首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of the spleen during Babesia microti and B. hylomysci infection was investigated by examining the course of infection in both intact and splenectomized mice. The presence of the spleen was critical during the early stages of infection to control excessive multiplication of either parasite, a role taken over by other lymphoid sites as the infection progressed. Mice splenectomized prior to or within 1 week of B. microti inoculation developed extended infections with some deaths, and others were unable to check their parasitemias. All intact mice, and those splenectomized 1 week after infection with B. microti, recovered completely with subsequent development of sterile immunity. Mice splenectomized prior to or within 1 week of B. hylomysci inoculation succumbed to hyperacute infections: Some of the intact mice, and those splenectomized 12 days after infection, recovered but continued to harbor a low-grade infection with periodical recrudescences. Erythrophagocytosis of infected and uninfected erythrocytes was detected in saline preparations and impression smears of spleen and bone marrow and rarely in blood smears of infected mice. This coincided with anemia, splenomegaly, and relatively high levels of opsonizing antibodies, especially during B. microti infection. The colloidal carbon clearance method was used to investigate the phagocytic activity of the reticuloendothelial system. Carbon clearance rates increased rapidly during both infections, but peak B. hylomysci parasitemia coincided with reticuloendothelial phagocytic depression and death of the host. Babesia microti stimulated a consistently higher reticuloendothelial phagocytic activity with higher erythrophagocytosis both in the spleen and bone marrow than did B. hylomysci.  相似文献   

2.
Comparison of the effects of irradiation and splenectomy on Babesia rodhaini infection in mice. International journal for Parasitology3: 773–781. Babesia rodhaini infection was compared in irradiated, splenectomized and control mice. Although irradiation reduced the weight of the spleen by as much as 95 per cent, this reduction in size did not result in parasitaemia levels comparable to those seen in splenectomized mice, which were consistently higher. Parasitaemias were similar in irradiated and control mice, but the mean survival time in control mice was longer than that of irradiated or splenectomized mice, which were comparable. Splenectomy generally resulted in higher parasitaemias than those seen in non-splenectomized mice.Since B. rodhaini has a predeliction for invading reticulocytes, the apparent failure of irradiated mice to develop parasitaemias comparable to those of splenectomized mice, may have been due to the selective destruction of these immature red cells by irradiation.  相似文献   

3.
Irvin A. D., Young E. R. and Purnell R. E. 1978. The in vitro uptake of tritiated nucleic acid precursors by Babesia spp. of cattle and mice. International Journal for Parasitology8: 19–24. Blood and mice infected with Babesia microti and B. rodhaini, and from cattle infected with B. divergens and B. major, was incubated in Eagles medium for 24 h in the presence of tritiated purines and pyrimidines. Uptake of these compounds was assessed by liquid scintillation counting and by autoradiography. Hypoxanthine, adenosine and adenine were readily incorporated by all four species of parasites. Thymine, thymidine and uridine were generally not incorporated. Uptake of [3H]hypoxanthine by B. microti occurred within minutes of exposure to the precursor. The amount of [3H]hypoxanthine incorporated by B. rodhaini-infected erythrocytes was proportional to the percentage of parasitized cellsThe results suggest that structural analogues of hypoxanthine and other purines may be incorporated and act against intra-erythrocytic Babesia.  相似文献   

4.
In vitro treatment of Babesia microti infected erythrocytes with mitomycin C before their injection into mice prolonged the prepatent period of infection, reduced the levels of the infection in the ‘breakthrough’ parasitaemia and induced protection against reinfection. Treatment of B. microti with mitomycin C at a concentration of 25 μg ml?1 resulted in a mean peak parasitaemia of 6.2% in the infected mice compared with 46.5% in control mice injected with untreated B. microti parasites. In addition, mice survived a normally fatal B. rodhaini infection if injected with 6.2 × 107 infected erythrocytes treated with 25 μg ml?1 mitomycin C and four of five mice survived infection with 6.2 × 105 similarly treated infected erythrocytes. However, the degree of protection against B. rodhaini was dependent on the concentration of mitomycin C used to treat the parasites and treatment of 5 × 107 infected erythrocytes with 50 μg ml?1 resulted in survival of only four of the five infected mice. In addition, when 100 μg ml?1 of mitomycin C was used to treat B. rodhaini parasites, the course of infection, although delayed, was indistinguishable from that seen in the control mice and all the mice died. The latter results and the lack of efficacy of comparable numbers of heat killed parasites suggested the necessity for sufficient, non-replicating, mitomycin C treated parasites to metabolize and produce and/or present protective antigens to the host.  相似文献   

