首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A 32P-labeled fragment of DNA, encoding the major part of the chromosomal ampC beta-lactamase gene of Escherichia coli K-12, was used as a hybridization probe for homologous DNA sequences in colonies of Neisseria gonorrhoeae, Pseudomonas aeruginosa, and different enterobacterial species. The ampC probe detected the presence of homologous DNA sequences in clinical isolates of E. coli, Shigella flexneri, Shigella sonnei, Klebsiella pneumoniae, Salmonella typhimurium, Serratia marcescens, and P. aeruginosa. No hybridization was found with N. gonorrhoeae colonies. In Southern blotting experiments the ampC probe hybridized to chromosomal DNA fragments of the same size in all enterobacterial species tested. However, the degree of hybridization differed with DNA from different species. DNA from the Shigella species strongly hybridized to the ampC probe. Furthermore, antibodies raised against purified E. coli K-12 ampC beta-lactamase precipitated beta-lactamases from the Shigella species, suggesting extensive sequence similarities between the ampC genes of these genera. The production of chromosomal beta-lactamase in S. sonnei increased with increasing growth rate similar to E. coli K-12. This growth rate response was abolished in two beta-lactamase-hyperproducing S. sonnei mutants, which thus seem similar to E. coli K-12 attenuator mutants. We propose that both the structure and regulation of the chromosomal beta-lactamase genes are very similar in E. coli and in S. sonnei.  相似文献   

2.
Enterobacter cloacae CHE, a clinical strain with overproduced cephalosporinase was found to be highly resistant to the new cephalosporins, cefepime and cefpirome (MICs> or =128 microg ml(-1)). The strain was isolated from a child previously treated with cefepime. The catalytic efficiency of the purified enzyme with the third-generation cephalosporins, cefepime and cefpirome, was 10 times higher than that with the E. cloacae P99 enzyme. This was mostly due to a decrease in K(m) for these beta-lactams. The clinical isolate produced large amounts of the cephalosporinase because introduction of the ampD gene decreased ampC expression and partially restored the wild-type phenotype. Indeed, MICs of cefepime and cefpirome remained 10 times higher than those for a stable derepressed clinical isolate (OUDhyp) transformed with an ampD gene. Sequencing of the ampC gene showed that 18 nucleotides had been deleted, corresponding to the six amino acids SKVALA (residues 289--294). According to the crystal structure of P99 beta-lactamase, this deletion was located in the H-10 helix. The ampR-ampC genes from the clinical isolates CHE and OUDhyp were cloned and expressed in Escherichia coli JM101. The MICs of cefpirome and cefepime of E. coli harboring ampC and ampR genes from CHE were 100--200 times higher than those of E. coli harboring ampC and ampR genes from OUDhyp. This suggests that the deletion, confirmed by sequencing of the ampC gene, is involved in resistance to cefepime and cefpirome. However, the high level of resistance to cefepime and cefpirome observed in the E. cloacae clinical isolate was due to a combination of hyperproduction of the AmpC beta-lactamase and structural modification of the enzyme. This is the first example of an AmpC variant conferring resistance to cefepime and cefpirome, isolated as a clinical strain.  相似文献   

3.
4.
Sequence elements determining ampC promoter strength in E. coli   总被引:13,自引:1,他引:12       下载免费PDF全文
A number of spontaneous up-promoter mutations have been isolated in the ampC beta-lactamase gene of Escherichia coli. The mutants were analyzed by DNA sequencing, and the level of ampC gene expression was determined. Six mutants with a 21-fold increase in promoter strength compared with the wild-type were mutated in the -35 promoter region from TTGTCA to the consensus sequence TTGACA . The -10 region sequence TACAAT was mutated to the consensus sequence TATAAT in three mutants exhibiting an ampC promoter seven times stronger than the wild-type. We have previously described a 1-bp insertion mutant ( Jaurin et al., 1981) that changes the inter-region distance to the consensus 17 bp. Thus, all the up-mutations found in the ampC promoter represent corrections of the three major discrepancies between the ampC promoter and the consensus E. coli promoter. We conclude that the three consensus elements of E. coli promoters, the -35 and -10 regions and an optimal inter-region distance of 17 bp, are the main elements determining the promoter strength.  相似文献   

