首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regeneration requires signaling from a wound site for detection of the wound and a mechanism that determines the nature of the injury to specify the appropriate regenerative response. Wound signals and tissue responses to wounds that elicit regeneration remain poorly understood. Planarians are able to regenerate from essentially any type of injury and present a novel system for the study of wound responses in regeneration initiation. Newly developed molecular and cellular tools now enable study of regeneration initiation using the planarian Schmidtea mediterranea. Planarian regeneration requires adult stem cells called neoblasts and amputation triggers two peaks in neoblast mitoses early in regeneration. We demonstrate that the first mitotic peak is a body-wide response to any injury and that a second, local, neoblast response is induced only when injury results in missing tissue. This second response was characterized by recruitment of neoblasts to wounds, even in areas that lack neoblasts in the intact animal. Subsequently, these neoblasts were induced to divide and differentiate near the wound, leading to formation of new tissue. We conclude that there exist two functionally distinct signaling phases of the stem cell wound response that distinguish between simple injury and situations that require the regeneration of missing tissue.  相似文献   

2.
Planarians are a model system for studying adult stem cells, as they possess the neoblasts, a population of pluripotent adult stem cells able to give rise to both somatic and germ cells. Although over the last years several efforts have been made to shed light on neoblast biology, only recent evidence indicate that this population of cells is heterogeneous. In this study we irradiated planarians with different non-lethal X-ray doses (1-5 Gy) and we identified subpopulations of neoblasts with diverse levels of tolerance to X-rays. We demonstrated that a dramatic reduction of neoblasts occurred soon after non-lethal irradiations and that de-novo proliferation of some radioresistant cells re-established the primary neoblast number. In particular, a strong proliferation activity occurred at the ventral side of irradiated animals close to the nervous system. The produced cells migrated towards the dorsal parenchyma and, together with some dorsal radioresistant cells, reconstituted the entire neoblast population demonstrating the extreme plasticity of this adult stem cell system.  相似文献   

3.
Inbreeding of the sexualized planarian, Dugesia ryukyuensis, produces eye‐defective worms, menashi, in the F1 population. To study the effects of this mutation on the eye, we observed the eye‐region of menashi using electron microscopy and compared it with the regenerating eye in wild‐type worms. The intact eye of wild‐type planarians consisted of a few pigment cells and a number of visual cells. Pigment cells containing spherically‐shaped electron‐dense melanosomes contacted each other and enclosed rhabdomes of visual cells. Rhabdomes had numerous tubular microvilli extending radially and touching the pigment cells. However, in menashi, various lengths of tubular microvilli were irregularly distributed near the pigment cells, which contained numerous electron‐lucent premelanosomes, and no adhesive structures were found between the pigment cells. The premelanosomes of menashi were equal in size to those seen after 2 days of regeneration in wild‐type planarians and were similar in maturation to those found after 3 days of regeneration in wild‐type planarian. These results suggest that menashi is defective in the mechanism(s) of developing pigment granules and constructing visual cells. These findings also suggest that pigment cells in menashi are defective in the mechanism(s) involved with cell adhesion.  相似文献   

4.
The robust regenerative abilities of planarians absolutely depend on a unique population of pluripotent stem cells called neoblasts, which are the only mitotic somatic cells in adult planarians and are responsible for blastema formation after amputation. Little is known about the molecular mechanisms that drive blastema formation during planarian regeneration. Here we found that treatment with the c-Jun N-terminal kinase (JNK) inhibitor SP600125 blocked the entry of neoblasts into the M-phase of the cell cycle, while allowing neoblasts to successfully enter S-phase in the planarian Dugesia japonica. The rapid and efficient blockage of neoblast mitosis by treatment with the JNK inhibitor provided a method to assess whether temporally regulated cell cycle activation drives blastema formation during planarian regeneration. In the early phase of blastema formation, activated JNK was detected prominently in a mitotic region (the "postblastema") proximal to the blastema region. Furthermore, we demonstrated that undifferentiated mitotic neoblasts in the postblastema showed highly activated JNK at the single cell level. JNK inhibition by treatment with SP600125 during this period caused a severe defect of blastema formation, which accorded with a drastic decrease of mitotic neoblasts in regenerating animals. By contrast, these animals still retained many undifferentiated neoblasts near the amputation stump. These findings suggest that JNK signaling plays a crucial role in feeding into the blastema neoblasts for differentiation by regulating the G2/M transition in the cell cycle during planarian regeneration.  相似文献   

