首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of valinomycin, gramicidins A and S, melittin and the protonophore 3,5-di-tert-butyl-4-hydroxybenzylidenmalononitrile on rat liver mitochondria and pea chloroplasts during active electron transport were studied. The canalogenes melittin and gramicidin S as well as gramicidin A and the protonophore increase the proton conductance of the inner mitochondrial membrane and chloroplast tylakoid membrane. The curve for the dependence of the canalogene effects on their concentration is S-shaped for both types of the organelles. Valinomycin reveals no protonophore activity and at high concentrations inhibits electron transport in both types of the coupling membranes. The uncoupling activity of gramicidin A and canalogenes and the inhibiting activity of valinomycin do not depend on the type of organelles when the concentration of these compounds is expressed as concentration in the membrane lipid matrix. At the same time the activity of the protonophore in chloroplasts is 6 times less than that in mitochondria. It is assumed that this difference in the protonophore activity is due to the differences in the mechanism of coupling of electron transport rather than to the peculiarities of lipid composition of mitochondria and chloroplasts. The lack of dependence of activity of peptide perminductors on the membrane lipid composition can probably be due to the fact that their effects is localized in the carbohydrate moiety of the lipid bilayer and does not involve the polar "heads" of the lipids.  相似文献   

2.
The generation of transmembrane difference of electrochemical potentials was registered on the intact cells and ultrasonication-obtained membrane vesicles of Staphylococcus aureus with the application of transmembrane electrophoresis of permeant anions, potassium transport in the presence of valinomycin and 8-anilinonaphthalene-1-sulphonate fluorescence. The membrane potential is formed when the chain of electron transfer or H+-ATPase functions or when the pH gradient varies (the nonenzymic pathway). M-chlorinecarbonylcyanidephenylhydrazonium, a protonophore uncoupler potassium cyanide, an inhibitor of the respiratory chain, N',N-dicyclohexylcarbodiimide, an inhibitor of ATPase, cause the membrane potential dissipation. The orientation of the transmembrane electric field is as follows: "minus" inside cells and "plus" inside membrane vesicles.  相似文献   

3.
Spectroscopic evidence is presented which indicates that the uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) and the peptide antibiotic valinomycin form a complex in the presence of potassium. Complex formation has been observed both in aqueous and nonaqueous media. Several techniques have been used to indicate the existence of a complex in aqueous solution. In the presence of valinomycin and K+, the absorption spectrum of FCCP is significantly perturbed, and there is also a large induced circular dichroism signal. In addition, the previously characterized complex which forms between valinomycin, K+, and the fluorescent probe 8-anilino-1-naphthalene-sulfonate (ANS) in aqueous solution is apparently disrupted by the addition of FCCP. The result is an effective quenching of the fluorescence due to the bound probe as it is displaced from the valinomycin.K+ by the uncoupler. In a nonpolar solvent, the absorption spectrum of FCCP is also perturbed by valinomycin in the presence of K+, again indicating the formation of a complex. These data point to the importance of considering the role of valinomycin.K+.uncoupler complex in interpreting physiological or ion transport data in which these substances have been used together.  相似文献   

4.
Kríz J  Makrlík E  Vanura P 《Biopolymers》2006,81(2):104-109
In addition to the well-known complexes of valinomycin with alkali metal cations, an equimolar complex of the same compound with proton was found to be formed in nitrobenzene. Hydrogen bis(1,2-dicarbollylide) cobaltate (HDCC) was used as a proton source. According to NMR spectra, the complex formation is quantitative at proton/valinomycin molar ratios up to 1:1 but there is fast exchange of protons between coordinated and uncoordinated valinomycin molecules at lower ratios. 1H and 13C NMR spectra show a dramatic change in the valinomycin conformation during its coordination with protons, probably from a propeller-like to a bracelet-like form. As valinomycin is one of the well-known ion-carrying ionophores facilitating especially the K+ ion transport across a biological membrane, the existence of the valinomycin-proton complex could be important in biochemistry and biology.  相似文献   

5.
Inverted membrane vesicles of the homoacetogenic bacterium Acetobacterium woodii catalyzed the hydrolysis of ATP with a rate of 100-150 nmol.min-1.mg protein-1. The ATPase was stimulated 1.4-1.6-fold by NaCl and inhibited by N,N'-dicyclohexylcarbodiimide tributyltin or azide. The degree of inhibition caused by F0-directed but not F1-directed inhibitors was affected by the Na+ concentration in the medium. These experiments indicated the presence of a sodium-translocating ATPase. This was verified by transport studies. Upon addition of ATP to inverted vesicles, 22Na+ was actively transported into the intravesicular space up to a 24-fold accumulation. Na+ transport was inhibited by the sodium ionophore N,N,N',N',-tetracyclohexyl-1,2-phenyl-enedioxydiacetamide but stimulated by valinomycin with potassium whereas the protonophore 3,5,-di-tert-butyl-4-hydroxybenzylidenemalonitrile was without effect. N,N'-dicyclohexylcarbodiimide and tributyltin inhibited 22Na+ transport. These experiments are in accordance with a primary electrogenic Na+ transport as catalyzed by a F1F0-ATPase.  相似文献   