5.
Infections with Babesia rodhaini and B. microti were studied in congenitally asplenic (Dh/+) mice, surgically splenectomised mice and intact mice. Mice without spleens were more susceptible to infections than intact mice, but Dh/+ mice were less susceptible than surgically splenectomised mice, indicating that some functional splenic activity had been taken over by other tissues in Dh/+ mice. It is suggested that this functional activity may be mediated by natural killer (NK) cells, and that Dh/+ mice could prove of value in the study of babesiosis in general and NK activity in particular.Male mice were more susceptible to infection than females.  相似文献   

6.
Babesia microti is a tick-borne protozoan parasite that infects the red blood cells of mice, humans, and other mammals. The liver tissues of BALB/c mice infected with B. microti exhibit severe injury. To further investigate the molecular mechanisms underlying liver injury and liver self-repair after B. microti infection, data-independent acquisition (DIA) quantitative proteomics was used to analyse changes in the expression and phosphorylation of proteins in liver tissues of BALB/c mice during a B. microti infection period and a recovery period. The expression of FABP1 and ACBP, which are related to fatty acid transport in the liver, was downregulated after infection with B. microti, as was the expression of Acox1, Ehhadh and Acaa1a, which are crucial rate-limiting enzymes in the process of fatty acid β oxidation. The phosphorylation levels of AMP-activated protein kinase (AMPK) and Hormone-sensitive lipase (HSL) were also downregulated. In addition, the expression of PSMB9, CTSC, and other immune-related proteins was increased, reflecting an active immune regulation mechanism in the mice. The weights of mice infected with B. microti were significantly reduced, and the phosphorylation levels of IRS-1, c-Raf, mTOR, and other proteins related to growth and development were downregulated.  相似文献   

7.

Background

Understanding the induction of immune regulatory cells upon helminth infection is important for understanding the control of autoimmunity and allergic inflammation in helminth infection. Babesia microti, an intraerythrocytic protozoan of the genus Babesia, is a major cause of the emerging human disease babesiosis, an asymptomatic malaria-like disease. We examined the influence of acute B. microti infection on the development of regulatory B cells together with regulatory T cells.

Principal Findings

Our data demonstrate that B cells stimulated in vitro with B. microti produce interleukin (IL)-10. This cytokine is also secreted by B cells isolated from B. microti-infected mice in response to lipopolysaccharide stimulation. In addition, high levels of IL-10 were detected in the serum of mice after infection with B. microti. The frequency of IL-10-producing CD1dhighCD5+ regulatory B cells (Bregs) and CD4+CD25+FoxP3+ T cells increased during the course of B. microti infection. Furthermore, adoptive transfer of IL-10-producing B cells induced by B. microti infection led to increased susceptibility of recipient mice to infection with B. microti. In contrast, experiments with B cell-deficient (µMT) mice demonstrated that lack of B cells enhances susceptibility to B. microti infection.

Conclusions

This study is the first demonstration of the expansion of Bregs following infection by an intraerythrocytic protozoan parasite. These data suggest that B. microti infection in mice provides an excellent model for studying Breg-mediated immune responses and begins to elucidate the mechanism by which helminth infection regulates autoimmunity and allergic inflammation.  相似文献   