5.
BackgroundPlanarian has attracted increasing attentions in the regeneration field for its usefulness as an important biological model organism attributing to its strong regeneration ability. Both the complexity of multiple regulatory networks and their coordinate functions contribute to the maintenance of normal cellular homeostasis and the process of regeneration in planarian. The polarity, size, location and number of regeneration tissues are regulated by diverse mechanisms. In this review we summarize the recent advances about the importance genetic and molecular mechanisms for regeneration control on various tissues in planarian.MethodsA comprehensive literature search of original articles published in recent years was performed in regards to the molecular mechanism of each cell types during the planarian regeneration, including neoblast, nerve system, eye spot, excretory system and epidermal.ResultsAvailable molecular mechanisms gave us an overview of regeneration process in every tissue. The sense of injuries and initiation of regeneration is regulated by diverse genes like follistatin and ERK signaling. The Neoblasts differentiate into tissue progenitors under the regulation of genes such as egfr‐3. The regeneration polarity is controlled by Wnt pathway, BMP pathway and bioelectric signals. The neoblast within the blastema differentiate into desired cell types and regenerate the missing tissues. Those tissue specific genes regulate the tissue progenitor cells to differentiate into desired cell types to complete the regeneration process.ConclusionAll tissue types in planarian participate in the regeneration process regulated by distinct molecular factors and cellular signaling pathways. The neoblasts play vital roles in tissue regeneration and morphology maintenance. These studies provide new insights into the molecular mechanisms for regulating planarian regeneration.

Genetic and molecular mechanisms for regeneration control on various tissues in planarian.  相似文献   

6.
Planarians belong to the phylum Platyhelminthes and can regenerate their missing body parts after injury via activation of somatic pluripotent stem cells called neoblasts. Previous studies suggested that fibroblast growth factor (FGF) signaling plays a crucial role in the regulation of head tissue differentiation during planarian regeneration. To date, however, no FGF homologues in the Platyhelminthes have been reported. Here, we used a planarian Dugesia japonica model and identified an fgf gene termed Djfgf, which encodes a putative secreted protein with a core FGF domain characteristic of the FGF8/17/18 subfamily in bilaterians. Using Xenopus embryos, we found that DjFGF has FGF activity as assayed by Xbra induction. We next examined Djfgf expression in non-regenerating intact and regenerating planarians. In intact planarians, Djfgf was expressed in the auricles in the head and the pharynx. In the early process of regeneration, Djfgf was transiently expressed in a subset of differentiated cells around wounds. Notably, Djfgf expression was highly induced in the process of head regeneration when compared to that in the tail regeneration. Furthermore, assays of head regeneration from tail fragments revealed that combinatorial actions of the anterior extracellular signal-regulated kinase (ERK) and posterior Wnt/ß-catenin signaling restricted Djfgf expression to a certain anterior body part. This is the region where neoblasts undergo active proliferation to give rise to their differentiating progeny in response to wounding. The data suggest the possibility that DjFGF may act as an anterior counterpart of posteriorly localized Wnt molecules and trigger neoblast responses involved in planarian head regeneration.  相似文献   

