首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TANDEM: matching proteins with tandem mass spectra   总被引:15,自引:0,他引:15  
SUMMARY: Tandem mass spectra obtained from fragmenting peptide ions contain some peptide sequence specific information, but often there is not enough information to sequence the original peptide completely. Several proprietary software applications have been developed to attempt to match the spectra with a list of protein sequences that may contain the sequence of the peptide. The application TANDEM was written to provide the proteomics research community with a set of components that can be used to test new methods and algorithms for performing this type of sequence-to-data matching. AVAILABILITY: The source code and binaries for this software are available at http://www.proteome.ca/opensource.html, for Windows, Linux and Macintosh OSX. The source code is made available under the Artistic License, from the authors.  相似文献   

2.
MOTIVATION: Comparing tandem mass spectra (MSMS) against a known dataset of protein sequences is a common method for identifying unknown proteins; however, the processing of MSMS by current software often limits certain applications, including comprehensive coverage of post-translational modifications, non-specific searches and real-time searches to allow result-dependent instrument control. This problem deserves attention as new mass spectrometers provide the ability for higher throughput and as known protein datasets rapidly grow in size. New software algorithms need to be devised in order to address the performance issues of conventional MSMS protein dataset-based protein identification. METHODS: This paper describes a novel algorithm based on converting a collection of monoisotopic, centroided spectra to a new data structure, named 'peptide finite state machine' (PFSM), which may be used to rapidly search a known dataset of protein sequences, regardless of the number of spectra searched or the number of potential modifications examined. The algorithm is verified using a set of commercially available tryptic digest protein standards analyzed using an ABI 4700 MALDI TOFTOF mass spectrometer, and a free, open source PFSM implementation. It is illustrated that a PFSM can accurately search large collections of spectra against large datasets of protein sequences (e.g. NCBI nr) using a regular desktop PC; however, this paper only details the method for identifying peptide and subsequently protein candidates from a dataset of known protein sequences. The concept of using a PFSM as a peptide pre-screening technique for MSMS-based search engines is validated by using PFSM with Mascot and XTandem. AVAILABILITY: Complete source code, documentation and examples for the reference PFSM implementation are freely available at the Proteome Commons, http://www.proteomecommons.org and source code may be used both commercially and non-commercially as long as the original authors are credited for their work.  相似文献   

3.
The SwePep database is designed for endogenous peptides and mass spectrometry. It contains information about the peptides such as mass, pl, precursor protein and potential post-translational modifications. Here, we have improved and extended the SwePep database with tandem mass spectra, by adding a locally curated version of the global proteome machine database (GPMDB). In peptidomic experiment practice, many peptide sequences contain multiple tandem mass spectra with different quality. The new tandem mass spectra database in SwePep enables validation of low quality spectra using high quality tandem mass spectra. The validation is performed by comparing the fragmentation patterns of the two spectra using algorithms for calculating the correlation coefficient between the spectra. The present study is the first step in developing a tandem spectrum database for endogenous peptides that can be used for spectrum-to-spectrum identifications instead of peptide identifications using traditional protein sequence database searches.  相似文献   

4.
MassMatrix is a program that matches tandem mass spectra with theoretical peptide sequences derived from a protein database. The program uses a mass accuracy sensitive probabilistic score model to rank peptide matches. The MS/MS search software was evaluated by use of a high mass accuracy dataset and its results compared with those from MASCOT, SEQUEST, X!Tandem, and OMSSA. For the high mass accuracy data, MassMatrix provided better sensitivity than MASCOT, SEQUEST, X!Tandem, and OMSSA for a given specificity and the percentage of false positives was 2%. More importantly all manually validated true positives corresponded to a unique peptide/spectrum match. The presence of decoy sequence and additional variable PTMs did not significantly affect the results from the high mass accuracy search. MassMatrix performs well when compared with MASCOT, SEQUEST, X!Tandem, and OMSSA with regard to search time. MassMatrix was also run on a distributed memory clusters and achieved search speeds of ~100 000 spectra per hour when searching against a complete human database with eight variable modifications. The algorithm is available for public searches at http://www.massmatrix.net.  相似文献   