8.
SYNOPSIS. Babesia rodhaini-parasitized mouse blood exposed to varied doses of γ radiation up to 30 kRad was inoculated into mice. Mice inoculated with nonirradiated B. rodhaini developed progressive infections and died 7–11 days postinoculation. Mice infected with B. rodhaini-parasitized blood exposed to doses up to and including 22 kRad developed progressive parasitemias which were delayed in comparison to mice inoculated with non-irradiated B. rodhaini. Some mice receiving parasitized blood irradiated at 26 kRad did not develop progressive parasitemias. Progressive infections were prevented by exposure to irradiation at 30 kRad. The results of 2 separate experiments revealed that one inoculation of parasitized blood exposed to 30 kRad or higher apparently stimulated a resistance to a challenge infection with nonirradiated parasitized blood. While 20 of 20 control mice died as a result of challenging infections, 9 of 28 mice previously exposed to irradiated parasitized blood survived. The injection of irradiated nonparasitized blood did not produce a discernible acquired resistance to B. rodhaini. Presumably the irradiated parasitized blood was responsible for the development of acquired resistance to B. rodhaini.  相似文献   

9.
The pathogenesis of the disease in hamsters caused by the first human Babesia isolant, tentatively named Babesia microti, and the immunologic relationship of the organism to Babesia canis were studied. The patent phase of the disease was characterized by severe anemia and marked parasitemia which occurred between the 6th and 41st day following infection. An increase in total white cell count with a neutrophilia, eosinophilia, monocytosis, and lymphocytosis was observed during the patent phase. The patent phase was followed by development of a carrier state. This was demonstrated by relapse following splenectomy 113 days after infection. No statistically significant differences were observed between the serum profiles of infected and noninfected animals during the period monitored. A serologic relationship between B. microti and B. canis was revealed by the use of gel diffusion and indirect fluorescent antibody (IFA) tests. The IFA test was used to monitor serum antibody responses during the patent and carrier phases of the disease. Crossabsorption studies between B. canis and B. microti revealed that the two organisms possess common and specific antigens.  相似文献   

10.
Human babesiosis is an emerging tick-borne parasitic disease and blood transfusion-transmitted infection primarily caused by the apicomplexan parasite, Babesia microti. There is no licensed vaccine for B. microti and the development of a reliable serological screening test would contribute to ensuring the safety of the donated blood supply. The recent sequencing of the B. microti genome has revealed many novel genes encoding proteins that can now be tested for their suitability as subunit vaccine candidates and diagnostic serological markers. Extracellular proteins are considered excellent vaccine candidates and serological markers because they are directly exposed to the host humoral immune system, but can be challenging to express as soluble recombinant proteins. We have recently developed an approach based on a mammalian expression system that can produce large panels of functional recombinant cell surface and secreted parasite proteins. Here, we use the B. microti genome sequence to identify 54 genes that are predicted to encode surface-displayed and secreted proteins expressed during the blood stages, and show that 41 (76%) are expressed using our method at detectable levels. We demonstrate that the proteins contain conformational, heat-labile, epitopes and use them to serologically profile the kinetics of the humoral immune responses to two strains of B. microti in a murine infection model. Using sera from validated human infections, we show a concordance in the host antibody responses to B. microti infections in mouse and human hosts. Finally, we show that BmSA1 expressed in mammalian cells can elicit high antibody titres in vaccinated mice using a human-compatible adjuvant but these antibodies did not affect the pathology of infection in vivo. Our library of recombinant B. microti cell surface and secreted antigens constitutes a valuable resource that could contribute to the development of a serological diagnostic test, vaccines, and elucidate the molecular basis of host-parasite interactions.  相似文献   

11.
The effects of artesunate, a water-soluble artemisinin derivative, against Babesia species, including Babesia bovis, Babesia gibsoni and Babesia microti were studied. Cultures of B. bovis and B. gibsoni were treated with 0.26, 2.6, 26 and 260 μM artesunate, showing inhibition of parasite growth at concentrations equal to and greater than 2.6 μM artesunate by days 3 post-treatment for B. gibsoni and B. bovis in a dose-dependent manner. Consistent with in vitro experiments, artesunate was effective in the treatment of mice infected with B. microti at doses equal to and greater than 10 mg/kg of body weight on days 8–10 post-infection. Taken together, these results suggest that artesunate could be a potential drug against Babesia infection.  相似文献   