5.
6.
7.
8.
9.
AIMS: To better understand antibiotic resistance of Enterobacter cloacae isolates originated from food animals, the phenotypic and genotypic resistance of Ent. cloacae isolates from retail ground beef, cattle farm, processing facilities and clinical settings were investigated. METHODS AND RESULTS: The ampC, ampD and ampR genes in the isolates were sequenced and analysed. beta-Lactamase activities and beta-lactamase profiles of the isolates were analysed by the enzymatic hydrolysis of nitrocefin and isoelectric focussing, respectively. The ampC gene of the Ent. cloacae isolate was cloned and transformed into Escherichia coli strains. The genomic DNA profiles of Ent. cloacae isolates were analysed by using pulse field gel electrophoresis (PFGE). Mutation at one residue (Val-54-->Ile) in the AmpR amino acid sequence was consistently found in Ent. cloacae isolates that were resistant to a broadspectrum of beta-lactam agents. The enzyme activity in the isolates was induced by cefoxitin. The pI (isoelectric point) of the enzymes produced by the test strains ranged from 8.4 to 8.9. Cloning of ampC gene of the Ent. cloacae isolate conferred the resistance to ampicillin, cephalothin and amoxicillin in recipient E. coli strains. One recipient of E. coli O157:H7 strain additionally acquired resistance to ceftiofur. The genomic analysis of Ent. cloacae isolates by PFGE showed that the isolates from various sources were genetically unrelated. CONCLUSIONS: The spread of diverse clones of AmpC-producing Ent. cloacae occurred in the ecosystem and retail products. SIGNIFICANCE AND IMPACT OF THE STUDY: Our findings suggested that AmpC-producing Ent. cloacae could be a contributor in spreading beta-lactamase genes in farm environments and food processing environments.  相似文献   

10.
Five hundred fifty DNA fragments 100-500 base pairs in length were cloned from total chromosomal DNA of Escherichia coli, each capable of promoting the synthesis of beta-lactamase when inserted upstream of the ampC structural gene without its own promoter in a promoter-probe plasmid. All clones in this library of putative promoters were classified based on the level of resistance to ampicillin, which ranged from 10 to more than 1,500 micrograms/ml. Most of the higher levels of drug resistance (more than 1,000 micrograms/ml) were due not only to an increase in gene expression but also to an increase in plasmid copy number. The DNA fragments which produced the highest level of drug resistance all mapped at 5.7 min on the E. coli chromosome and shared the same nucleotide sequence. In these fragments, a strong promoter was found, which carries an up stream AT-rich sequence in addition to -35 and -10 signals of the promoter consensus.  相似文献   

11.
Escherichia coli strain which contains a marker of tetracycline resistance gene (TcR) placed by P1 transduction beside the chromosomal deletion of ampC gene (delta ampC) coding for beta-lactamase was constructed. Such introduction of TcR marker permits a fast and simple selection for the transfer of delta ampC by P1 transduction into industrial E. coli strains. This approach was used for constructing an E. coli strain suitable for penicillin acylase production.  相似文献   

