首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 923 毫秒
1.
Summary. In the postgenomic era new technologies are emerging for global analysis of protein function. The introduction of active site-directed chemical probes for enzymatic activity profiling in complex mixtures, known as activity-based proteomics has greatly accelerated functional annotation of proteins. Here we review probe design for different enzyme classes including serine hydrolases, cysteine proteases, tyrosine phosphatases, glycosidases, and others. These probes are usually detected by their fluorescent, radioactive or affinity tags and their protein targets are analyzed using established proteomics techniques. Recent developments, such as the design of probes for in vivo analysis of proteomes, as well as microarray technologies for higher throughput screenings of protein specificity and the application of activity-based probes for drug screening are highlighted. We focus on biological applications of activity-based probes for target and inhibitor discovery and discuss challenges for future development of this field.  相似文献   

2.
Traditional proteomics methodology allows global analysis of protein abundance but does not provide information on the regulation of protein activity. Proteases, in particular, are known for their multilayered post-translational activity regulation that can lead to a significant difference between protease abundance levels and their enzyme activity. To address these issues, the field of activity-based proteomics has been established in order to characterize protein activity and monitor the functional regulation of enzymes in complex proteomes. In this review, we present structural features of activity-based probes for proteases and discuss their applications in proteomic profiling of various catalytic classes of proteases.  相似文献   

3.
Traditional proteomics methodology allows global analysis of protein abundance but does not provide information on the regulation of protein activity. Proteases, in particular, are known for their multilayered post-translational activity regulation that can lead to a significant difference between protease abundance levels and their enzyme activity. To address these issues, the field of activity-based proteomics has been established in order to characterize protein activity and monitor the functional regulation of enzymes in complex proteomes. In this review, we present structural features of activity-based probes for proteases and discuss their applications in proteomic profiling of various catalytic classes of proteases.  相似文献   

4.
Proteomics research requires methods to characterize the expression and function of proteins in complex mixtures. Toward this end, chemical probes that incorporate known affinity labeling agents have facilitated the activity-based profiling of certain enzyme families. To accelerate the discovery of proteomics probes for enzyme classes lacking cognate affinity labels, we describe here a combinatorial strategy. Members of a probe library bearing a sulfonate ester chemotype were screened against complex proteomes for activity-dependent protein reactivity, resulting in the labeling of at least six mechanistically distinct enzyme classes. Surprisingly, none of these enzymes represented targets of previously described proteomics probes. The sulfonate library was used to identify an omega-class glutathione S-transferase whose activity was upregulated in invasive human breast cancer lines. These results indicate that activity-based probes compatible with whole-proteome analysis can be developed for numerous enzyme classes and applied to identify enzymes associated with discrete pathological states.  相似文献   

5.
To develop a reproducible tissue lysis method that retains enzyme function for activity-based protein profiling, we compared four different methods to obtain protein extracts from bovine lung tissue: focused ultrasonication, standard sonication, mortar & pestle method, and homogenization combined with standard sonication. Focused ultrasonication and mortar & pestle methods were sufficiently effective for activity-based profiling of deubiquitinases in tissue, and focused ultrasonication also had the fastest processing time. We used focused-ultrasonicator for subsequent activity-based proteomic analysis of deubiquitinases to test the compatibility of this method in sample preparation for activity-based chemical proteomics.  相似文献   

6.
The recent dramatic improvements in high-resolution mass spectrometry (MS) have revolutionized the speed and scope of proteomic studies. Conventional MS-based proteomics methodologies allow global protein profiling based on expression levels. Although these techniques are promising, there are numerous biological activities yet to be unveiled, such as the dynamic regulation of enzyme activity. Chemical proteomics is an emerging field that extends these types proteomic profiling. In particular, activity-based protein profiling (ABPP) utilizes small-molecule probes to monitor enzyme activity directly in living intact subjects. In this mini-review, we summarize the unique roles of smallmolecule probes in proteomics studies and highlight some recent examples in which this principle has been applied. [BMB Reports 2014; 47(3): 149-157]  相似文献   

7.
The broad inhibitory spectrum of aldehydes and the possibility that amino acid residues modulate their specificity point to the potential of using peptidyl aldehydes as activity-based probes. Here, we establish the potential of peptidyl aldehydes in activity-based proteomics by synthesizing different probes and using them to specifically label a well-known serine protease in an activity-dependent manner. From our results, peptidyl aldehydes emerge as promising activity-based probes that enable multiple enzymatic-class detection by substrate recognition and can be used in diverse activity-based proteomics applications like protein identification and activity profiling.  相似文献   