12.
Babesia microti and Borrelia burgdorferi, the respective causative agents of human babesiosis and Lyme disease, are maintained in their enzootic cycles by the blacklegged tick (Ixodes scapularis) and use the white-footed mouse (Peromyscus leucopus) as primary reservoir host. The geographic range of both pathogens has expanded in the United States, but the spread of babesiosis has lagged behind that of Lyme disease. Several studies have estimated the basic reproduction number (R 0) for B. microti to be below the threshold for persistence (<1), a finding that is inconsistent with the persistence and geographic expansion of this pathogen. We tested the hypothesis that host coinfection with B. burgdorferi increases the likelihood of B. microti transmission and establishment in new areas. We fed I. scapularis larva on P. leucopus mice that had been infected in the laboratory with B. microti and/or B. burgdorferi. We observed that coinfection in mice increases the frequency of B. microti infected ticks. To identify the ecological variables that would increase the probability of B. microti establishment in the field, we integrated our laboratory data with field data on tick burden and feeding activity in an R 0 model. Our model predicts that high prevalence of B. burgdorferi infected mice lowers the ecological threshold for B. microti establishment, especially at sites where larval burden on P. leucopus is lower and where larvae feed simultaneously or soon after nymphs infect mice, when most of the transmission enhancement due to coinfection occurs. Our studies suggest that B. burgdorferi contributes to the emergence and expansion of B. microti and provides a model to predict the ecological factors that are sufficient for emergence of B. microti in the wild.  相似文献   

13.
14.
Lymph node and spleen cells from mice infected with Babesia microti of human origin developed the ability to transfer adoptive immunity to naive mice within 25 days after infection. This protective activity was greater in cells obtained at 32 days than in cells obtained at 25 days postinfection and remained stable up to 52 days postinfection. Recipients of lymph node cells and spleen cells displayed similar peak parasitemias although 2 days after peak parasitemia, immune spleen cell recipients had significantly lower parasitemias than immune lymph node cell recipients. Strong protective activity was demonstrated when cells were transferred 1 day postinfection, while equal numbers of cells, transferred 3 days postinfection did not confer significant protection over nonimmune cells. There was also a suggestion that the number of immune spleen cells necessary for significant protection was directly related to the number of parasites inoculated. The subpopulation of lymphocytes responsible for the transfer of adoptive immunity to B. microti of human origin was then studied in BALB/c mice depleted of T lymphocytes by thymectomy and lethal irradiation. One day after infection with B. microti, T-cell-depleted mice were given complement-treated immune spleen cells, anti-θ serum-treated immune spleen cells, nonimmune spleen cells, or no cells. Similar experiments were performed comparing the effects of anti-immunoglobulin serum-treated and unfractionated immune spleen cells on B. microti parasitemia. Treatment with anti-θ serum abrogated the protective activity of immune spleen cells while anti-immunoglobulin serum treatment had no effect. These results suggest that immunologic memory of B. microti in BALB/c mice is modulated by T rather than B lymphocytes.  相似文献   

15.
The effect of dexamethason on Babesia hylomysci and B. microti was investigated in LACA mice. The drug enhanced both infections by depressing the immune mechanisms of the host when treatment was initiated before parasite inoculation, but had no effects on established and subpatent infections. The degree of parasitemia in the treated mice seemed to depend on the tropism of either parasite toward mature erythrocytes or reticulocytes. B. hylomysci, which favors mature erythrocytes, produced fulminating infections in treated mice. B. microti, which prefers reticulocytes, produced similar parasitemia patterns in treated and untreated mice, but only the treated mice succumbed to the infection. The drug, which suppressed cellular proliferation in the spleens of infected animals, together with its direct lympholytic effects, drastically changed the architecture of the organ.  相似文献   