12.
In Citrobacter freundii and Enterobacter cloacae, synthesis of AmpC beta-lactamase is inducible by the addition of beta-lactams to the growth medium. Spontaneous mutants that constitutively overproduce the enzyme occur at a high frequency. When the C. freundii ampC beta-lactamase gene is cloned into Escherichia coli together with the regulatory gene ampR, beta-lactamase expression from the clone is inducible. Spontaneous cefotaxime-resistant mutants were selected from an E. coli strain carrying the cloned C. freundii ampC and ampR genes on a plasmid. Virtually all isolates had chromosomal mutations leading to semiconstitutive overproduction of beta-lactamase. The mutation ampD2 in one such mutant was caused by an IS1 insertion into the hitherto unknown ampD gene, located between nadC and aroP at minute 2.4 on the E. coli chromosome. The wild-type ampD allele cloned on a plasmid could fully trans-complement beta-lactamase-overproducing mutants of both E. coli and C. freundii, restoring the wild-type phenotype of highly inducible enzyme synthesis. This indicates that these E. coli and C. freundii mutants have their lesions in ampD. We hypothesize that induction of beta-lactamase synthesis is caused by blocking of the AmpD function by the beta-lactam inducer and that this leads directly or indirectly to an AmpR-mediated stimulation of ampC expression.  相似文献   

13.
14.
Specific DNA probes from Escherichia coli K-12 were used to analyze the sequence divergence of the frd and ampC operons in various species of gram-negative bacteria. These operons code for the fumarate reductase complex and the chromosomal beta-lactamase, respectively. We demonstrate that the two operons show the same general pattern of divergence, although the frd operon is considerably more conserved than is the ampC operon. The major exception is Salmonella typhimurium LT2, which shows a strong homology to the E. coli frd probe but none to the E. coli ampC probe. The operons from Citrobacter freundii and Shigella sonnei were cloned and characterized by physical mapping, Southern hybridization, and protein synthesis in minicells. In S. sonnei, as in E. coli K-12, the frd and ampC operons overlap (T. Grundstr?m and B. Jaurin, Proc. Natl. Acad. Sci. U.S.A. 79:1111-1115, 1982). Only minor discrepancies between the two operons were found over the entire frd-ampC region. In C. freundii, the ampC and frd operons do not overlap, being separated by about 1,100 base pairs. Presumably the inducible property of the C. freundii chromosomal beta-lactamase is encoded by this 1,100-base-pair DNA segment.  相似文献   

15.
Seven Escherichia coli K-12 mutants with a lowered chromosomal beta-lactamase activity were analyzed genetically. The beta-lactamase-negative mutants isolated from ampA1-carrying strains (resistant to 10 microgram of ampicillin per ml) all carried genetic lesions very close to the ampA1 mutation, which was still present. In an earlier report, two of the mutations mediating a beta-lactamase-negative phenotype (L. G. Burman, T. Park, E. B. Linstr?m, and H. G. Boman, J. Bacteriol. 116:123-130, 1973) were shown to have occurred in the structural gene for beta-lactamase, designated ampC. It is suggested that all beta-lactamase-negative mutants studied here were altered in ampC. The relative order of ampC mutations was (ampC1, ampC8)-ampC9-(ampC12, ampC14)-ampC11, and the gene order was found to be ampC-1mpA-purA. The ampA1 allele was dominant over its wild-type allele but acted only cis and not trans, suggesting that ampA is the promoter or operator region for ampC. A gene dosage effect was found for strains homozygous for ampA+ ampC+ or ampA1 ampC+. Heterozygotes carrying the ampC8 allele on the chromosome showed an apparent derepression of the episomal ampC allele, suggesting a role for beta-lactamase in its own regulation.  相似文献   

16.
To further identify the origins of plasmid-mediated cephalosporinases that are currently spreading worldwide, the chromosomal beta-lactamase genes of Citrobacter braakii, Citrobacter murliniae, Citrobacter werkmanii reference strains and of Escherichia fergusonii and Enterobacter cancerogenus clinical isolates were cloned and expressed into Escherichia coli and sequenced. These beta-lactamases had all a single pI value >8 and conferred a typical AmpC-type resistance pattern in E. coli recombinant strains. The cloned inserts obtained from genomic DNAs of each strain encoded Ambler class C beta-lactamases. The AmpC-type enzymes of C. murliniae, C. braakii and C. werkmanii shared 99%, 96% and 95% amino acid sequence identity, respectively, with chromosomal AmpC beta-lactamases from Citrobacter freundii. The AmpC-type enzyme of E. cancerogenus shared 85% amino acid sequence identity with the chromosomal AmpC beta-lactamase of Enterobacter cloacae OUDhyp and the AmpC-type enzyme of E. fergusonii shared 96% amino acid sequence identity with that of E. coli K12. The ampC genes, except for E. fergusonii, were associated with genes homologous to regulatory ampR genes of other chromosomal class C beta-lactamases that explain inducibility of beta-lactamase expression in these strains. This work provides further evidence of the molecular heterogeneity of class C beta-lactamases.  相似文献   

