共查询到20条相似文献,搜索用时 0 毫秒
1.
The aim of this study was to describe and explain how individual muscles control mediolateral balance during normal walking. Biomechanical modeling and experimental gait data were used to quantify individual muscle contributions to the mediolateral acceleration of the center of mass during the stance phase. We tested the hypothesis that the hip, knee, and ankle extensors, which act primarily in the sagittal plane and contribute significantly to vertical support and forward progression, also accelerate the center of mass in the mediolateral direction. Kinematic, force plate, and muscle EMG data were recorded simultaneously for five healthy subjects who walked at their preferred speeds. The body was modeled as a 10-segment, 23 degree-of-freedom skeleton, actuated by 54 muscles. Joint moments obtained from inverse dynamics were decomposed into muscle forces by solving an optimization problem that minimized the sum of the squares of the muscle activations. Muscles contributed significantly to the mediolateral acceleration of the center of mass throughout stance. Muscles that generated both support and forward progression (vasti, soleus, and gastrocnemius) also accelerated the center of mass laterally, in concert with the hip adductors and the plantarflexor everters. Gravity accelerated the center of mass laterally for most of the stance phase. The hip abductors, anterior and posterior gluteus medius, and, to a much lesser extent, the plantarflexor inverters, actively controlled balance by accelerating the center of mass medially. 相似文献
2.
Toe walking is a gait deviation with multiple etiologies and often associated with premature and prolonged ankle plantar flexor electromyographic activity. The goal of this study was to use a detailed musculoskeletal model and forward dynamical simulations that emulate able-bodied toe and heel-toe walking to understand why, despite an increase in muscle activity in the ankle plantar flexors during toe walking, the internal ankle joint moment decreases relative to heel-toe walking. The simulations were analyzed to assess the force generating capacity of the plantar flexors by examining each muscle's contractile state (i.e., the muscle fiber length, velocity and activation). Consistent with experimental measurements, the simulation data showed that despite a 122% increase in soleus muscle activity and a 76% increase in gastrocnemius activity, the peak internal ankle moment in late stance decreased. The decrease was attributed to non-optimal contractile conditions for the plantar flexors (primarily the force-length relationship) that reduced their ability to generate force. As a result, greater muscle activity is needed during toe walking to produce a given muscle force level. In addition, toe walking requires greater sustained plantar flexor force and moment generation during stance. Thus, even though toe walking requires lower peak plantar flexor forces that might suggest a compensatory advantage for those with plantar flexor weakness, greater neuromuscular demand is placed on those muscles. Therefore, medical decisions concerning whether to reduce equinus should consider not only the impact on the ankle moment, but also the expected change to the plantar flexor's force generating capacity. 相似文献
3.
4.
DNA methylation has been discovered in Drosophila only recently. Current evidence indicates that de novo methylation patterns in drosophila are maintained in a different way compared to vertebrates and plants. As the genomic role and determinants of DNA methylation are poorly understood in invertebrates, its link with several factors has been suggested. In this study, we tested for the putative link between DNA methylation patterns in Drosophila melanogaster and radiation or the activity of P transposon. Neither of the links was apparent from the results, however, we obtained some hints on a possible link between DNA methylation pattern and genomic heterogeneity of fly lineages. 相似文献
5.
6.
7.
A number of studies have examined the functional roles of individual muscles during normal walking, but few studies have examined which are the primary muscles that respond to changes in external mechanical demand. Here we use a novel combination of experimental perturbations and forward dynamics simulations to determine how muscle mechanical output and contributions to body support and forward propulsion are modulated in response to independent manipulations of body weight and body mass during walking. Experimentally altered weight and/or mass were produced by combinations of added trunk loads and body weight support. Simulations of the same experimental conditions were used to determine muscle contributions to the vertical ground reaction force impulse (body support) and positive horizontal trunk work (forward propulsion). Contributions to the vertical impulse by the soleus, vastii and gluteus maximus increased (decreased) in response to increases (decreases) in body weight; whereas only the soleus increased horizontal work output in response to increased body mass. In addition, soleus had the greatest absolute contribution to both vertical impulse and horizontal trunk work, indicating that it not only provides the largest contribution to both body support and forward propulsion, but the soleus is also the primary mechanism to modulate the mechanical output of the leg in response to increased (decreased) need for body support and forward propulsion. The data also showed that a muscle's contribution to a specific task is likely not independent of its contribution to other tasks (e.g., body support vs. forward propulsion). 相似文献
8.