7.
Planarians contain a large population of stem cells, named neoblasts, and use these for continuous turnover of all cell types. In addition, thanks to the amazing flexibility of these cells, planarians respond well to the effects of stressful situations, for example activating regeneration after trauma. How neoblasts respond to stress and support continuous proliferation, maintaining long-term stability, is still an open question. Heat shock proteins (HSPs) are a complex protein family with key roles in maintaining protein homeostasis, as well as in apoptosis and growth-related processes. We recently characterized some planarian homologs of hsp genes that are highly expressed in mammalian stem cells, and observed that some of them are critical for neoblast survival/maintenance. The results of these studies support the notion that some HSPs play crucial roles in the modulation of pathways regulating stem cell activity, regeneration and tissue repair. In this review we compare the evidence available for planarian hsp genes and focus on questions emerging from these results.  相似文献   

8.
A Bruno-like gene is required for stem cell maintenance in planarians   总被引:1,自引:0,他引:1  
The regenerative abilities of freshwater planarians are based on neoblasts, stem cells maintained throughout the animal's life. We show that a member of the Bruno-like family of RNA binding proteins is critical for regulating neoblasts in the planarian Schmidtea mediterranea. Smed-bruno-like (bruli) mRNA and protein are expressed in neoblasts and the central nervous system. Following bruli RNAi, which eliminates detectable Bruli protein, planarians initiate the proliferative response to amputation and form small blastemas but then undergo tissue regression and lysis. We characterize the neoblast population by using antibodies recognizing SMEDWI-1 and Histone H4 (monomethyl-K20) and cell-cycle markers to label subsets of neoblasts and their progeny. bruli knockdown results in a dramatic reduction/elimination of neoblasts. Our analyses indicate that neoblasts lacking Bruli can respond to wound stimuli and generate progeny that can form blastemas and differentiate; yet, they are unable to self-renew. These results suggest that Bruli is required for stem cell maintenance.  相似文献   

9.
10.
11.
Enchytraeus japonensis is a small oligochaete that reproduces mainly asexually by fragmentation (autotomy) and regeneration. As sexual reproduction can also be induced, it is a good animal model for the study of both somatic and germline stem cells. To clarify the features of stem cells in regeneration, we investigated the proliferation and lineage of stem cells in E. japonensis. Neoblasts, which have the morphological characteristics of undifferentiated cells, were found to firmly adhere to the posterior surface of septa in each trunk segment. Also, smaller neoblast‐like cells, which are designated as N‐cells in this study, were located dorsal to the neoblasts on the septa. By conducting 5‐bromo‐2′‐deoxyuridine (BrdU)‐labeling‐experiments, we have shown that neoblasts are slow‐cycling (or quiescent) in intact growing worms, but proliferate rapidly in response to fragmentation. N‐cells proliferate more actively than do neoblasts in intact worms. The results of pulse‐chase experiments indicated that neoblast and N‐cell lineage mesodermal cells that incorporated BrdU early in regeneration migrated toward the autotomized site to form the mesodermal region of the blastema, while the epidermal and intestinal cells also contributed to the blastema locally near the autotomized site. We have also shown that neoblasts have stem cell characteristics by expressing Ej‐vlg2 and by the activity of telomerase during regeneration. Telomerase activity was high in the early stage of regeneration and correlated with the proliferation activity in the neoblast lineage of mesodermal stem cells. Taken together, our results indicate that neoblasts are mesodermal stem cells involved in the regeneration of E. japonensis.  相似文献   

12.
Planarians are comprised of populations with different reproductive strategies: exclusively innately asexual (AS), exclusively innately sexual (InS), and seasonally switching. AS worms can be sexualized experimentally by feeding them with minced InS worms, and the resultant worms are characterized as acquired sexual (AqS). Differences between InS and AqS worms are expected to provide important clues to the poorly understood mechanism underlying the regulation of their reproductive mode. Morphological differences were found between InS and AqS worm ovaries, and we showed that the pluripotent stem cells (neoblasts) from InS worms, but not those of AqS worms, have the capacity to initiate the sexual state autonomously via neoblast fraction transplantation. To compare their reproductive mode and ovarian morphology regulation, InS donor neoblast fractions were transplanted into non-lethally X-ray-irradiated AS recipients. All transplants showed stable chimerism and reproduced sexually, suggesting that InS worm neoblasts can initiate sexual state autonomously, even when coexisting with AS worm neoblasts. The chimeras formed extraordinarily large and supernumerary ovaries equivalent to AqS worms, which were not seen in InS worms, suggesting that regulation of ovarian morphology in AS worm-derived cells in response to endogenous sexualizing stimulation distinctly differs from that of InS worms.  相似文献   

