首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Liu Y  Su Y  Sun S  Wang T  Qiao X  Li H  Run X  Liang Z 《Neurochemical research》2012,37(5):935-947
Phosphorylation of the cAMP response element binding protein (CREB) by cAMP-dependent kinase (PKA) is critical to memory formation. However, activation of PKA can also increase tau phosphorylation, which may contribute to memory impairment. Therefore, the regulation of PKA may be part of the mechanism by which glucocorticoids (GCs) influence memory. Additionally, the cellular response to GCs may be affected by the presence of human tau. The goal of this paper was to study GCs-mediated regulation of PKA as well as CREB and tau phosphorylation in wild-type HEK293 cells and HEK293 cells stably expressing human tau441 (HEK293/tau441 cells). By using dexamethasone (DEX) as GCs, we found that DEX induced a tau-dependent selective decrease in the level of PKA RIIβ subunit protein. The observed decrease in RIIβ expression was not due to alterations of mRNA levels and was reversed by inhibiting the proteasome with lactacystin. Moreover, the decrease in RIIβ did not diminish the co-localization of the catalytic subunit of PKA with tau and might contribute to the DEX-induced increase in tau phosphorylation at Ser-214. DEX also induced a tau-dependent decrease in CREB phosphorylation that could not be reversed by activating PKA with forskolin. Taken together, these results show that human tau protein may alter the GCs-mediated regulation of PKA activity and CREB phosphorylation.  相似文献   

4.
5.
Dynamic microtubule changes after a cell stress challenge are required for cell survival and adaptation. Stathmin (STMN), a cytoplasmic microtubule-destabilizing phosphoprotein, regulates interphase microtubules during cell stress, but the signaling mechanisms involved are poorly defined. In this study ectopic expression of single alanine-substituted phospho-resistant mutants demonstrated that STMN Ser-38 and Ser-63 phosphorylation were specifically required to maintain interphase microtubules during hyperosmotic stress. STMN was phosphorylated on Ser-38 and Ser-63 in response to hyperosmolarity, heat shock, and arsenite treatment but rapidly dephosphorylated after oxidative stress treatment. Two-dimensional PAGE and Phos-tag gel analysis of stress-stimulated STMN phospho-isoforms revealed rapid STMN Ser-38 phosphorylation followed by subsequent Ser-25 and Ser-63 phosphorylation. Previously, we delineated stress-stimulated JNK targeting of STMN. Here, we identified cAMP-dependent protein kinase (PKA) signaling as responsible for stress-induced STMN Ser-63 phosphorylation. Increased cAMP levels induced by cholera toxin triggered potent STMN Ser-63 phosphorylation. Osmotic stress stimulated an increase in PKA activity and elevated STMN Ser-63 and CREB (cAMP-response element-binding protein) Ser-133 phosphorylation that was substantially attenuated by pretreatment with H-89, a PKA inhibitor. Interestingly, PKA activity and subsequent phosphorylation of STMN were augmented in the absence of JNK activation, indicating JNK and PKA pathway cross-talk during stress regulation of STMN. Taken together our study indicates that JNK- and PKA-mediated STMN Ser-38 and Ser-63 phosphorylation are required to preserve interphase microtubules in response to hyperosmotic stress.  相似文献   

6.
7.
The Ces-2/E2A-HLF binding element (CBE) is recognized by Caenorhabditis elegans death specification gene product Ces-2 and human acute lymphocytic leukemia oncoprotein E2A-HLF. In an attempt to identify a cellular CBE-binding protein(s) that may be involved in apoptosis regulation in mammals, multiple nuclear binding complexes of CBE were identified in various mammalian cell lines and tissues by electrophoretic mobility shift assay. Cyclic AMP (cAMP)-responsive element (CRE)-binding protein (CREB) was present in one major CBE complex of Ba/F3 and TF-1 cells, and both in vitro-translated and Escherichia coli-synthesized CREB bound to CBE. Activation of CREB by cAMP-elevating chemicals or the catalytic subunit of protein kinase A (PKAc) resulted in induction of the CBE-driven reporter gene. Stimulation of Ba/F3 cells with interleukin-3 (IL-3) promptly induced phosphorylation of CREB at serine(133) partially via a PKA-dependent pathway. Consistently, Ba/F3 cell survival in the absence of IL-3 was prolonged by activation of PKA. Conversely, treatment of cells with a PKA inhibitor or expression of the dominant negative forms of the regulatory subunit type I of PKA and CREB overrode the survival activity of IL-3. Last, the bcl-2 gene was demonstrated to be one candidate cellular target of the CREB-containing CBE complex, as mutations in the CRE and CBE sites significantly reduced the IL-3 inducibility of the bcl-2 promoter. Together, our results suggest that CREB is one cellular counterpart of Ces-2/E2A-HLF and is part of IL-3 dependent apoptosis regulation in hematopoietic cells.  相似文献   

8.
9.
Ethanol induces translocation of the catalytic subunit (Calpha) of cAMP-dependent protein kinase (PKA) from the Golgi area to the nucleus in NG108-15 cells. Ethanol also induces translocation of the RIIbeta regulatory subunit of PKA to the nucleus; RI and Cbeta are not translocated. Nuclear PKA activity in ethanol-treated cells is no longer regulated by cAMP. Gel filtration and immunoprecipitation analysis confirm that ethanol blocks the reassociation of Calpha with RII but does not induce dissociation of these subunits. Ethanol also reduces inhibition of Calpha by the PKA inhibitor PKI. Pre-incubation of Calpha with ethanol decreases phosphorylation of Leu-Arg-Arg-Ala-Ser-Leu-Gly (Kemptide) and casein but has no effect on the phosphorylation of highly charged molecules such as histone H1 or protamine. cAMP-response element-binding protein (CREB) phosphorylation by Calpha is also increased in ethanol-treated cells. This increase in CREB phosphorylation is inhibited by the PKA antagonist (R(p))-cAMPS and by an adenosine receptor antagonist. These results suggest that ethanol affects a cascade of events allowing for sustained nuclear localization of Calpha and prolonged CREB phosphorylation. These events may account for ethanol-induced changes in cAMP-dependent gene expression.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
Previous studies identified proline-directed protein kinase (PDPK) as a growth factor-sensitive serine/threonine protein kinase that is active in the cytosol of proliferative cells and tissues during interphase. In this communication, we report that the regulatory subunit (RII) of bovine cardiac muscle cAMP-dependent protein kinase (PKA) is a putative substrate for the multifunctional PDPK. Purified RII is readily phosphorylated by PDPK in vitro in a time-dependent, enzyme-dependent manner to a stoichiometry approaching 0.7 mol phosphate/mol RII subunit protein. The major RII phosphorylation site is identified as a threonine residue located within a large hydrophobic tryptic peptide that is predicted to contain the cAMP binding domains. In contrast to the reported effects of RII autophosphorylation, kinetic analysis of RII function following phosphorylation by PDPK indicates that the inhibitory potency of RII toward the catalytic subunit of PKA in a reassociation assay is increased in proportion to the degree of phosphorylation. Further studies indicate that the cAMP-dependent activation of the RII2C2 holoenzyme is inhibited by PDPK phosphorylation. Taken together, the results of these studies indicate that phosphorylation of RII by PDPK attenuates the activity of PKA. This antagonistic interaction suggests a biochemical mechanism by which a growth factor-activated signaling system may function to modulate cAMP-dependent cellular responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号