5.
A novel hybrid methodology for the automated identification of peptides via de novo integer linear optimization, local database search, and tandem mass spectrometry is presented in this article. A modified version of the de novo identification algorithm PILOT, is utilized to construct accurate de novo peptide sequences. A modified version of the local database search tool FASTA is used to query these de novo predictions against the nonredundant protein database to resolve any low-confidence amino acids in the candidate sequences. The computational burden associated with performing several alignments is alleviated with the use of distributive computing. Extensive computational studies are presented for this new hybrid methodology, as well as comparisons with MASCOT for a set of 38 quadrupole time-of-flight (QTOF) and 380 OrbiTrap tandem mass spectra. The results for our proposed hybrid method for the OrbiTrap spectra are also compared with a modified version of PepNovo, which was trained for use on high-precision tandem mass spectra, and the tag-based method InsPecT. The de novo sequences of PILOT and PepNovo are also searched against the nonredundant protein database using CIDentify to compare with the alignments achieved by our modifications of FASTA. The comparative studies demonstrate the excellent peptide identification accuracy gained from combining the strengths of our de novo method, which is based on integer linear optimization, and database driven search methods.  相似文献   

6.

Background  

Tandem mass spectrometry (MS/MS) is a powerful tool for protein identification. Although great efforts have been made in scoring the correlation between tandem mass spectra and an amino acid sequence database, improvements could be made in three aspects, including characterization ofpeaks in spectra, adoption of effective scoring functions and access to thereliability of matching between peptides and spectra.  相似文献   

7.
Shotgun proteomics experiments are dependent upon database search engines to identify peptides from tandem mass spectra. Many of these algorithms score potential identifications by evaluating the number of fragment ions matched between each peptide sequence and an observed spectrum. These systems, however, generally do not distinguish between matching an intense peak and matching a minor peak. We have developed a statistical model to score peptide matches that is based upon the multivariate hypergeometric distribution. This scorer, part of the "MyriMatch" database search engine, places greater emphasis on matching intense peaks. The probability that the best match for each spectrum has occurred by random chance can be employed to separate correct matches from random ones. We evaluated this software on data sets from three different laboratories employing three different ion trap instruments. Employing a novel system for testing discrimination, we demonstrate that stratifying peaks into multiple intensity classes improves the discrimination of scoring. We compare MyriMatch results to those of Sequest and X!Tandem, revealing that it is capable of higher discrimination than either of these algorithms. When minimal peak filtering is employed, performance plummets for a scoring model that does not stratify matched peaks by intensity. On the other hand, we find that MyriMatch discrimination improves as more peaks are retained in each spectrum. MyriMatch also scales well to tandem mass spectra from high-resolution mass analyzers. These findings may indicate limitations for existing database search scorers that count matched peaks without differentiating them by intensity. This software and source code is available under Mozilla Public License at this URL: http://www.mc.vanderbilt.edu/msrc/bioinformatics/.  相似文献   

8.
We describe the initial characterization of the wheat amyloplast proteome, consisting of the identification and classification of 171 proteins. Whole amyloplasts and purified amyloplast membranes were prepared from wheat (Triticum aestivum). Protein extracts were examined by one-dimensional and two-dimensional electrophoresis, followed by high performance liquid chromatography-tandem mass spectrometry of separated proteins. Tandem mass spectrometry data of individual peptides was then searched by SEQUEST, using a database containing known protein sequences from both wheat and other homologous cereal crops. Using this approach we identified 108 proteins from whole amyloplasts and 63 proteins from purified amyloplast membranes. The majority of protein identifications were derived from protein sequences from cereal crops other than wheat, for which relatively little gene sequence data is available. The highest percentage of protein identifications obtained from any individual species was 46% of the total number of proteins identified, using sequence data found in our proprietary rice (Oryza sativa) genome database.  相似文献   