17.
Vibrio fischeri ATCC 7744 is an ampicillin resistant (Amp(r)) marine luminous bacterium. The MIC test indicates that V. fischeri is highly resistant to penicillins, and susceptible to cephalosporins. V. fischeri ampC gene was cloned and identified. Nucleotide sequence of an unidentified ufo gene and the ampC, ppiB genes (GenBank Accession No. AY438037) has been determined; whereas the ampC gene encodes the beta-lactamase (AmpC) and the ppiB gene encodes the peptidyl-prolyl cis-trans isomerase B. Alignment and comparison show that V. fischeri beta-lactamase is homologous to the related species'. The specific amino acid residues STFK (62nd to 65th), SDN (122nd to 124th), and D (155th) located 34 residues downstream from the SDN loop of the class A beta-lactamases are highly conserved, but the KTG is not found. V. fischeri ampC gene encoding beta-lactamase has a calculated M(r) 31,181 and comprises 283 amino acid residues (pI 5.35). There is a signal peptide of 18 amino acid residues MKIKPFLFGLIVLANNAI in the pro-beta-lactamase, which functioned for secretion; thus, the matured protein only has M(r) 29,197 and comprises 265 amino acid residues (pI 4.95). SDS-PAGE and the beta-lactamase functional assays elicit that the M(r) of the beta-lactamases are close to 29kDa. IEF and the beta-lactamase functional assays show that the beta-lactamases' pI are close to 4.8 as predicted. The results elucidate that V. fischeri ampC gene and the cloned ampC gene in Escherichia coli are the same one. The gene order of the ampC and the related genes is -ufo-(P*-intern)-ampC-ppiB--> (P*-intern: intern promoter for sub-regulation), whereas the P*-intern promoter displays the function to lead the ampC gene's expression for stress response.  相似文献   

18.
19.
Insertion of IS2 creates a novel ampC promoter in Escherichia coli   总被引:24,自引:0,他引:24  
B Jaurin  S Normark 《Cell》1983,32(3):809-816
  相似文献   

20.
Hybrid plasmids carrying the ampC gene of Escherichia coli K-12 that codes for the chromosomal beta-lactamase were physically studied. The ampC gene was mapped to a deoxyribonucleic acid segment encompassing 1,370 base pairs. The mapping was facilitated by the isolation of a plasmid carrying an insertion of the transposable element gamma delta (gamma delta) close to ampC. The ampA1 mutation, which increases the expression of ampC by a factor of about 20, was localized to a 370-base pair segment of the 1,370-base pair deoxyribonucleic acid segment that contains the ampC gene. Using a minicell protein labeling system, it was seen that plasmids carrying either ampA+, ampC, or ampA1 and ampC coded for a 36,000-dalton protein which comigrated with purified chromosomal beta-lactamase. In cells carrying plasmids that bore the ampA1 allele, the production of this protein was greater. In addition, a protein with a slightly higher molecular weight (38,000) was expressed by both ampA+ ampC and ampA1 ampC plasmids in this protein labeling system. This protein might represent a precursor form of chromosomal beta-lactamasee. From E. coli K-12 strains carrying the ampA1 allele, second-step mutants were isolated that hyperproduced chromosomal beta-lactamase. By reciprocal recombination, plasmid derivatives were isolated that carried these mutations. Two second-step regulatory mutations mapped within the same 370-base pair region as ampA1. This piece of deoxyribonucleic acid therefore contains ampA, a control sequence region for ampC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号