13.
Planarians are highly regenerative organisms with the ability to remake all their cell types, including the germ cells. The germ cells have been suggested to arise from totipotent neoblasts through epigenetic mechanisms. Nanos is a zinc-finger protein with a widely conserved role in the maintenance of germ cell identity. In this work, we describe the expression of a planarian nanos-like gene Smednos in two kinds of precursor cells namely, primordial germ cells and eye precursor cells, during both development and regeneration of the planarian Schmidtea mediterranea. In sexual planarians, Smednos is expressed in presumptive male primordial germ cells of embryos from stage 8 of embryogenesis and throughout development of the male gonads and in the female primordial germ cells of the ovary. Thus, upon hatching, juvenile planarians do possess primordial germ cells. In the asexual strain, Smednos is expressed in presumptive male and female primordial germ cells. During regeneration, Smednos expression is maintained in the primordial germ cells, and new clusters of Smednos-positive cells appear in the regenerated tissue. Remarkably, during the final stages of development (stage 8 of embryogenesis) and during regeneration of the planarian eye, Smednos is expressed in cells surrounding the differentiating eye cells, possibly corresponding to eye precursor cells. Our results suggest that similar genetic mechanisms might be used to control the differentiation of precursor cells during development and regeneration in planarians. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
15.
16.
The robust regenerative ability of planarians is known to be dependent on adult pluripotent stem cells called neoblasts. One of the morphological features of neoblasts is cytoplasmic ribonucleoprotein granules (chromatoid bodies: CBs), which resemble germ granules present in germline cells in other animals. Previously, we showed by immuno‐electron microscopic analysis that DjCBC‐1, a planarian Me31B/Dhh1/DDX6 homologue, which is a component of ribonucleoprotein granules, was localized in CBs in the planarian Dugesia japonica. Also, recently it was reported using another planarian species that Y12 antibody recognizing symmetrical dimethylarginine (sDMA) specifically binds to CBs in which histone mRNA is co‐localized. Here, we showed by double immunostaining and RNA interference (RNAi) that DjCBC‐1‐containing CBs and Y12‐immunoreactive CBs are distinct structures, suggesting that CBs are composed of heterogeneous populations. We also found that the Y12‐immunoreactive CBs specifically contained a cytoplasmic type of planarian PIWI protein (DjPiwiC). We revealed by RNAi experiments that Y12‐immunoreactive CBs may have anti‐transposable element activity involving the DjPiwiC protein in the neoblasts.  相似文献   

17.
Planarians are members of the Platyhelminthes (flatworms). These animals have evolved a remarkable stem cell system. A single pluripotent adult stem cell type (“neoblast”) gives rise to the entire range of cell types and organs in the planarian body plan, including a brain, digestive-, excretory-, sensory- and reproductive systems. Neoblasts are abundantly present throughout the mesenchyme and divide continuously. The resulting stream of progenitors and turnover of differentiated cells drive the rapid self-renewal of the entire animal within a matter of weeks. Planarians grow and literally de-grow (“shrink”) by the food supply-dependent adjustment of organismal turnover rates, scaling body plan proportions over as much as a 50-fold size range. Their dynamic body architecture further allows astonishing regenerative abilities, including the regeneration of complete and perfectly proportioned animals even from tiny tissue remnants. Planarians as an experimental system, therefore, provide unique opportunities for addressing a spectrum of current problems in stem cell research, including the evolutionary conservation of pluripotency, the dynamic organization of differentiation lineages and the mechanisms underlying organismal stem cell homeostasis. The first part of this review focuses on the molecular biology of neoblasts as pluripotent stem cells. The second part examines the fascinating mechanistic and conceptual challenges posed by a stem cell system that epitomizes a universal design principle of biological systems: the dynamic steady state.  相似文献   