9.
In shotgun proteomics, protein identification by tandem mass spectrometry relies on bioinformatics tools. Despite recent improvements in identification algorithms, a significant number of high quality spectra remain unidentified for various reasons. Here we present ScanRanker, an open-source tool that evaluates the quality of tandem mass spectra via sequence tagging with reliable performance in data from different instruments. The superior performance of ScanRanker enables it not only to find unassigned high quality spectra that evade identification through database search but also to select spectra for de novo sequencing and cross-linking analysis. In addition, we demonstrate that the distribution of ScanRanker scores predicts the richness of identifiable spectra among multiple LC-MS/MS runs in an experiment, and ScanRanker scores assist the process of peptide assignment validation to increase confident spectrum identifications. The source code and executable versions of ScanRanker are available from http://fenchurch.mc.vanderbilt.edu.  相似文献   

10.
Several methods have been used to identify peptides that correspond to tandem mass spectra. In this work, we describe a data set of low energy tandem mass spectra generated from a control mixture of known protein components that can be used to evaluate the accuracy of these methods. As an example, these spectra were searched by the SEQUEST application against a human peptide sequence database. The numbers of resulting correct and incorrect peptide assignments were then determined. We show how the sensitivity and error rate are affected by the use of various filtering criteria based upon SEQUEST scores and the number of tryptic termini of assigned peptides.  相似文献   

11.
Clustering millions of tandem mass spectra   总被引:1,自引:0,他引:1  
Tandem mass spectrometry (MS/MS) experiments often generate redundant data sets containing multiple spectra of the same peptides. Clustering of MS/MS spectra takes advantage of this redundancy by identifying multiple spectra of the same peptide and replacing them with a single representative spectrum. Analyzing only representative spectra results in significant speed-up of MS/MS database searches. We present an efficient clustering approach for analyzing large MS/MS data sets (over 10 million spectra) with a capability to reduce the number of spectra submitted to further analysis by an order of magnitude. The MS/MS database search of clustered spectra results in fewer spurious hits to the database and increases number of peptide identifications as compared to regular nonclustered searches. Our open source software MS-Clustering is available for download at http://peptide.ucsd.edu or can be run online at http://proteomics.bioprojects.org/MassSpec.  相似文献   

12.
Most existing Mass Spectra (MS) analysis programs are automatic and provide limited opportunity for editing during the interpretation. Furthermore, they rely entirely on publicly available databases for interpretation. VEMS (Virtual Expert Mass Spectrometrist) is a program for interactive analysis of peptide MS/MS spectra imported in text file format. Peaks are annotated, the monoisotopic peaks retained, and the b-and y-ion series identified in an interactive manner. The called peptide sequence is searched against a local protein database for sequence identity and peptide mass. The report compares the calculated and the experimental mass spectrum of the called peptide. The program package includes four accessory programs. VEMStrans creates protein databases in FASTA format from EST or cDNA sequence files. VEMSdata creates a virtual peptide database from FASTA files. VEMSdist displays the distribution of masses up to 5000 Da. VEMSmaldi searches singly charged peptide masses against the local database.  相似文献   

13.
To interpret LC-MS/MS data in proteomics, most popular protein identification algorithms primarily use predicted fragment m/z values to assign peptide sequences to fragmentation spectra. The intensity information is often undervalued, because it is not as easy to predict and incorporate into algorithms. Nevertheless, the use of intensity to assist peptide identification is an attractive prospect and can potentially improve the confidence of matches and generate more identifications. On the basis of our previously reported study of fragmentation intensity patterns, we developed a protein identification algorithm, SeQuence IDentfication (SQID), that makes use of the coarse intensity from a statistical analysis. The scoring scheme was validated by comparing with Sequest and X!Tandem using three data sets, and the results indicate an improvement in the number of identified peptides, including unique peptides that are not identified by Sequest or X!Tandem. The software and source code are available under the GNU GPL license at http://quiz2.chem.arizona.edu/wysocki/bioinformatics.htm.  相似文献   

