首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A member of the family of ATPases associated with diverse cellular activities, called p97 in mammals and Cdc48 in yeast, associates with the cofactor Ufd1-Npl4 to move polyubiquitinated polypeptides from the endoplasmic reticulum (ER) membrane into the cytosol for their subsequent degradation by the proteasome. Here, we have studied the mechanism by which the p97-Ufd1-Npl4 complex functions in this retrotranslocation pathway. Substrate binding occurs when the first ATPase domain of p97 (D1 domain) is in its nucleotide-bound state, an interaction that also requires an association of p97 with the membrane through its NH2-terminal domain. The two ATPase domains (D1 and D2) of p97 appear to alternate in ATP hydrolysis, which is essential for the movement of polypeptides from the ER membrane into the cytosol. The ATPase itself can interact with nonmodified polypeptide substrates as they emerge from the ER membrane. Polyubiquitin chains linked by lysine 48 are recognized in a synergistic manner by both p97 and an evolutionarily conserved ubiquitin-binding site at the NH2 terminus of Ufd1. We propose a dual recognition model in which the ATPase complex binds both a nonmodified segment of the substrate and the attached polyubiquitin chain; polyubiquitin binding may activate the ATPase p97 to pull the polypeptide substrate out of the membrane.  相似文献   

2.
3.
Salt-inducible kinase 2 (SIK2) is an important regulator of cAMP response element-binding protein-mediated gene expression in various cell types and is the only AMP-activated protein kinase family member known to interact with the p97/valosin-containing protein (VCP) ATPase. Previously, we have demonstrated that SIK2 can regulate autophagy when proteasomal function is compromised. Here we report that physical and functional interactions between SIK2 and p97/VCP underlie the regulation of endoplasmic reticulum (ER)-associated protein degradation (ERAD). SIK2 co-localizes with p97/VCP in the ER membrane and stimulates its ATPase activity through direct phosphorylation. Although the expression of wild-type recombinant SIK2 accelerated the degradation and removal of ERAD substrates, the kinase-deficient variant conversely had no effect. Furthermore, down-regulation of endogenous SIK2 or mutation of the SIK2 target site on p97/VCP led to impaired degradation of ERAD substrates and disruption of ER homeostasis. Collectively, these findings highlight a mechanism by which the interplay between SIK2 and p97/VCP contributes to the regulation of ERAD in mammalian cells.  相似文献   

4.
Background information. CRISP2 (cysteine‐rich secretory protein 2) is a sperm acrosome and tail protein with the ability to regulate Ca2+ flow through ryanodine receptors. Based on these properties, CRISP2 has a potential role in fertilization through the regulation of ion signalling in the acrosome reaction and sperm motility. The purpose of the present study was to determine the expression, subcellular localization and the role in spermatogenesis of a novel CRISP2‐binding partner, which we have designated SHTAP (sperm head and tail associated protein). Results. Using yeast two‐hybrid screens of an adult testis expression library, we identified SHTAP as a novel mouse CRISP2‐binding partner. Sequence analysis of all Shtap cDNA clones revealed that the mouse Shtap gene is embedded within a gene encoding the unrelated protein NSUN4 (NOL1/NOP2/Sun domain family member 4). Five orthologues of the Shtap gene have been annotated in public databases. SHTAP and its orthologues showed no significant sequence similarity to any known protein or functional motifs, including NSUN4. Using an SHTAP antiserum, multiple SHTAP isoforms (~20–87 kDa) were detected in the testis, sperm, and various somatic tissues. Interestingly, only the ~26 kDa isoform of SHTAP was able to interact with CRISP2. Furthermore, yeast two‐hybrid assays showed that both the CAP (CRISP/antigen 5/pathogenesis related‐1) and CRISP domains of CRISP2 were required for maximal binding to SHTAP. SHTAP protein was localized to the peri‐acrosomal region of round spermatids, and the head and tail of the elongated spermatids and sperm tail where it co‐localized with CRISP2. During sperm capacitation, SHTAP and the SHTAP—CRISP2 complex appeared to be redistributed within the head. Conclusions. The present study is the first report of the identification, annotation and expression analysis of the mouse Shtap gene. The redistribution observed during sperm capacitation raises the possibility that SHTAP and the SHTAP—CRISP2 complex play a role in the attainment of sperm functional competence.  相似文献   