Galvão A Henriques S Pestka D Lukasik K Skarzynski D Mateus LM Ferreira-Dias GM 《Biology of reproduction》2012,86(6):187
We hypothesized that cytokines influence luteal angiogenesis in mares, while angiogenic factors themselves can also regulate luteal secretory capacity. Therefore, the purpose of this study was to evaluate the role of cytokines--tumor necrosis factor alpha (TNF), interferon gamma (IFNG) and Fas ligand (FASL)--on in vitro modulation of angiogenic activity and mRNA level of vascular endothelial growth factor A (VEGF), its receptor VEGFR2, thrombospondin 1 (TSP1), and its receptor CD36 in equine corpus luteum (CL) throughout the luteal phase. After treatment, VEGF protein expression was determined in midluteal phase (mid) CL cells. The role of VEGF on regulation of luteal secretory capacity was assessed by progesterone (P(4)) and prostaglandin E(2) (PGE(2)) production and by mRNA levels for steroidogenic enzymes 3-beta-hydroxysteroid dehydrogenase (3betaHSD) and PGE synthase (PGES). In early CL cells, TNF increased angiogenic activity (bovine aortic endothelial cell viability) and VEGF and VEGFR2 mRNA levels and decreased CD36 (real-time PCR relative quantification). In mid-CL cells, TNF increased VEGF mRNA and protein expression (Western blot analysis) and reduced CD36 mRNA levels, while FASL and TNF+IFNG+FASL decreased VEGF protein expression. In late CL cells, TNF and TNF+IFNG+FASL reduced VEGFR2 mRNA, but TNF+IFNG+FASL increased TSP1 and CD36 mRNA. VEGF treatment increased mRNA levels of 3betaHSD and PGES and secretion of P(4) and PGE(2). In conclusion, these findings suggest a novel auto/paracrine action of cytokines, specifically TNF, on the up-regulation of VEGF for angiogenesis stimulation in equine early CL, while at luteolysis, cytokines down-regulated angiogenesis. Additionally, VEGF stimulated P(4) and PGE(2) production, which may be crucial for CL establishment. 相似文献
9.
Falk Mörl Tobias Siebert Daniel Häufle 《Biomechanics and modeling in mechanobiology》2016,15(1):245-258
Experimental studies show different muscle-tendon complex (MTC) functions (e.g. motor or spring) depending on the muscle fibre-tendon length ratio. Comparing different MTC of different animals examined experimentally, the extracted MTC functions are biased by, for example, MTC-specific pennation angle and fibre-type distribution or divergent experimental protocols (e.g. influence of temperature or stimulation on MTC force). Thus, a thorough understanding of variation of these inner muscle fibre-tendon length ratios on MTC function is difficult. In this study, we used a hill-type muscle model to simulate MTC. The model consists of a contractile element (CE) simulating muscle fibres, a serial element (SE) as a model for tendon, and a parallel elastic element (PEE) modelling tissue in parallel to the muscle fibres. The simulation examines the impact of length variations of these components on contraction dynamics and MTC function. Ensuring a constant overall length of the MTC by \(L_\mathrm{MTC} = L_\mathrm{SE} + L_\mathrm{CE}\), the SE rest length was varied over a broad physiological range from 0.1 to 0.9 MTC length. Five different MTC functions were investigated by simulating typical physiological experiments: the stabilising function with isometric contractions, the motor function with contractions against a weight, the capability of acceleration with contractions against a small inertial mass, the braking function by decelerating a mass, and the spring function with stretch-shortening cycles. The ratio of SE and CE mainly determines the MTC function. MTC with comparably short tendon generates high force and maximal shortening velocity and is able to produce maximal work and power. MTC with long tendon is suitable to store and release a maximum amount of energy. Variation of muscle fibre-tendon ratio yielded two peaks for MTC’s force response for short and long SE lengths. Further, maximum work storage capacity of the SE is at long \(\mathrm{rel}L_\mathrm{SE,0}\). Impact of fibre-tendon length ratio on MTC functions will be discussed. Considering a constant set of MTC parameters, quantitative changes in MTC performance (work, stiffness, force, energy storage, dissipation) depending on varying muscle fibre-tendon length ratio were provided, which enables classification and grading of different MTC designs. 相似文献
10.
