共查询到20条相似文献,搜索用时 0 毫秒
1.
Stereospecifically (3)H-labeled substrates are useful tools in studying the mechanism of hydrogen abstractions involved in the oxygenation of polyunsaturated fatty acids. Here, we describe modified methods for the synthesis of arachidonic acids labeled with a single chiral tritium on the methylene groups at carbons 10 or 13. The appropriate starting material is a ketooctadecanoic acid which is prepared from an unsaturated C18 fatty acid precursor or by total synthesis. The (3)H label is introduced by NaB(3)H(4) reduction and the resulting tritiated hydroxy fatty acid then is tosylated, separated into the enantiomers by chiral phase HPLC, and subsequently transformed into stearic acids. A variety of stereospecifically labeled unsaturated fatty acids are obtained using literature methods of microbial transformation with the fungus Saprolegnia parasitica. Two applications are described: (i) In incubations of [10S-(3)H]- and [10R-(3)H]arachidonic acids in human psoriatic scales we show that a 12R-lipoxygenase accounts not only for synthesis of the major product 12R-HETE, but it contributes also, through subsequent isomerization, to the minor amounts of 12S-HETE. (ii) The [10R-(3)H]- and [10S-(3)H]arachidonic acids were also used to demonstrate that prostaglandin ring formation by cyclooxygenases does not involve carbocation formation at C-10 of arachidonic acid as was hypothesized recently. 相似文献
2.
A novel N-4-butylamine acridone (BAA), which is an acridone derivative was synthesized and characterized by IR, MS and (1)H NMR. The fluorescent characteristics of BAA was investigated in detail and used as the fluorescent probe for detection of calf thymus DNA (ctDNA). It was found that DNA was able to quench the fluorescence of BAA at 426 nm with the excitation at 254 nm. Under optimal conditions, the corresponding linear response range was from 1.0 to 20.0mg/L and the limit of detections (LOD) was 0.020 mg/L (defined as S/N=3). Moreover, the interaction between BAA and ctDNA was investigated by fluorescence, absorption and viscosity measurements. The results suggested that the interaction between BAA and ctDNA is groove binding in nature. 相似文献
3.
L P Wackett J F Honek T P Begley V Wallace W H Orme-Johnson C T Walsh 《Biochemistry》1987,26(19):6012-6018
Methyl-S-coenzyme M reductase catalyzes the ultimate methane-yielding reaction in methanogenic bacteria, the reductive cleavage of the terminal carbon-sulfur bond of 2-(methylthio)ethanesulfonic acid. This protein has previously been shown to contain 2 equiv of a tightly bound nickel corphinoid cofactor, denoted cofactor F430, that may play a role in catalysis. Prior to this study, only one substrate analogue, ethyl-S-coenzyme M, had been demonstrated to be processed to a product by anaerobic cell extracts from Methanobacterium thermoautotrophicum strain delta H. In this investigation, we have synthesized three additional substrate analogues that serve as substrates as well as five previously unknown inhibitors. Steady-state kinetic techniques were developed in order to assess relative rates of processing for these substrates and inhibitors by use of anaerobic cell extracts from M. thermoautotrophicum. With this assay system, a KM of 0.1 mM and a kcat of 17 min-1 were determined for methyl-S-coenzyme M as substrate. Methyl-seleno-coenzyme M was converted to methane with a kcat threefold higher than that of methyl-S-coenzyme M, but kcat/KM was unchanged. The carbon-oxygen bond of 2-methoxyethanesulfonic acid was not cleaved to yield methane, but this analogue acted as an inhibitor with a K1 of 8.3 mM. Methyl reductase catalyzed reductive cleavage of difluoromethyl-S-coenzyme M to yield difluoromethane as the sole product, but trifluoromethyl-S-coenzyme M and trifluoromethyl-seleno-coenzyme M were inhibitors and not substrates.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
4.