5.
6.
Both Neurofibromatosis type I (NF1) and inclusion body myopathy with Paget''s disease of bone and frontotemporal dementia (IBMPFD) are autosomal dominant genetic disorders. These two diseases are fully penetrant but with high heterogeneity in phenotypes, suggesting the involvement of genetic modifiers in modulating patients'' phenotypes. Although NF1 is recognized as a developmental disorder and IBMPFD is associated with degeneration of multiple tissues, a recent study discovered the direct protein interaction between neurofibromin, the protein product of the NF1 gene, and VCP/p97, encoded by the causative gene of IBMPFD. Both NF1 and VCP/p97 are critical for dendritic spine formation, which provides the cellular mechanism explaining the cognitive deficits and dementia found in patients. Moreover, disruption of the interaction between neurofibromin and VCP impairs dendritic spinogenesis. Neurofibromin likely influences multiple downstream pathways to control dendritic spinogenesis. One is to activate the protein kinase A pathway to initiate dendritic spine formation; another is to regulate the synaptic distribution of VCP and control the activity of VCP in dendritic spinogenesis. Since neurofibromin and VCP/p97 also regulate cell growth and bone metabolism, the understanding of neurofibromin and VCP/p97 in neurons may be applied to study of cancer and bone. Statin treatment rescues the spine defects caused by VCP deficiency, suggesting the potential role of statin in clinical treatment for these two diseases.  相似文献   

7.
BACKGROUND INFORMATION: The alpha- and beta-spectrin chains constitute the filaments of the spectrin-based skeleton, which was first identified in erythrocytes. The discovery of analogous structures at plasma membranes of eukaryotic cells has led to investigations of the role of this spectrin skeleton in many cellular processes. The alphaII-spectrin chain expressed in nucleated cells harbours in its central region several functional motifs, including an SH3 (Src homology 3) domain. RESULTS: Using yeast two-hybrid screening, we have identified EVL [Enabled/VASP (vasodilator-stimulated phosphoprotein)-like protein] as a new potential partner of the alphaII-spectrin SH3 domain. In the present study, we investigated the interaction of the alphaII-spectrin SH3 domain with EVL and compared this with other proteins related to EVL [Mena (mammalian Enabled) and VASP]. We confirmed the in vitro interaction between EVL and the alphaII-spectrin SH3 domain by GST (glutathione S-transferase) pull-down assays, and showed that the co-expression of EVL with the alphaII-spectrin SH3 domain in COS-7 cells resulted in the partial delocalization of the SH3 domain from cytoplasm to filopodia and lamellipodia, where it was co-localized with EVL. In kidney epithelial and COS-7 cells, we demonstrated the co-immunoprecipitation of the alphaII-spectrin chain with over-expressed EVL. Immunofluorescence studies showed that the over-expression of EVL in COS-7 cells promoted the formation of filopodia and lamellipodia, and the expressed EVL was detected in filopodial tips and the leading edge of lamellipodia. In these cells over-expressing EVL, the alphaII-spectrin membrane labelling lagged behind EVL staining in lamellipodia and filopodia, with co-localization of these two stains in the contact area. In kidney epithelial cell lines, focused co-localization of spectrin with expressed EVL was observed in the membrane of the lateral domain, where the cell-cell contacts are reinforced. CONCLUSIONS: The possible link between the spectrin-based skeleton and actin via the EVL protein suggests a new way of integrating the spectrin-based skeleton in areas of dynamic actin reorganization.  相似文献   