Muscle mechanical work requirements during normal walking: the energetic cost of raising the body's center-of-mass is significant 总被引:3,自引:0,他引:3
Inverted pendulum models of walking predict that little muscle work is required for the exchange of body potential and kinetic energy in single-limb support. External power during walking (product of the measured ground reaction force and body center-of-mass (COM) velocity) is often analyzed to deduce net work output or mechanical energetic cost by muscles. Based on external power analyses and inverted pendulum theory, it has been suggested that a primary mechanical energetic cost may be associated with the mechanical work required to redirect the COM motion at the step-to-step transition. However, these models do not capture the multi-muscle, multi-segmental properties of walking, co-excitation of muscles to coordinate segmental energetic flow, and simultaneous production of positive and negative muscle work. In this study, a muscle-actuated forward dynamic simulation of walking was used to assess whether: (1). potential and kinetic energy of the body are exchanged with little muscle work; (2). external mechanical power can estimate the mechanical energetic cost for muscles; and (3.) the net work output and the mechanical energetic cost for muscles occurs mostly in double support. We found that the net work output by muscles cannot be estimated from external power and was the highest when the COM moved upward in early single-limb support even though kinetic and potential energy were exchanged, and muscle mechanical (and most likely metabolic) energetic cost is dominated not only by the need to redirect the COM in double support but also by the need to raise the COM in single support. 相似文献
11.
The patterns characteristic of certain liquid crystals called 'twisted nematics' or 'cholesterics' have been observed in thin sections of both dinoflagellates and bacterial chromosomes. These liquid crystals have also been obtained in vitro in concentrated DNA solutions. A large part of DNA in prokaryotic chromosomes forms such a twisted liquid crystal, whilst the remainder consists of lateral loops and is less concentrated. These semi-ordered phases could help chromosome separation to occur during and after DNA replication. We suggest that, owing to chemical differences, one of the two replicated filaments is immiscible with the rest of DNA in this chromosome. This immiscibility occurs in the context of an ordered liquid, with the DNA closely layered by a regular twist, a situation proposed to strongly minimize entangling after replication and hence to facilitate segregation. 相似文献
12.
Researchers have long debated the locomotor posture used by the earliest bipeds. While many agree that by 3–4 Ma (millions of years ago), hominins walked with an extended-limb human style of bipedalism, researchers are still divided over whether the earliest bipeds walked like modern humans, or walked with a more bent-knee, bent-hip (BKBH) ape-like form of locomotion. Since more flexed postures are associated with higher energy costs, reconstructing early bipedal mechanics has implications for the selection pressures that led to upright walking. The purpose of this study is to determine how modern human anatomy functions in BKBH walking to clarify the links between morphology and energy costs in different mechanical regimes. Using inverse dynamics, we calculated muscle force production at the major limb joints in humans walking in two modes, both with extended limbs and BKBH. We found that in BKBH walking, humans must produce large muscle forces at the knee to support body weight, leading to higher estimated energy costs. However, muscle forces at the hip remained similar in BKBH and extended limb walking, suggesting that anatomical adaptations for hip extension in humans do not necessarily diminish the effective mechanical advantage at the hip in more flexed postures. We conclude that the key adaptations for economical walking, regardless of joint posture, seem to center on maintaining low muscle forces at the hip, primarily by keeping low external moments at the hip. We explore the implications of these results for interpreting locomotor energetics in early hominins, including australopithecines and Ardipithecus ramidus. 相似文献
13.