8.
Many tumor cells have elevated levels of hydrolytic and proteolytic enzymes, presumably to aid in key processes such as angiogenesis, cancer cell invasion, and metastasis. Functional roles of enzymes in cancer progression are difficult to study using traditional genomic and proteomic methods because the activities of these enzymes are often regulated by post-translational mechanisms. Thus, methods that allow for the direct monitoring of enzyme activity in a physiologically relevant environment are required to better understand the roles of specific players in the complex process of tumorigenesis. This review highlights advances in the field of activity-based proteomics, which uses small molecules known as activity-based probes (ABPs) that covalently bind to the catalytic site of target enzymes. We discuss the application of ABPs to cancer biology, especially to the discovery of tumor biomarkers, the screening of enzyme inhibitors, and the imaging of enzymes implicated in cancer.  相似文献   

9.
The field of activity-based proteomics is a relatively new discipline that makes use of small molecules, termed activity-based probes (ABPs), to tag and monitor distinct sets of proteins within a complex proteome. These activity-dependant labels facilitate analysis of systems-wide changes at the level of enzyme activity rather than simple protein abundance. While the use of small molecule inhibitors to label enzyme targets is not a new concept, the past ten years have seen a rapid expansion in the diversity of probe families that have been developed. In addition to increasing the number and types of enzymes that can be targeted by this method, there has also been an increase in the number of methods used to visualize probes once they are bound to target enzymes. In particular, the use of small organic fluorophores has created a wealth of applications for ABPs that range from biochemical profiling of diverse proteomes to direct imaging of active enzymes in live cells and even whole animals. In addition, the advent of new bioorthogonal coupling chemistries now enables a diverse array of tags to be added after targets are labeled with an ABP. This strategy has opened the door to new in vivo applications for activity-based proteomic methods.  相似文献   

10.
The availability of complete genome sequences for a large number of pathogenic organisms has opened the door for large-scale proteomic studies to dissect both protein expression/regulation and function. This review highlights key proteomic methods including two-dimensional gel electrophoresis, reference mapping, protein expression profiling and recent advances in gel-free separation techniques that have made a significant impact on the resolution of complex proteomes. In addition, we highlight recent developments in the field of chemical proteomics, a branch of proteomics aimed at functionally profiling a proteome. These techniques include the development of activity-based probes and activity-based protein profiling methods as well as the use of synthetic small molecule libraries to screen for pharmacological tools to perturb basic biological processes. This review will focus on the applications of these technologies to the field of microbiology.  相似文献   

11.
Chemical probes that covalently modify the active sites of enzymes in complex proteomes are useful tools for identifying enzyme activities associated with discrete (patho) physiological states. Researchers in proteomics typically use two types of activity-based probes to fulfill complementary objectives: fluorescent probes for rapid and sensitive target detection and biotinylated probes for target purification and identification. Accordingly we hypothesized that a strategy in which the target detection and target isolation steps of activity-based proteomic experiments were merged might accelerate the characterization of differentially expressed protein activities. Here we report the synthesis and application of trifunctional chemical proteomic probes in which elements for both target detection (e.g. rhodamine) and isolation (e.g. biotin) are appended to a sulfonate ester reactive group, permitting the consolidated visualization and affinity purification of labeled proteins by a combination of in-gel fluorescence and avidin chromatography procedures. A trifunctional phenyl sulfonate probe was used to identify several technically challenging protein targets, including the integral membrane enzyme 3beta-hydroxysteroid dehydrogenase/Delta5-isomerase and the cofactor-dependent enzymes platelet-type phosphofructokinase and type II tissue transglutaminase. The latter two enzyme activities were significantly up-regulated in the invasive estrogen receptor-negative (ER(-)) human breast cancer cell line MDA-MB-231 relative to the non-invasive ER(+) breast cancer lines MCF7 and T-47D. Collectively these studies demonstrate that chemical proteomic probes incorporating elements for both target detection and target isolation fortify the important link between the visualization of differentially expressed enzyme activities and their subsequent molecular identification, thereby augmenting the information content achieved in activity-based profiling experiments.  相似文献   

12.
Achieving information content of satisfactory breadth and depth remains a formidable challenge for proteomics. This problem is particularly relevant to the study of primary human specimens, such as tumor biopsies, which are heterogeneous and of finite quantity. Here we present a functional proteomics strategy that unites the activity-based protein profiling and multidimensional protein identification technologies (ABPP-MudPIT) for the streamlined analysis of human samples. This convergent platform involves a rapid initial phase, in which enzyme activity signatures are generated for functional classification of samples, followed by in-depth analysis of representative members from each class. Using this two-tiered approach, we identified more than 50 enzyme activities in human breast tumors, nearly a third of which represent previously uncharacterized proteins. Comparison with cDNA microarrays revealed enzymes whose activity, but not mRNA expression, depicted tumor class, underscoring the power of ABPP-MudPIT for the discovery of new markers of human disease that may evade detection by other molecular profiling methods.  相似文献   