Class III histone deacetylases (Sir2 or sirtuins) catalyze the NAD+-dependent conversion of acetyl-lysine residues to nicotinamide, 2'-O-acetyl-ADP-ribose (OAADPr), and deacetylated lysine. Class I and II HDACs utilize a different deacetylation mechanism, utilizing an active site zinc to direct hydrolysis of acetyl-lysine residues to lysine and acetate. Here, using ten acetyl-lysine analog peptides, we have probed the substrate binding pockets of sirtuins and investigated the catalytic differences among sirtuins and class I and II deacetylases. For the sirtuin Hst2, acetyl-lysine analog peptide binding correlated with the hydrophobic substituent parameter pi with a slope of -0.35 from a plot of log Kd versus pi. Interestingly, propionyl- and butyryl-lysine peptides were found to bind tighter to Hst2 compared with acetyl-lysine peptide and showed measurable rates of catalysis with Hst2, Sirt1, Sirt2, and Sirt3, suggesting propionyl- and butyryl-lysine proteins may be sirtuin substrates in vivo. Unique among the acetyl-lysine analog peptides examined, homocitrulline peptide produced ADP-ribose instead of the corresponding OAADPr analog. The electron-withdrawing nature of each acetyl analog had a profound impact on the deacylation rate between deacetylase classes. The rate of catalysis with the acetyl-lysine analog peptides varied over five orders of magnitude with the class III deacetylase Hst2, revealing a linear free energy relationship with a slope of -1.57 when plotted versus the Taft constant, sigma*. HDAC8, a class I deacetylase, displayed the opposite trend with a slope of +0.79. These results are applicable toward the development of selective substrates and other mechanistic probes of protein deacetylases. 相似文献
5.
《Journal of enzyme inhibition and medicinal chemistry》2013,28(3):436-439
Tetrahydrocannabinol and other mixed cannabinoid (CB) receptors CB1/CB2 receptor agonists are well established to elicit antinociceptive effects and psychomimetic actions, however, their potential for abuse have dampened enthusiasm for their therapeutic development. In an effort to refine a semi-rigid structural framework for CB2 receptors binding, we designed novel compounds based on aromatic moiety and flexible linker with various amides mimicking the outlook of the endogenous anandamide which could provide as CB2 receptor ligand. In this direction, we developed and synthesized new aryl or arylidene hexanoic acid amides and aryl alkanoic acid diamide carrying different head groups. These new compounds were tested for their affinities for human recombinant CB receptors CB1 and CB2 and fatty acid amide hydrolase. Although, the preliminary screening of these compounds demonstrated weak binding activity towards CB receptor subtypes at 10 µmole, yet this template still could serve up as probes for further optimization and development of affinity ligand for CB receptors. 相似文献
6.
Rahier A 《Biochemistry》2001,40(1):256-267
Deuterium-labeled 5alpha-cholest-7-en-3beta-ol (1) bearing one or two deuteriums at the C-5alpha and (or) C-6alpha positions was synthesized in high isotopic and chiral purity. These compounds were used as substrates with the microsomal wild-type Zea mays and recombinant Arabidopsis thaliana Delta(7)-sterol-C5(6)-desaturases (5-DES) to probe directly the stereochemistry and the mechanism of the enzymatic reaction. Clearly, in the conversion of 1 by both 5-DESs, the 6alpha-hydrogen is removed. [6alpha-(2)H]-5alpha-Cholest-7-en-3beta-ol shows an intermolecular deuterium kinetic isotope effect (DKIE) on V and V/K, (D6)V = 2.6+/-0.3, (D6)V/K = 2.4+/-0.1; and (D6)V = 2.3 +/-0.3, (D6)V/K = 2.3+/-0.2 for the Zea mays and A. thaliana wild-type 5-DES, respectively. In contrast, negligible or minor isotope effects, (D5)V = 0.99+/-0.04, (D5)V/K = 0.91+/-0.08; and (D5)V = 0.93 +/-0.06, (D5)V/K = 0.96+/-0.04, respectively, were observed with [5alpha-(2)H]-cholest-7-en-3beta-ol. The observed pattern of isotope effects strongly suggests that the plant 5-DES initiates oxidation by cleavage of the chemically activated C6alpha-H bond, a step which appears to be partially rate-limiting in the desaturation process. Cleavage of the C5-H bond has a negligible isotope effect, indicating that the desaturation involves asynchronous scission of the two C-H bonds at C5 and C6. We showed previously [Taton, M., et al. (2000) Biochemistry 39, 701] that threonine 114 was not essential to maintaining desaturase activity, although V/K values for mutant T114I and T114S were respectively 10-fold lower and 4-fold higher than that of the native 5-DES. In this study, we combined variation in enzyme structure and DKIE studies and showed that (D6)V and (D6)V/K increased respectively to 3.8+/-0.3 and 3.8+/-0.4 in mutant T114I and decreased respectively to 1.6+/-0.4 and 1.7+/- 0.1 in mutant T114S. The data suggest that the conserved hydroxyl function at position 114 in the ERG3 family makes the abstraction of the 6alpha-hydrogen atom substantially less rate-limiting during the 5-DES reaction. Based on the data, a tentative mechanism for the desaturation of cholest-7-en-3beta-ol is proposed. 相似文献
7.
Nathaniel I. Martin Joshua J. Woodward Michael B. Winter Michael A. Marletta 《Bioorganic & medicinal chemistry letters》2009,19(6):1758-1762
4,4-Difluoro-l-arginine and 4,4-difluoro-NG-hydroxy-l-arginine were synthesized and shown to be substrates for the inducible isoform of nitric oxide synthase (iNOS). Binding of both fluorinated analogues to the NOS active site was also investigated using a spectral binding assay employing a heme domain construct of the inducible NOS isoform (iNOSheme). 4,4-Difluoro-NG-hydroxy-arginine was found to bind at the NOS active site in a unique manner consistent with a model involving ligation of the FeIII heme center by the oxygen atom of the NG-hydroxy moiety. 相似文献
8.
Three series of N6-substituted adenosine derivatives were synthesized, having in common an unbranched alkyl chain with lengths varying from 2 to 12 methylene units, but differing in their omega-alkyl substituents: N6-n-alkyladenosines (I), N6-omega-amino-alkyladenosines (II) and alpha omega,di-(adenosin-N6-yl)alkanes (III). The compounds of the latter series combine two functional groups in one molecule. A1-receptor affinity of these compounds was measured as inhibition of [3H]PIA binding to calf brain membranes. With relatively short chain lengths, compounds in series I are the most potent. In this series, optimum activity is reached with N6-n-pentyladenosine (Ki = 0.50 nM). With short chain lengths, compounds in series II and III are 6-20-fold less potent than their congeners in series I. The potency order however is reversed with higher chain lengths. While affinity in series II and III increases strongly, reaching an optimum with the nonyl derivatives, affinity in series I decreases sharply with alkyl chains larger than 8 methylene units. Highest affinity is found with 9-amino-nonyladenosine (Ki = 0.32 nM). In general, the omega-aminoalkyl derivatives are somewhat more potent than the corresponding di-adenosinyl derivatives. Implications for the possible topography of the N6 region of the A1-receptor and the area further removed from N6 are discussed. 相似文献
9.