14.
Peptide identification by tandem mass spectrometry is the dominant proteomics workflow for protein characterization in complex samples. The peptide fragmentation spectra generated by these workflows exhibit characteristic fragmentation patterns that can be used to identify the peptide. In other fields, where the compounds of interest do not have the convenient linear structure of peptides, fragmentation spectra are identified by comparing new spectra with libraries of identified spectra, an approach called spectral matching. In contrast to sequence-based tandem mass spectrometry search engines used for peptides, spectral matching can make use of the intensities of fragment peaks in library spectra to assess the quality of a match. We evaluate a hidden Markov model approach (HMMatch) to spectral matching, in which many examples of a peptide's fragmentation spectrum are summarized in a generative probabilistic model that captures the consensus and variation of each peak's intensity. We demonstrate that HMMatch has good specificity and superior sensitivity, compared to sequence database search engines such as X!Tandem. HMMatch achieves good results from relatively few training spectra, is fast to train, and can evaluate many spectra per second. A statistical significance model permits HMMatch scores to be compared with each other, and with other peptide identification tools, on a unified scale. HMMatch shows a similar degree of concordance with X!Tandem, Mascot, and NIST's MS Search, as they do with each other, suggesting that each tool can assign peptides to spectra that the others miss. Finally, we show that it is possible to extrapolate HMMatch models beyond a single peptide's training spectra to the spectra of related peptides, expanding the application of spectral matching techniques beyond the set of peptides previously observed.  相似文献   

15.
Tandem mass spectrometry has emerged to be one of the most powerful high-throughput techniques for protein identification. Tandem mass spectrometry selects and fragments peptides of interest into N-terminal ions and C-terminal ions, and it measures the mass/charge ratios of these ions. The de novo peptide sequencing problem is to derive the peptide sequences from given tandem mass spectral data of k ion peaks without searching against protein databases. By transforming the spectral data into a matrix spectrum graph G = (V, E), where |V| = O(k(2)) and |E| = O(k(3)), we give the first polynomial time suboptimal algorithm that finds all the suboptimal solutions (peptides) in O(p|E|) time, where p is the number of solutions. The algorithm has been implemented and tested on experimental data. The program is available at http://hto-c.usc.edu:8000/msms/menu/denovo.htm.  相似文献   

16.
MOTIVATION: Ion-type identification is a fundamental problem in computational proteomics. Methods for accurate identification of ion types provide the basis for many mass spectrometry data interpretation problems, including (a) de novo sequencing, (b) identification of post-translational modifications and mutations and (c) validation of database search results. RESULTS: Here, we present a novel graph-theoretic approach for solving the problem of separating b ions from y ions in a set of tandem mass spectra. We represent each spectral peak as a node and consider two types of edges: type-1 edge connecting two peaks probably of the same ion types and type-2 edge connecting two peaks probably of different ion types. The problem of ion-separation is formulated and solved as a graph partition problem, which is to partition the graph into three subgraphs, representing b, y and others ions, respectively, through maximizing the total weight of type-1 edges while minimizing the total weight of type-2 edges within each partitioned subgraph. We have developed a dynamic programming algorithm for rigorously solving this graph partition problem and implemented it as a computer program PRIME (PaRtition of Ion types in tandem Mass spEctra). The tests on a large amount of simulated mass spectra and 19 sets of high-quality experimental Fourier transform ion cyclotron resonance tandem mass spectra indicate that an accuracy level of approximately 90% for the separation of b and y ions was achieved. AVAILABILITY: The executable code of PRIME is available upon request. CONTACT: xyn@bmb.uga.edu.  相似文献   

