E. coli O157 and four strains of commensal E. coli. The organisms were stressed by subjecting soils to cycles of freeze/thawing, followed by drying at 20 degrees C for up to 4 days. Nine enrichment broths were trialled based on buffered peptone water, tryptone soya broths and EC broths supplemented with a range of selective additions. Enrichments were incubated for 6 h and assessed by target recovery after IMS on cefixime tellurite sorbitol MacConkey agar (CTSMAC) incubated at 37 degrees C for 24 h. A comparison of enrichment temperatures (37 and 42 degrees C) was also performed. Buffered peptone water (with or without vancomycin) and tryptone soya broth (with or without novobiocin) gave significant increases in recovery of E. coli O157 compared to others tested. In addition, broths incubated at 42 degrees C were superior to those at 37 degrees C for the recovery of E. coli O157. SIGNIFICANCE AND IMPACT OF THE STUDY: This study showed that sub-lethally damaged E. coli O157 surviving in soil can be sensitive to antimicrobial additions. The choice and concentration of these additions is vitally important to optimize target recovery. Some IMS protocols, established for the isolation of E. coli O157, may be unsuitable for the examination of soil samples.  相似文献   

17.
An antibody-direct epifluorescent filter technique (Ab-DEFT) detected 100% of the raw ground beef samples inoculated with Escherichia coli O157 : H7 cells (0·15 cells g−1) and incubated in a prewarmed, modified buffered peptone water (mBPW) non-selective enrichment broth for 5 h at 42°C in an orbital shaking water bath (200 rev min−1). Over 50% of the microscopic fields viewed were positive (1–10 fluorescent cells field−1) in the Ab-DEFT. All positive screening results were confirmed within 24 h by subjecting 1 ml of the mBPW to the Dynabeads® anti- E. coli O157 immunomagnetic separation procedure, followed by plating on MacConkey sorbitol agar containing 5-bromo-4-chloro-3-indolyl-β- D -glucuronide. At this cell concentration, 41·7% of the inoculated samples were detected by the conventional method involving a 24-h selective enrichment. Exposure to viable cells before filtration was minimized by using a 0·58% formaldehyde concentration for 5 min at 50°C (killed >4·00 logs of E. coli O157 : H7 cells) without affecting cell fluorescence.  相似文献   

18.
Universal Preenrichment (UP) medium was used successfully for the simultaneous recovery of two strains each of Escherichia coli O157:H7 and Yersinia enterocolitica in the presence of Listeria monocytogenes and Salmonella typhimurium. E. coli O157:H7 and Y. enterocolitica populations reached ca. 108 CFU/ml in UP medium in 18 h from an initial level ofca. 102 CFU/ml. Addition of OxyraseTM enhanced the growth of both E. coli O157:H7 strains and one strain of Y. enterocolitica. These three strains were able to recover from heat injury by 6 h when 24-h cultures were tested, but not when 18-h cultures were used. Injured and noninjured E. coli O157:H7 could be recovered from artificially inoculated food samples (shredded cheddar cheese, turkey ham, hot dogs, mayonnaise, and ground beef) in UP medium supplemented with OxyraseTM (UPO) by 18 h using immunoblotting. Y. enterocolitica could be recovered from turkey ham, hog dogs, and mayonnaise by direct plating on CIN agar from UPO medium. However, recovery of Y. enterocolitica from shredded cheddar cheese and ground beef required subsequent selective enrichment in sorbitol bile broth and isolation on Cefsulodin Irgasan Novobiocin agar (CIN). UPO medium can be used for simultaneous detection of E. coli O157:H7 and Y. enterocolitica from foods. However, subsequent selective enrichment and isolation on selective plating media are required for isolation of Y. enterocolitca from raw foods containing high population levels of background microflora.  相似文献   

19.
Comparisons of enrichment methods (with or without antibiotics and with or without a preenrichment step) using gram-negative (GN) broth or tryptic soy broth (TSB) were conducted with feeds inoculated with Escherichia coli O157:H7. TSB was more sensitive than GN broth, and TSB with a preenrichment step followed by TSB with antibiotics was more sensitive than plain TSB enrichment, in detecting E. coli O157 in inoculated feeds. Feed samples were collected from feed bunks from 54 feedlots to determine the prevalence of E. coli O157 in cattle feeds. TSB preenrichment followed by TSB with antibiotics and the standard GN broth enrichment were used for each feed sample. All samples underwent immunomagnetic separation and were plated onto sorbitol MacConkey agar with cefixime and potassium tellurite. Identification of E. coli O157 was based on indole production, positive latex agglutination for O157 antigen, API 20E test strip results, PCR for the eaeA gene, and the presence of at least one Shiga toxin. E. coli O157 was detected in 52 of 504 feed samples (10.3%) by using GN broth enrichment and in 46 of 504 feed samples (9.1%) by using TSB followed by TSB supplemented with cefixime and vancomycin. E. coli O157 was detected in 75 of 504 feed bunk samples (14.9%) by one or both methods. There was no correlation between E. coli O157 prevalence and generic coliform counts in feeds. The prevalence of E. coli O157 in cattle feed warrants further studies to increase our knowledge of the on-farm ecology of E. coli O157 in order to develop strategies to prevent food-borne disease in humans.  相似文献   

20.
In a longitudinal study in a Finnish cattle finishing unit we investigated excretion and sources of Escherichia coli O157 in bulls from postweaning until slaughter. Three groups of 31 to 42 calves were sampled in a calf transporter before they entered the farm and four to seven times at approximately monthly intervals at the farm. All calves sampled in the livestock transporter were negative for E. coli O157 on arrival, whereas positive animals were detected 1 day later. During the fattening period the E. coli O157 infection rate varied between 0 and 38.5%. The animals were also found to be shedding during the cold months. E. coli O157 was isolated from samples taken from water cups, floors, and feed passages. E. coli O157 was detected in 9.7 to 38.9% of the fecal samples taken at slaughter, while only two rumen samples and one carcass surface sample were found to be positive. E. coli O157 was isolated from barn surface samples more often when the enrichment time was 6 h than when the enrichment time was 24 h (P < 0.0001). Fecal samples taken at the abattoir had lower counts (< or = 0.4 MPN/g) than fecal samples at the farm (P < 0.05). E. coli O157 was isolated more often from 10-g fecal samples than from 1-g fecal samples (P < 0.0001). Most farm isolates belonged to one pulsed-field gel electrophoresis (PFGE) genotype (79.6%), and the rest belonged to closely related PFGE genotypes. In conclusion, this study indicated that the finishing unit rather than introduction of new cattle was the source of E. coli O157 at the farm and that E. coli O157 seemed to persist well on barn surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号