8.
There is emerging evidence that C1 domains, motifs originally identified in PKC isozymes and responsible for binding of phorbol esters and diacylglycerol, interact with the Golgi/endoplasmic reticulum protein p23 (Tmp21). In this study, we investigated whether PKCδ, a kinase widely implicated in apoptosis and inhibition of cell cycle progression, associates with p23 and determined the potential functional implications of this interaction. Using a yeast two-hybrid approach, we found that the PKCδ C1b domain associates with p23 and identified two key residues (Asp(245) and Met(266)) implicated in this interaction. Interestingly, silencing p23 from LNCaP prostate cancer cells using RNAi markedly enhanced PKCδ-dependent apoptosis and activation of PKCδ downstream effectors ROCK and JNK by phorbol 12-myristate 13-acetate. Moreover, translocation of PKCδ to the plasma membrane by phorbol 12-myristate 13-acetate was enhanced in p23-depleted LNCaP cells. Notably, a PKCδ mutant that failed to interact with p23 triggered a strong apoptotic response when expressed in LNCaP cells. In summary, our data compellingly support the concept that C1 domains have dual roles both in lipid and protein associations and provide strong evidence that p23 acts as an anchoring protein that retains PKCδ at the perinuclear region, thus limiting the availability of this kinase for activation in response to stimuli.  相似文献   

9.
10.
All-trans-retinoic acid (ATRA) and arsenic trioxide (ATO) induce differentiation and apoptosis in acute promyelocytic leukemia (APL) cells. Here we investigated the role and regulation of death-associated protein-5 (DAP5/p97/NAT1), a novel inhibitor of translational initiation, in APL cell differentiation and apoptosis. We found that ATRA markedly induced DAP5/p97 protein and gene expression and nuclear translocation during terminal differentiation of APL (NB4) and HL60 cells but not differentiation-resistant cells (NB4.R1 and HL60R), which express very low levels of DAP5/p97. At the differentiation inducing concentrations, ATO (<0.5 μM), dimethyl sulfoxide, 1,25-dihydroxy-vitamin-D3, and phorbol-12-myristate 13-acetate also significantly induced DAP5/p97 expression in NB4 cells. However, ATO administered at apoptotic doses (1–2 μM) induced expression of DAP5/p86, a proapoptotic derivative of DAP5/p97. ATRA and ATO-induced expression of DAP5/p97 was associated with inhibition of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Furthermore, DAP5/p97 expression was upregulated by inhibition of the PI3K/Akt/mammalian target of rapamycin (mTOR) pathway via LY294002 and via rapamycin. Finally, knockdown of DAP5/p97 expression by small interfering RNA inhibited ATRA-induced granulocytic differentiation and ATO-induced apoptosis. Together, our data reveal new roles for DAP5/p97 in ATRA-induced differentiation and ATO-induced apoptosis in APL and suggest a novel regulatory mechanism by which PI3K/Akt/mTOR pathway inhibition mediates ATRA- and ATO-induced expression of DAP5/p97. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. B. Ozpolat and U. Akar contributed equally.  相似文献   

11.
BACKGROUND INFORMATION: The c-Met-dependent, beta-actin-rich, blebbed pseudopodia of MSV-MDCK-INV (invasive Moloney-sarcoma-virus-transformed Madin-Darby canine kidney) cells are induced by Rho/ROCK (Rho kinase) activation, and are morphologically distinct from flat extended lamellipodia. RESULTS: Microtubules were shown to extend to these actin-rich pseudopodial domains, and microtubule depolymerization by nocodazole treatment resulted in progressive cellular blebbing, initiating in the pseudopodial domains and resulting in transient cellular rounding and blebbing after 30 min. The blebbing response was dependent on autocrine HGF (hepatocyte growth factor) activation of c-Met and prevented by inhibition of RhoA, ROCK and p38 MAPK (p38 mitogen-activated protein kinase), but not ERK (extracellular-signal-regulated kinase) or PI3K (phosphoinositide 3-kinase). Phospho-p38 MAPK was present in pseudopodia, localizing activation of this signalling pathway to this protrusive membrane structure. In serum-starved cells, LPA (lysophosphatidic acid) activation of RhoA induced p38 MAPK-dependent pseudopodial protrusions, and inhibition of p38 MAPK prevented pseudopodial protrusion and displacement of MSV-MDCK-INV cells. MSV-MDCK-INV cells exhibited intermittent blebbing and rounding, which may represent an integral part of their motile behaviour. CONCLUSIONS: The localized activation of an autocrine HGF/c-Met loop regulates Rho/ROCK activation of p38 MAPK signalling to stimulate both membrane blebbing and pseudopod formation.  相似文献   