An excision event that may depend on patchy homology for site specificity. 总被引:2,自引:0,他引:2
下载免费PDF全文

D Bourgaux-Ramoisy D Gendron P Chartrand P Bourgaux 《Molecular and cellular biology》1986,6(7):2727-2730
In mouse cells transformed by a mutant polyomavirus genome, recombination between integrated viral DNA and flanking cellular DNA resulted in the excision of two readily amplifiable chimeras, designated RmI and RmII. The crossing-over that generated RmII was unique in that it involved a simple cellular sequence in which the triplet 5'-CTG-3' was repeated many times. We show that the sequence across the junction resulting from excision was identical in several molecules of RmII, as if the cross-over generating this junction always involved exactly the same two sites on the viral and cellular DNA. We also show that the cellular site mapped where the replacement of a G by an A in one of many successive 5'-CTG-3' triplets generated a homology of five nucleotides (5'-CTACT-3') with the viral site. Oligonucleotides on both sides of these sites are probably involved in matching the two DNAs prior to recombination. 相似文献
14.
Background
The extreme polymorphism that is observed in major histocompatibility complex (MHC) genes, which code for proteins involved in recognition of non-self oligopeptides, is thought to result from a pressure exerted by parasites because parasite antigens are more likely to be recognized by MHC heterozygotes (heterozygote advantage) and/or by rare MHC alleles (negative frequency-dependent selection). The Ewens-Watterson test (EW) is often used to detect selection acting on MHC genes over the recent history of a population. EW is based on the expectation that allele frequencies under balancing selection should be more even than under neutrality. We used computer simulations to investigate whether this expectation holds for selection exerted by parasites on host MHC genes under conditions of heterozygote advantage and negative frequency-dependent selection acting either simultaneously or separately. 相似文献15.
Pattern of anterior cruciate ligament force in normal walking 总被引:6,自引:0,他引:6
The goal of this study was to calculate and explain the pattern of anterior cruciate ligament (ACL) loading during normal level walking. Knee-ligament forces were obtained by a two-step procedure. First, a three-dimensional (3D) model of the whole body was used together with dynamic optimization theory to calculate body-segmental motions, ground reaction forces, and leg-muscle forces for one cycle of gait. Joint angles, ground reaction forces, and muscle forces obtained from the gait simulation were then input into a musculoskeletal model of the lower limb that incorporated a 3D model of the knee. The relative positions of the femur, tibia, and patella and the forces induced in the knee ligaments were found by solving a static equilibrium problem at each instant during the simulated gait cycle. The model simulation predicted that the ACL bears load throughout stance. Peak force in the ACL (303 N) occurred at the beginning of single-leg stance (i.e., contralateral toe off). The pattern of ACL force was explained by the shear forces acting at the knee. The balance of muscle forces, ground reaction forces, and joint contact forces applied to the leg determined the magnitude and direction of the total shear force acting at the knee. The ACL was loaded whenever the total shear force pointed anteriorly. In early stance, the anterior shear force from the patellar tendon dominated the total shear force applied to the leg, and so maximum force was transmitted to the ACL at this time. ACL force was small in late stance because the anterior shear forces supplied by the patellar tendon, gastrocnemius, and tibiofemoral contact were nearly balanced by the posterior component of the ground reaction. 相似文献
16.
A new method to improve the efficiency of flanking sequence identification by genome walking was developed based on an expanded, sequential list of criteria for selecting candidate enzymes, plus several other optimization steps. These criteria include: step (1) initially choosing the most appropriate restriction enzyme according to the average fragment size produced by each enzyme determined using in silico digestion of genomic DNA, step (2) evaluating the in silico frequency of fragment size distribution between individual chromosomes, step (3) selecting those enzymes that generate fragments with the majority between 100 bp and 3,000 bp, step (4) weighing the advantages and disadvantages of blunt-end sites vs. cohesive-end sites, step (5) elimination of methylation sensitive enzymes with methylation-insensitive isoschizomers, and step (6) elimination of enzymes with recognition sites within the binary vector sequence (T-DNA and plasmid backbone). Step (7) includes the selection of a second restriction enzyme with highest number of recognition sites within regions not covered by the first restriction enzyme. Step (8) considers primer and adapter sequence optimization, selecting the best adapter-primer pairs according to their hairpin/dimers and secondary structure. In step (9), the efficiency of genomic library development was improved by column-filtration of digested DNA to remove restriction enzyme and phosphatase enzyme, and most important, to remove small genomic fragments (<100 bp) lacking the T-DNA insertion, hence improving the chance of ligation between adapters and fragments harbouring a T-DNA. Two enzymes, NsiI and NdeI, fit these criteria for the Arabidopsis thaliana genome. Their efficiency was assessed using 54 T(3) lines from an Arabidopsis SK enhancer population. Over 70% success rate was achieved in amplifying the flanking sequences of these lines. This strategy was also tested with Brachypodium distachyon to demonstrate its applicability to other larger genomes. 相似文献
17.