6-Thiocyanatoflavins have been found to be susceptible to nucleophilic displacement reactions with sulfite and thiols, yielding respectively the 6-S-SO3--flavin and 6-mercaptoflavin, with rate constants at pH 7.0, 20 degrees C, of 55 M-1 min-1 for sulfite and 1000 M-1 min-1 for dithiothreitol. The 6-SCN-flavin binds tightly to riboflavin-binding protein as the riboflavin derivative, to apoflavodoxin, apo-lactate oxidase, and apo-Old Yellow Enzyme as the FMN derivative, and to apo-D-amino acid oxidase as the FAD derivative. The riboflavin-binding protein derivative is inaccessible to dithiothreitol attack, and the lactate oxidase and D-amino acid oxidase derivatives show only limited accessibility. However, the flavodoxin and Old Yellow Enzyme derivatives react readily with dithiothreitol, indicating that the flavin 6-position is exposed to solvent in these proteins. The lactate oxidase and D-amino acid oxidase derivatives convert slowly but spontaneously to the 6-mercaptoflavin enzyme forms in the absence of any added thiol, indicating the presence of a thiol residue in the flavin binding site of these proteins. The reaction rates have been investigated of 6-mercaptoflavins with iodoacetamide, N-ethylmaleimide, methyl methanethiosulfonate, H2O2, and m-chloroperbenzoate, in both the free and protein-bound state. The results confirm the conclusions drawn from the studies with 6-SCN-flavins described above and from 6-N3-flavins [Massey, V., Ghisla, S., & Yagi, K. (1986) Biochemistry (preceding paper in this issue)]. The spectral properties of the protein-bound 6-mercaptoflavin vary widely among the five proteins studied and show stabilization of the neutral flavin with flavodoxin and riboflavin-binding protein and of the anionic species by Old Yellow Enzyme, lactate oxidase, and D-amino acid oxidase. In the case of the latter two enzymes, the stabilization appears to be due to interaction of the negatively charged flavin with a positively charged protein residue located near the flavin pyrimidine ring. This positively charged residue appears to be responsible also for the strong stabilization of the two-electron oxidation state of the mercaptoflavin as the 6-S-oxide. With the other flavoproteins studied this oxidation level is stabilized as the 6-sulfenic acid or 6-sulfenate. 相似文献
10.
World Journal of Microbiology and Biotechnology - 相似文献
11.
Aminoglycoside antibiotics act by binding to 16S rRNA. Resistance to these antibiotics occurs via drug modifications by enzymes such as aminoglycoside 6'-N-acetyltransferases (AAC(6')s). We report here the regioselective and efficient synthesis of N-6'-acylated aminoglycosides and their use as probes to study AAC(6')-Ii and aminoglycoside-RNA complexes. Our results emphasize the central role of N-6' nucleophilicity for transformation by AAC(6')-Ii and the importance of hydrogen bonding between 6'-NH(2) and 16S rRNA for antibacterial activity. 相似文献
12.
Yoshimoto FK Desilets MC Auchus RJ 《The Journal of steroid biochemistry and molecular biology》2012,128(1-2):38-50
The human steroidogenic cytochromes P450 CYP17A1 (P450c17, 17α-hydroxylase/17,20-lyase) and CYP21A2 (P450c21, 21-hydroxylase) are required for the biosynthesis of androgens, glucocorticoids, and mineralocorticoids. Both enzymes hydroxylate progesterone at adjacent, distal carbon atoms and show limited tolerance for substrate modification. Halogenated substrate analogs have been employed for many years to probe cytochrome P450 catalysis and to block sites of reactivity, particularly for potential drugs. Consequently, we developed efficient synthetic approaches to introducing one or more halogen atom to the 17- and 21-positions of progesterone and pregnenolone. In particular, novel 21,21,21-tribromoprogesterone and 21,21,21-trichloroprogesterone were synthesized using the nucleophilic addition of either bromoform or chloroform anion onto an aldehyde precursor as the key step to introduce the trihalomethyl moieties. When incubated with microsomes from yeast expressing human CYP21A2 or CYP17A1 with P450-oxidoreductase, CYP21A2 metabolized 17-fluoroprogesterone to a single product, whereas incubations with CYP17A1 gave no products. Halogenated steroids provide a robust system for exploring the substrate tolerance and catalytic plasticity of human steroid hydroxylases. 相似文献
13.