12.
Ribosomal biogenesis is correlated with cell cycle, cell proliferation, cell growth and tumorigenesis. Some oncogenes and tumor suppressors are involved in regulating the formation of mature ribosome and affecting the ribosomal biogenesis. In previous studies, the mitochondrial ribosomal protein L41 was reported to be involved in cell proliferation regulating through p21(WAF1/CIP1) and p53 pathway. In this report, we have identified a mitochondrial ribosomal protein S36 (mMRPS36), which is localized in the mitochondria, and demonstrated that overexpression of mMRPS36 in cells retards the cell proliferation and delays cell cycle progression. In addition, the mMRPS36 overexpression induces p21(WAF1/CIP1) expression, and regulates the expression and phosphorylation of p53. Our result also indicate that overexpression of mMRPS36 affects the mitochondrial function. These results suggest that mMRPS36 plays an important role in mitochondrial ribosomal biogenesis, which may cause nucleolar stress, thereby leading to cell cycle delay.  相似文献   

13.
Insulin-like growth factor binding protein (IGFBP)-6 has been reported to inhibit differentiation of myoblasts and osteoblasts. In the current study, we explored the mechanisms underlying IGFBP-6 effects on osteoblast differentiation. During MC3T3-E1 osteoblast differentiation, we found that IGFBP-6 protein was down-regulated. Overexpression of IGFBP-6 in MC3T3-E1 and human bone cells inhibited nodule formation, osteocalcin mRNA expression and ALP activity. Furthermore, accumulation of IGFBP-6 in the culture media was not required for any of these effects suggesting that IGFBP-6 suppressed osteoblast differentiation by an intracellular mechanism. A yeast two-hybrid screen of an osteosarcoma library was conducted to identify intracellular binding partners to account for IGFBP-6 inhibitory effects on osteoblast differentiation. LIM mineralizing protein (LMP-1) was identified as a high affinity IGFBP-6 binding partner. Physical interaction between IGFBP-6 and LMP-1 was confirmed by co-immunoprecipitation. Fluorescent protein fusion constructs for LMP-1 and IGFBP-6 were transiently transfected into osteoblasts to provide evidence of subcellular locations for each protein. Coexpression of LMP-1-GFP and IGFBP-6-RFP resulted in overlapping subcellular localization of LMP-1 and IGFBP-6. To determine if there was a functional association of IGFBP-6 and LMP-1 as well as a physical association, we studied the effect of IGFBP-6, LMP-1 and their combination on type I procollagen promoter activity. LMP-1 increased promoter activity while IGFBP-6 reduced promoter activity, and coexpression of LMP-1 with IGFBP-6 abrogated IGFBP-6 suppression. These studies provide evidence that overexpression of IGFBP-6 suppresses human and murine osteoblast differentiation, that IGFBP-6 and LMP-1 physically interact, and supports the conclusion that this interaction may be functionally relevant.  相似文献   