18.
Planarian's strong regenerative ability is dependent on stem cells (called neoblasts) that are X‐ray‐sensitive and proliferative stem cells. In addition to neoblasts, another type of X‐ray‐sensitive cells was newly identified by recent research. Thus, planarian's X‐ray‐sensitive cells can be divided into at least two populations, Type 1 and Type 2, the latter corresponding to planarian's classically defined “neoblasts”. Here, we show that Type 1 cells were distributed in the outer region (OR) immediately underneath the muscle layer at all axial levels from head to tail, while the Type 2 cells were distributed in a more internal region (IR) of the mesenchymal space at the axial levels from neck to tail. To elucidate the biological significance of these two regions, we searched for genes expressed in differentiated cells that were locate close to these X‐ray‐sensitive cell populations in the mesenchymal space, and identified six genes mainly expressed in the OR or IR, named OR1, OR2, OR3, IR1, IR2 and IR3. The predicted amino acid sequences of these genes suggested that differentiated cells expressing OR1, OR3, IR1, or IR2 provide Type 1 and Type 2 cells with specific extracellular matrix (ECM) environments.  相似文献   

19.
The robust regenerative ability of planarians depends on a population of somatic stem cells called neoblasts, which are the only mitotic cells in adults and are responsible for blastema formation after amputation. The molecular mechanism underlying neoblast differentiation associated with blastema formation remains unknown. Here, using the planarian Dugesia japonica we found that DjmkpA, a planarian mitogen-activated protein kinase (MAPK) phosphatase-related gene, was specifically expressed in blastema cells in response to increased extracellular signal-related kinase (ERK) activity. Pharmacological and genetic [RNA interference (RNAi)] approaches provided evidence that ERK activity was required for blastema cells to exit the proliferative state and undergo differentiation. By contrast, DjmkpA RNAi induced an increased level of ERK activity and rescued the differentiation defect of blastema cells caused by pharmacological reduction of ERK activity. These observations suggest that ERK signaling plays an instructive role in the cell fate decisions of blastema cells regarding whether to differentiate or not, by inducing DjmkpA as a negative regulator of ERK signaling during planarian regeneration.  相似文献   

20.
A piwi homolog is required for the regulation of stem cells, formation and maintenance of germline stem cells, and gametogenesis in many metazoans. Planarians can change their reproductive mode seasonally, both asexually and sexually, and develop and maintain germ cells and sexual organs. They have many pluripotent stem cells (neoblasts) that can differentiate into both somatic and germline stem cells. Thus, we searched for a piwi subfamily in the planarian Dugesia ryukyuensis. Four piwi homologs, identified as Drpiwi-1, -2, -3, and -4, were expressed in sexually reproductive worms. We then selectively destroyed the neoblasts by irradiating the worms with X-rays. In such worms, Drpiwi-1, -2, and -3 were not expressed at all, whereas Drpiwi-4 was expressed to the same degree as that in non-irradiated controls, indicating that Drpiwi-1, -2, and -3, but not Drpiwi-4, are expressed in neoblasts. During the regeneration process, Drpiwi-2(RNAi) and -3(RNAi) worms failed to regenerate after ablation, but Drpiwi-1 and -4(RNAi) worms regenerated. During the sexualizing process, Drpiwi-1(RNAi) worms failed to develop ovaries and testes, but somatic sexual organs were unaffected. Germ cell development was normal in Drpiwi-4(RNAi) worms. Therefore, Drpiwi-2 and -3 may be related to the regulation of neoblasts important for maintaining homeostasis, and Drpiwi-1 is essential for the development of germ cells but not somatic sexual organs. DrPiwi-1 is localized in the cytoplasm of stem cells and germline cells and may be involved in regulating some gene expression. We suggest that planarian Piwi controls germline formation via RNA silencing mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号