Two new types of boronate affinity solid phases were synthesized and characterized. The materials were prepared by silylation of porous silica gel with monochlorosilane derivatives containing synthetic sulfonyl- and sulfonamide-substituted phenylboronic acids. The new solid phases were evaluated for boronate affinity chromatography with aryl and alkyl cis-diol compounds and were found to be suitable for the retention of cis-diols under acidic conditions. Significant correlations between the retention factor (K) and the pH of the mobile phase demonstrate that the binding of cis-diols to the solid phases is best rationalized by chelation. Based on the lower pKa, caused by the electron-withdrawing effects of the sulfonyl and sulfonamide groups, these media display an enhanced affinity for cis-diols as compared with unsubstituted phenylboronic acid. Using isocratic elution, a mixture of various biologically relevant l-tyrosines, l-DOPA, and several catecholamines were resolved with a mobile phase composed of 0.05M phosphate buffer (pH 5.5). Mono-, di-, and triphosphates of adenosine were also separated at pH 6.0. Hence, the new boronate solid phase offers efficient affinity separation and purification of cis-diol-containing molecules under rather mild pH conditions. 相似文献
14.
Aminoglycoside 3'-phosphotransferases [APH(3')s] are important bacterial resistance enzymes for aminoglycoside antibiotics. These enzymes phosphorylate the 3'-hydroxyl of these antibiotics, a reaction that inactivates the drug. A series of experiments were carried out to shed light on the details of the turnover chemistry by these enzymes. Quench-flow pre-steady-state kinetic analyses of the reactions of Gram-negative APH(3') types Ia and IIa with kanamycin A, neamine, and their respective difluorinated analogues 4'-deoxy-4',4'-difluorokanamycin A and 4'-deoxy-4',4'-difluoroneamine were carried out, in conjunction with measurements of thio effect and viscosity studies. The fluorinated analogues were shown to be severely impaired as substrates for these enzymes. The magnitude of the effect of the impairment of the fluorinated substrates was in the same range as when the D198A mutant APH(3')-Ia was studied with nonfluorinated substrates. Residue 198 is the proposed active site base that promotes the aminoglycoside hydroxyl for phosphorylation. These findings collectively argue that the Gram-negative APH(3')s show significant nucleophilic participation in the transition state for the phosphate transfer reaction. 相似文献
15.
16.
Biotinylphallotoxins: preparation and use as actin probes 总被引:1,自引:0,他引:1
H Faulstich S Zobeley U Bentrup B M Jockusch 《The journal of histochemistry and cytochemistry》1989,37(7):1035-1045
We describe the synthesis of four phalloidin derivatives conjugated with biotin. An aminomethyldithiolane derivative of ketophalloidin was used as a reactive starter compound, and biotin residues were coupled to this molecule either directly, separated by spacer chains comprised of one or two glycyl residues, or of a 12-atom long chain constructed from succinic acid and hexamethylendiamine. Although all products still displayed a high affinity for F-actin, as seen in competition experiments with [3H]-demethylphalloidin, only the one with the longest spacer (BHPP) showed specific and high-affinity decoration of actin filaments in permeabilized cells, in conjunction with FITC-coupled avidin and fluorescence microscopy. Combined with gold-streptavidin, BHPP decorated the actin filament system at the light and electron microscopic level faithfully and with satisfactory density. Actin filaments polymerized in vitro from purified protein were not as densely labeled as had been expected. However, in all these experiments the new phalloidin probe, when combined with avidin or streptavidin, yielded clear and highly specific labeling of F-actin. Therefore, this system is useful to identify and localize actin unambiguously in microfilaments, independent of actin antibodies, and should facilitate double-label experiments on cytoskeletal components at the ultrastructural level. 相似文献
17.