The objectives of this study were twofold. The first was to develop a forward dynamic model of cycling and an optimization framework to simulate pedaling during submaximal steady-state cycling conditions. The second was to use the model and framework to identify the kinetic, kinematic, and muscle timing quantities that should be included in a performance criterion to reproduce natural pedaling mechanics best during these pedaling conditions. To make this identification, kinetic and kinematic data were collected from 6 subjects who pedaled at 90 rpm and 225 W. Intersegmental joint moments were computed using an inverse dynamics technique and the muscle excitation onset and offset were taken from electromyographic (EMG) data collected previously (Neptune et al., 1997). Average cycles and their standard deviations for the various quantities were used to describe normal pedaling mechanics. The model of the bicycle-rider system was driven by 15 muscle actuators per leg. The optimization framework determined both the timing and magnitude of the muscle excitations to simulate pedaling at 90 rpm and 225 W. Using the model and optimization framework, seven performance criteria were evaluated. The criterion that included all of the kinematic and kinetic quantities combined with the EMG timing was the most successful in replicating the experimental data. The close agreement between the simulation results and the experimentally collected kinetic, kinematic, and EMG data gives confidence in the model to investigate individual muscle coordination during submaximal steady-state pedaling conditions from a theoretical perspective, which to date has only been performed experimentally. 相似文献
18.
19.
The locomotor system in sharks has been investigated for many decades, starting with the earliest kinematic studies by Sir James Gray in the 1930s. Early work on axial muscle anatomy also included sharks, and the first demonstration of the functional significance of red and white muscle fibre types was made on spinal preparations in sharks. Nevertheless, studies on teleosts dominate the literature on fish swimming. The purpose of this article is to review the current knowledge of muscle function and swimming in sharks, by considering their morphological features related to swimming, the anatomy and physiology of the axial musculature, kinematics and muscle dynamics, and special features of warm-bodied lamnids. In addition, new data are presented on muscle activation in fast-starts. Finally, recent developments in tracking technology that provide insights into shark swimming performance in their natural environment are highlighted. 相似文献
20.
Integrity and barrier function of the epidermis critically depend on glucosylceramide synthesis 总被引:1,自引:0,他引:1
Jennemann R Sandhoff R Langbein L Kaden S Rothermel U Gallala H Sandhoff K Wiegandt H Gröne HJ 《The Journal of biological chemistry》2007,282(5):3083-3094
Ceramides are vital components of the water barrier in mammalian skin. Epidermis-specific, a major ceramide portion contains omega-hydroxy very long chain fatty acids (C30-C36). These omega-hydroxy ceramides (Cers) are found in the extracellular lamellae of the stratum corneum either as linoleic acyl esters or protein bound. Glucosylceramide is the major glycosphingolipid of the epidermis. Synthesized from ceramide and UDP-glucose, it is thought to be itself an intracellular precursor and carrier for extracellular omega-hydroxy ceramides. To investigate whether GlcCer is an obligatory intermediate in ceramide metabolism to maintain epidermal barrier function, a mouse with an epidermis-specific glucosylceramide synthase (Ugcg) deficiency has been generated. Four days after birth animals devoid of GlcCer synthesis in keratinocytes showed a pronounced desquamation of the stratum corneum and extreme transepidermal water loss leading to death. The stratum corneum appeared as a thick unstructured mass. Lamellar bodies of the stratum granulosum did not display the usual ordered inner structure and were often irregularly arranged. Although the total amount of epidermal protein-bound ceramides remained unchanged, epidermal-free omega-hydroxy ceramides increased 4-fold and omega-hydroxy sphingomyelins, almost not detectable in wild type epidermis, emerged in quantities comparable with lost GlcCer. We conclude that the transient formation of GlcCer is vital for a regular arrangement of lipids and proteins in lamellar bodies and for the maintenance of the epidermal barrier. 相似文献