17.
We report the results of our work to facilitate protein identification using tandem mass spectra and protein sequence databases. We describe a parallel version of SEQUEST (SEQUEST-PVM) that is tolerant toward arithmetic exceptions. The changes we report effectively separate search processes on slave nodes from each other. Therefore, if one of the slave nodes drops out of the cluster due to an error, the rest of the cluster will carry the search process to the end. SEQUEST has been widely used for protein identifications. The modifications made to the code improve its stability and effectiveness in a high-throughput production environment. We evaluate the overhead associated with the parallelization of SEQUEST. A prior version of software to preprocess LC/MS/MS data attempted to differentiate the charge states of ions. Singly charged ions can be accurately identified, but the software was unable to reliably differentiate tandem mass spectra of +2 and +3 charge states. We have designed and implemented a computational approach to narrow charge states of precursor ions from nominal resolution ion-trap tandem mass spectra. The preprocessing code, 2to3, determines the charge state of the precursor ion using its mass-to-charge ratio (m/z) and fragment ions contained in the tandem mass spectrum. For each possible charge state the program calculates the expected fragment ions that account for precursor ion m/z values. If any one of the numbers is less than an empirically determined threshold value then the spectrum corresponding to that charge state is removed. If both numbers are higher than the threshold value then +2 and +3 copies of the spectrum are kept. We present the comparison of results from protein identification experiments with and without using 2 to 3. It is shown that by determining the charge state and eliminating poor quality spectra 2to3 decreases the number of spectral files to be searched without affecting the search results. The decrease reduces computer requirements and researcher efforts for analysis of the results.  相似文献   

18.
MOTIVATION: Tandem mass spectrometry combined with sequence database searching is one of the most powerful tools for protein identification. As thousands of spectra are generated by a mass spectrometer in one hour, the speed of database searching is critical, especially when searching against a large sequence database, or when the peptide is generated by some unknown or non-specific enzyme, even or when the target peptides have post-translational modifications (PTM). In practice, about 70-90% of the spectra have no match in the database. Many believe that a significant portion of them are due to peptides of non-specific digestions by unknown enzymes or amino acid modifications. In another case, scientists may choose to use some non-specific enzymes such as pepsin or thermolysin for proteolysis in proteomic study, in that not all proteins are amenable to be digested by some site-specific enzymes, and furthermore many digested peptides may not fall within the rang of molecular weight suitable for mass spectrometry analysis. Interpreting mass spectra of these kinds will cost a lot of computational time of database search engines. OVERVIEW: The present study was designed to speed up the database searching process for both cases. More specifically speaking, we employed an approach combining suffix tree data structure and spectrum graph. The suffix tree is used to preprocess the protein sequence database, while the spectrum graph is used to preprocess the tandem mass spectrum. We then search the suffix tree against the spectrum graph for candidate peptides. We design an efficient algorithm to compute a matching threshold with some statistical significance level, e.g. p = 0.01, for each spectrum, and use it to select candidate peptides. Then we rank these peptides using a SEQUEST-like scoring function. The algorithms were implemented and tested on experimental data. For post-translational modifications, we allow arbitrary number of any modification to a protein. AVAILABILITY: The executable program and other supplementary materials are available online at: http://hto-c.usc.edu:8000/msms/suffix/.  相似文献   

19.

Background  

Alternative splicing is an important gene regulation mechanism. It is estimated that about 74% of multi-exon human genes have alternative splicing. High throughput tandem (MS/MS) mass spectrometry provides valuable information for rapidly identifying potentially novel alternatively-spliced protein products from experimental datasets. However, the ability to identify alternative splicing events through tandem mass spectrometry depends on the database against which the spectra are searched.  相似文献   

20.
Tandem mass spectrometry-based proteomics experiments produce large amounts of raw data, and different database search engines are needed to reliably identify all the proteins from this data. Here, we present Compid, an easy-to-use software tool that can be used to integrate and compare protein identification results from two search engines, Mascot and Paragon. Additionally, Compid enables extraction of information from large Mascot result files that cannot be opened via the Web interface and calculation of general statistical information about peptide and protein identifications in a data set. To demonstrate the usefulness of this tool, we used Compid to compare Mascot and Paragon database search results for mitochondrial proteome sample of human keratinocytes. The reports generated by Compid can be exported and opened as Excel documents or as text files using configurable delimiters, allowing the analysis and further processing of Compid output with a multitude of programs. Compid is freely available and can be downloaded from http://users.utu.fi/lanatr/compid. It is released under an open source license (GPL), enabling modification of the source code. Its modular architecture allows for creation of supplementary software components e.g. to enable support for additional input formats and report categories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号