Synthesis of stable-isotope enriched 5-methylpyrimidines and their use as probes of base reactivity in DNA 总被引:1,自引:1,他引:0
A specific and efficient method is presented for the conversion of 2′-deoxyuridine to thymidine via formation and reduction of the intermediate 5-hydroxymethyl derivative. The method has been used to generate both thymidine and 5-methyl-2′-deoxycytidine containing the stable isotopes 2H, 13C and 15N. Oligodeoxyribonucleotides have been constructed with these mass-tagged bases to investigate sequence-selectivity in hydroxyl radical reactions of pyrimidine methyl groups monitored by mass spectrometry. Studying the reactivity of 5-methylcytosine (5mC) is difficult as the reaction products can deaminate to the corresponding thymine derivatives, making the origin of the reaction products ambiguous. The method reported here can distinguish products derived from 5mC and thymine as well as investigate differences in reactivity for either base in different sequence contexts. The efficiency of formation of 5-hydroxymethyluracil from thymine is observed to be similar in magnitude in two different sequence contexts and when present in a mispair with guanine. The oxidation of 5mC proceeds slightly more efficiently than that of thymine and generates both 5-hydroxymethylcytosine and 5-formylcytosine but not the deaminated products. Thymine glycol is generated by both thymine and 5mC, although with reduced efficiency for 5mC. The method presented here should be widely applicable, enabling the examination of the reactivity of selected bases in DNA. 相似文献
18.
Regioselective oxidation of methyl beta-muricholate to give the 6-ketoderivative is described. Stereoselective reduction of this ketone with tritiated NaBH4 furnishes labeled methyl beta-muricholate. The structure of all compounds was confirmed by infrared, 1H, and 13C nuclear magnetic resonance spectroscopy. Data obtained by circular dichroism and mass spectroscopy were in agreement with the structure of the ketone 3. 相似文献
19.
Application of a modified immunofluorescence technique using an anti-kinetochore serum enables cytogeneticists to obtain quality metaphase spreads and to localize kinetochores. In a patient with a 45, XX, -9, -11, tdic (9p;11p) constitution, we found that the dicentric marker chromosome has an intensely fluorescent kinetochore (no. 11), the functional centromere, and a less intensely fluorescent kinetochore (no. 9), the inactive centromere. The data suggest that in the process of tandem fusion (telomere-telomere between 11p and 9p), the centromere of chromosome 9 was not deleted, but, rather, inactivated. 相似文献
20.
Recently, the synthesis and properties of several 6-substituted flavins as active site probes for flavoproteins have been reported (Ghisla, S., Massey, V., and Yagi, K. (1986) Biochemistry 25, 3282-3289). Here, we report results of experiments in which 6-thiocyanato-FAD and 6-mercapto-FAD have been substituted for the native flavin of phenol hydroxylase. The 6-SCN-FAD enzyme was converted spontaneously to the 6-mercaptoflavin form probably due to dissociation of flavin, followed by attack of external protein thiols. The pK alpha values of uncomplexed and phenol-bound 6-mercapto-FAD enzyme were determined. Both the spontaneously formed 6-mercapto-FAD enzyme and the enzyme reconstituted with preformed 6-mercapto-FAD were treated with a variety of thiol-specific reagents, and reaction rates were followed by spectroscopic means. Comparison with the corresponding rates found with free flavin suggested a high degree of accessibility to the flavin 6-position. Accessibility was somewhat decreased in the presence of phenol. Upon treatment with low concentrations of methyl methanethiosulfonate or N-ethylmaleimide (NEM), extremely rapid spectral changes were apparent. The former reaction, however, was reversed spontaneously within 2 h. Reaction with NEM was biphasic, with spectral changes consistent with the mechanism previously proposed (Steenkamp, D. J., McIntire, W., and Kenney, W. C. (1978) J. Biol. Chem. 253, 2818-2824), followed by a small absorbance decrease due to protein conformational changes. The NEM reaction is unusual, being easily reversed by addition of excess dithiothreitol. 相似文献