13.
Proteomics in drug discovery   总被引:6,自引:0,他引:6  
Drug discovery is a prolonged process that uses a variety of tools from diverse fields. To accelerate the process, a number of biotechnologies, including genomics, proteomics and a number of cellular and organismic methodologies, have been developed. Proteomics development faces interdisciplinary challenges, including both the traditional (biology and chemistry) and the emerging (high-throughput automation and bioinformatics). Emergent technologies include two-dimensional gel electrophoresis, mass spectrometry, protein arrays, isotope-encoding, two-hybrid systems, information technology and activity-based assays. These technologies, as part of the arsenal of proteomics techniques, are advancing the utility of proteomics in the drug-discovery process.  相似文献   

14.
Background: Synthetic probes that mimic natural substrates can enable the detection of enzymatic activities in a cellular environment. One area where such activity-based probes have been applied is the ubiquitin-proteasome pathway, which is emerging as an important therapeutic target. A family of reagents has been developed that specifically label deubiquitylating enzymes (DUBs) and facilitate characterization of their inhibitors. Scope of review: Here we focus on the application of probes for intracellular DUBs, a group of specific proteases involved in the ubiquitin proteasome system. In particular, the functional characterization of the active subunits of this family of proteases that specifically recognize ubiquitin and ubiquitin-like proteins will be discussed. In addition we present the potential and design of activity-based probes targeting kinases and phosphatases to study phosphorylation. Major conclusions: Synthetic molecular probes have increased our understanding of the functional role of DUBs in living cells. In addition to the detection of enzymatic activities of known members, activity-based probes have contributed to a number of functional assignments of previously uncharacterized enzymes. This method enables cellular validation of the specificity of small molecule DUB inhibitors. General significance: Molecular probes combined with mass spectrometry-based proteomics and cellular assays represent a powerful approach for discovery and functional validation, a concept that can be expanded to other enzyme classes. This addresses a need for more informative cell-based assays that are required to accelerate the drug development process. This article is part of a Special Issue entitled: Ubiquitin Drug Discovery and Diagnostics.  相似文献   

15.
16.
Human platelets are thought to express approximately 2000-3000 proteins, but post-translational modifications, alternatively spliced variants and a rich diversity of vertebrate domain architectures likely make this a conservative estimate. Even though rapidly advancing proteomic techniques have facilitated the identification of roughly one third of the platelet proteome, a combination of abundance-based and activity-based proteomics methodologies is needed for elucidation of platelet functional characteristics including the definition of a "core proteome" and recognition of diverse enzyme activity profiles associated with various physiological states. In this review, we describe the latest mass spectrometry-based techniques capable of providing some of these physiological details required for more comprehensive evaluation of the human platelet repertoire.  相似文献   

17.
By combining activity-based proteomics and metabolomics, researchers have developed a new systems biology strategy for characterizing enzymes in the context of metabolic networks.  相似文献   

18.
Tools for target identification and validation   总被引:3,自引:0,他引:3  
  相似文献   

19.
We describe the identification of a novel, tumor-specific missense mutation in the active site of casein kinase 1α (CSNK1A1) using activity-based proteomics. Matched normal and tumor colon samples were analyzed using an ATP acyl phosphate probe in a kinase-targeted LC-MS2 platform. An anomaly in the active-site peptide from CSNK1A1 was observed in a tumor sample that was consistent with an altered catalytic aspartic acid. Expression and analysis of the suspected mutant verified the presence of asparagine in the probe-labeled, active-site peptide for CSNK1A1. Genomic sequencing of the colon tumor samples confirmed the presence of a missense mutation in the catalytic aspartic acid of CSNK1A1 (GAC→AAC). To our knowledge, the D163N mutation in CSNK1A1 is a newly defined mutation to the conserved, catalytic aspartic acid of a protein kinase and the first missense mutation identified using activity-based proteomics. The tumorigenic potential of this mutation remains to be determined.  相似文献   

20.
Quantification studies of complex protein mixtures have been restricted mainly to whole cell extracts. Here we describe the synthesis of two sets of isotope-coded activity-based probes that allow quantitative functional proteomics experiments on the cathepsins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号