14.
Protein kinase(s) have been identified for the first time in Microsporum gypseum. It phosphorylated exogenous protein acceptors preferentially histone IIs and casein and are mainly localized in the cytosolic fraction of M. gypseum. Alterations in protein kinase activity was observed in calcium/aminophylline and atropine (cAMP modulators) grown cells which is due to the modulation in the Ca2+/cAMP levels. Alteration in the protein kinase(s) activity finally affected the total phospholipid content in these modulated cells of M. gypseum. These observations suggest a correlation between the activity of protein kinase(s) and phospholipid synthesis in M. gypseum. This protein kinase(s) has a broad substrate specificity and is a seryl-threonyl type protein kinase(s) as it phosphorylates exogenous (histone) and endogenous proteins at serine and threonine residues.  相似文献   

15.
Ascidians release sperm and eggs simultaneously, but self-fertilization is effectively blocked by unknown mechanisms. We previously reported that a 70-kDa sperm receptor HrVC70 on the egg vitelline coat (VC) consisting of 12 EGF-like repeats is a candidate self/nonself recognition molecule during fertilization of the ascidian, Halocynthia roretzi. Here, we report that Halocynthia aurantium also utilizes a homolog (HaVC80) of HrVC70 as an allorecognizable sperm receptor. HaVC80 is attached to the VC during the acquisition of self-sterility and is detached from the VC by acid treatment, allowing self-fertilization. A cDNA clone of the HaVC80 precursor, HaVC130, consists of 3726 nucleotides and encodes an open reading frame of 1208 amino acids. The structure of HaVC130 is very similar to the HrVC70 precursor HrVC120, but the number of EGF-like repeats of HaVC130/VC80 is one repeat larger than that of HrVC120/VC70. There are several amino acid substitutions between different individuals, and two alleles of the HaVC80 sequence were detected in each individual. Genomic DNA sequence analysis reveals that each EGF-like domain corresponds to a specific exon, and HaVC130 may have been evolutionarily generated from HrVC120 by duplication of the 8th EGF-like repeat. The data support the hypothesis that HaVC80 is a highly polymorphic protein responsible for self-sterility in H. aurantium.  相似文献   

16.
The role of hyaluronan binding protein 1 (HABP1) in cell signaling was investigated and in vitro kinase assay demonstrated that it is a substrate for MAP kinase. Phosphorylation of endogenous HABP1 was also observed following treatment of J774 cells with PMA. HABP1 was coimmunoprecipitated with activated ERK, confirming their physical interaction in the cellular context. Upon PMA stimulation of normal rat fibroblast (F111) and transformed (HeLa) cells, the HABP1 level in the cytoplasm gradually decreased with a parallel increase in the nucleus. In HeLa cells, within 6 h of PMA treatment, HABP1 was completely translocated to the nucleus, which was prevented by PD98059, a selective inhibitor of ERK. We also observed that the nuclear translocation of HABP1 is concurrent with that of ERK, suggesting that ERK activation is a requirement for the translocation of HABP1. It is thus established for the first time that HABP1 is a substrate for ERK and an integral part of the MAP kinase cascade.  相似文献   

17.
HIV-1 integrase is a unique promising component of the viral replication cycle, catalyzing the integration of reverse transcribed viral cDNA into the host cell genome. Generally, IN activity requires both viral as well as a cellular co-factor in the processing replication cycle. Among them, the human lens epithelium-derived growth factor (LEDGF/p75) represented as promising cellular co-factor which supports the viral replication by tethering IN to the chromatin. Due to its major importance in the early steps of HIV replication, the interaction between IN and LEDGF/p75 has become a pleasing target for anti-HIV drug discovery. The present study involves the finding of novel inhibitor based on the information of dimeric CCD of IN in complex with known inhibitor, which were carried out by applying a structure-based virtual screening concept with molecular docking. Additionally, Free binding energy, ADME properties, PAINS analysis, Density Functional Theory, and Enrichment Calculations were performed on selected compounds for getting a best lead molecule. On the basis of these analyses, the current study proposes top 3 compounds: Enamine-Z742267384, Maybridge-HTS02400, and Specs-AE-848/37125099 with acceptable pharmacological properties and enhanced binding affinity to inhibit the interaction between IN and LEDGF/p75. Furthermore, Simulation studies were carried out on these molecules to expose their dynamics behavior and stability. We expect that the findings obtained here could be future therapeutic agents and may provide an outline for the experimental studies to stimulate the innovative strategy for research community.  相似文献   