16.
Babesia microti is one of the most common causative agents of babesiosis. A sensitive and rapid detection is necessary for screening potentially infected individuals. In this study, B. microti cytochrome c oxidase subunit I (cox1) was selected as the target gene, multiple primers were designed, and optimized by a recombinase-aided amplification (RAA) assay. The optimal primers and probe were labeled with fluorescein. The sensitivity of fluorescent RAA (fRAA) was evaluated using gradient diluents of the cox1 recombinant plasmid and genomic DNA extracted from whole blood of B. microti infected mice. The specificity of fRAA was assessed by other transfusion transmitted parasites. The analytical sensitivity of the fRAA assay was 10 copies of recombinant plasmid per reaction and 10 fg/μl B. microti genomic DNA. No cross-reaction with any other blood-transmitted parasites was observed. Our results demonstrated that the fRAA assay would be rapid, sensitive, and specific for the detection of B. microti.  相似文献   

17.
Despite the evidence suggesting that mouse pyruvate kinase (PK) deficiency provides protection against malaria in rodents, there has been no investigation of a parallel protective effect against babesiosis caused by Babesia rodhaini. Here, we examined whether a PK-deficient co-isogenic mouse strain (CBA-Pk-1slc) was protected against B. rodhaini infection. We demonstrated that deficiency in pyruvate kinase correlated with a significant protective effect, with survival rates of 50%, 58% and 56% in groups inoculated with 10, 103 and 105 parasitized erythrocytes, respectively. In contrast, control CBA (CBA-Pk-1+) mice exhibited 100% lethality, regardless of the infectious dose. In addition, CBA-Pk-1slc mice showed decreased levels of parasitemia when compared to CBA-Pk-1+ mice, in groups given 10, 103 or 105 parasitized erythrocytes. These results indicate that similar to PK deficiency in rodents, PK deficiency in mice affects the in vivo growth of B. rodhaini and protects the mice from lethal babesiosis.  相似文献   

18.
We have sequenced the genome of the emerging human pathogen Babesia microti and compared it with that of other protozoa. B. microti has the smallest nuclear genome among all Apicomplexan parasites sequenced to date with three chromosomes encoding ∼3500 polypeptides, several of which are species specific. Genome-wide phylogenetic analyses indicate that B. microti is significantly distant from all species of Babesidae and Theileridae and defines a new clade in the phylum Apicomplexa. Furthermore, unlike all other Apicomplexa, its mitochondrial genome is circular. Genome-scale reconstruction of functional networks revealed that B. microti has the minimal metabolic requirement for intraerythrocytic protozoan parasitism. B. microti multigene families differ from those of other protozoa in both the copy number and organization. Two lateral transfer events with significant metabolic implications occurred during the evolution of this parasite. The genomic sequencing of B. microti identified several targets suitable for the development of diagnostic assays and novel therapies for human babesiosis.  相似文献   

19.
Serum opsonins and the passive transfer of protection in Babesia rodhaini infections of rats. International Journal for Parasitology4: 197–201. An investigation into the protective activity of serum from rats immune to B. rodhaini and the role played by opsonins in that activity was undertaken. One, three and six infections with B. rodhaini resulted in corresponding increases in the titre of specific protective antibody demonstrable by the administration of immune serum to rats. Drug control of infection resulted in a lower level of protective activity than that which developed when rats controlled infection unaided. Protective activity following recovery from a single drug controlled infection was undiminished 20 weeks after infection.Serum opsonins were detected in an in vitro culture system of normal rat peritoneal macrophages and these antibodies were specific for parasitized erythrocytes. It is suggested that opsonins were largely responsible for the protective effect demonstrated by assay in rats but that their importance, relative to other antibodies with a possible protective function, in the development of acquired immunity remains to be determined.  相似文献   

20.
Mice concurrently infected with the rodent piroplasms Babesia hylomysci or B. microti during a primary infection with the nematode Trichuris muris showed marked immunodepression, and the normal immune expulsion of the nematode was delayed. Immunodepression was most severe when the Babesia infections reached peak parasitaemia during the preexpulsion phase of the worm infection. Decline in parasitaemia to subpatent levels was associated with a reappearance of the immune response and expulsion of the worm. Babesia infections had little effect upon the expulsion of challenge infections of T. muris from mice previously immunized against the worm. Acute Babesia infections were found to exert a profound immunodepressive effect upon the agglutinating antibody response of mice to sheep red blood cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号