18.
Helicobacter pylori, the main cause of chronic gastritis, plays a central role in the etiology of peptic ulcer disease and gastric cancer. In vitro studies have shown that H. pylori increases gastric epithelial cell turnover, thus increasing the risk for the development of neoplastic clones. The mechanisms by which H. pylori promotes perturbation of cell proliferation are not yet elucidated. To investigate whether products released by H. pylori in culture media interfere with cell cycle progression of human gastric epithelial cells, four cell lines (MKN 28, MKN 7, MKN 74, and AGS) were incubated in the presence of H. pylori broth culture filtrate. Cell cycle analysis showed that a H. pylori-released factor(s) significantly inhibited the G1- to S-phase progression of MKN 28 and MKN 7 cell lines, with a reversible, nonlethal mechanism, independent of the expression of VacA, CagA, and/or urease. The cell cycle inhibition occurred concomitantly with an increase in p27(KIP1) protein levels, a reduction in Rb protein phosphorylation on serine residues 807-811, and a significant decrease in cyclin E-associated cdk2 activity. In contrast, the cell cycle progression of MKN 74 and AGS cell lines was not affected by the H. pylori-released factor(s). In normal human fibroblasts, G1-phase cell accumulation was concomitant with the reduction in Rb protein phosphorylation; that, however, appeared to be dependent on p21(WAF1/CIP1) rather than on p27(KIP1) protein. A preliminary characterization showed that the molecular mass of the partially purified cell cycle inhibitory factor(s) was approximately 40 kDa. These results suggest that H. pylori releases a soluble factor(s) that may affect cell cycle progression of gastric epithelial cells through elevated levels of cdk inhibitor p27(KIP1). This factor(s) might act in vivo on noncolonized distant cells, the most proliferating cells of human gastric mucosa.  相似文献   

19.
探讨FGFR1OP和p57/Kip2在非小细胞肺癌中的表达情况。选取58倒非小细胞肺癌手术切除标本,采用SP法进行免疫组织化学染色。FGFR1OP和p57/Kip2在肺癌中的阳性表达率分别为91.4%和56.9%。FGFR1OP的表达强度与肿瘤的分化程度、病理类型密切相关,在低分化腺癌(P=0.003)和低分化鳞癌(P=0.001)中的表达强度要高于高分化的腺癌和鳞癌,在鳞癌中的表达强度高于腺癌(P=0.002);与之相反,p57/Kip2随着肿瘤分化程度降低(腺癌P=0.008,鳞癌P=0.000),表达强度也显著下降,在鳞癌中的表达强度要低于腺癌(P=0.000)。FGFR1OP的高表达与p57/Kip2的低表达可能参与肿瘤的生长分化和进展,并提示预后不良。  相似文献   

20.
BRCA2 and CDKN1A(p21,CIP1)-interacting protein (BCCIP) is an evolutionary conserved protein implicated in maintenance of genome stability and cell cycle progression. Two isoforms of BCCIP with distinct C-terminal domains exist in humans. We show that mammalian BCCIPβ, but not BCCIPα, forms a ternary complex with the ribosomal protein RPL23/uL14 and the pre-60S trans-acting factor eIF6. Complex formation is dependent on an intact C-terminal domain of BCCIPβ. Depletion of BCCIPβ reduces the pool of free RPL23, and decreases eIF6 levels in nucleoli. Overexpression of BCCIPβ leads to nucleoplasmic accumulation of extra-ribosomal RPL23 and stabilizes overexpressed RPL23, suggesting that BCCIPβ functions as nuclear chaperone for RPL23.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号