6.
The influence of potassium ions on calcium uptake in rat liver mitochondria is studied. It is shown that an increase in K+ and Ca2+ concentrations in the incubation medium leads to a decrease in calcium uptake in mitochondria together with a simultaneous increase in potassium uptake due to the potential-dependent transport of K+ in the mitochondrial matrix. Both effects are more pronounced in the presence of an ATP-dependent K+-channel (K+(ATP)-channel) opener, diazoxide (Dz). Activation of the K+(ATP)-channel by Dz alters the functional state of mitochondria and leads to an increase in the respiration rate in state 2 and a decrease in the oxygen uptake and the rate of ATP synthesis in state 3. The effect of Dz on oxygen consumption in state 3 is mimicked by valinomycin, but it is opposite to that of the classical protonophore uncoupler CCCP. It is concluded that the potential-dependent uptake of potassium is closely coupled to calcium transport and is an important parameter of energy coupling responsible for complex changes in oxygen consumption and Ca2+-transport properties of mitochondria.  相似文献   

7.
Vacuolar membrane vesicles of Saccharomyces cerevisiae accumulated spermine and spermidine in the presence of ATP, not in the presence of ADP. Spermine and spermidine transport at pH 7.4 showed saturation kinetics with Km values of 0.2 mM and 0.7 mM, respectively. Spermine uptake was competitively inhibited by spermidine and putrescine, but was not affected by seven amino acids, substrates of active transport systems of vacuolar membrane. Spermine transport was inhibited by the H(+)-ATPase-specific inhibitors bafilomycin A1 and N,N'-dicyclohexylcarbodiimide, but not by vanadate. It was also sensitive to Cu2+ or Zn2+ ions, inhibitors of vacuolar H(+)-ATPase. Both 3,5-di-tert-butyl-4-hydroxybenzilidenemalononitrile (SF6847) and nigericin blocked completely the spermine uptake, but valinomycin did not. [14C]Spermine accumulated in the vesicles was exchangeable with unlabeled spermine and spermidine. However, it was released by a protonophore only in the presence of a counterion such as Ca2+. These results indicate that a polyamine-specific transport system depending on a proton potential functions in the vacuolar membrane of this organism.  相似文献   

8.
The effect of ionic permeability changes on acetylcholine (ACh) release from isolated cholinergic synaptic vesicles of Torpedo was studied using a chemiluminescent method for continuous ACh detection. Vesicles rendered freely permeable to potassium by valinomycin lost most of their ACh content in K+ media, if the accompanying anion was permeant; it thus appeared that ACh leakage occurred as the result of internal osmotic changes. Upon addition of ionophores that catalyse monovalent cation/H+ exchange (gramicidin D or a mixture of valinomycin plus protonophore FCCP), a rapid but transient ACh release was observed. Surprisingly, nigericin which also catalyses K+/H+ exchange, had no effect on ACh release. The divalent cation ionophore A23187 promoted ACh release only when calcium (and not magnesium) was introduced into the external medium in a millimolar concentration range. As the simultaneous addition of the protonophore FCCP and A23187 decreased this calcium-dependent ACh leakage, a releasing effect of A23187 through Ca2+/H+ exchange is suspected. The present results emphasise the role of internal protons for ACh retention inside synaptic vesicles.  相似文献   

9.
The mechanism of inhibition by local anaesthetics of the procaine group of electron transport at the donor site of photosystem II (PS II) from pea chloroplasts was investigated. It was found that besides the inactivation of the O2 release system the anaesthetics used at one order of magnitude lesser concentration exert an uncoupling effect. With a rise in pH the inhibiting activity increases; however, this process is not coupled with the protonophore effect but is due to the generation of a neutral form of the amine. The increment of the inhibiting activity of the anaesthetics in the course of deprotonation seems to be regulated by changes in the coefficient of distribution between the membrane and the aqueous phase. The rate of inactivation of the H2O-dissociating complex increases considerably upon illumination. Electron transport through PS II in anaesthetic-treated chloroplasts in restored by diphenylcarbaside, but not by hydroxylamine. It is concluded that the anaesthetics induce the inhibition by interacting with the electron carrier. The role of the Ca2+--calmodulin-like protein in the functioning of the electron transport chain of PS II is discussed.  相似文献   

10.
The release of divalent cations (Ca2+ and Sr2+) from rat liver mitochondria after membrane depolarization with protonophore (carbonyl cyanide m-chlorophenyl hydrazone, CCCP), sodium azide and K(+)-ionophore (valinomycin) was studied. It is stated that membrane depolarization itself is not sufficient for cations release from mitochondrial matrix (provided that mitochondrial permeability transition pore is blocked by cyclosporin A). Complete delivering of divalent cations is observed only after protonophore (CCCP) addition to suspension of deenergized mitochondria. The data show that membrane permeabilisation to hydrogen ions (H+) is necessary for complete cation release from the mitochondrial matrix. The enhancement in K(+)-conductivity of mitochondrial membrane (by valinomycin), on the contrary, is not able to provide complete delivering of cations from mitochondria. It is shown that quantity of divalent metal cation released from mitochondria (depolarized and permeabilized for K+ as well) is proportional to the concentration of protonophore (but not K(+)-ionophore) introduced in the incubation medium. The data obtained lead to the conclusion that H(+)-permeabilization of the mitochondrial membrane is necessary for the complete release of Ca2+ and Sr2+ from mitochondria after membrane depolarization. The possible mechanism of divalent metal cations release from deenergized mitochondria is discussed.  相似文献   

11.
The mechanism of sucrose transport was investigated in plasma membrane (PM) vesicles isolated from spinach (Spinacia oleracea L.) leaves. PM vesicles were isolated by aqueous two-phase partitioning and were equilibrated in pH 7.8 buffer containing K+. The vesicles rapidly accumulated sucrose in the presence of a transmembrane pH gradient (ΔpH) with external pH set at 5.8. The uptake rate was slow at pH 7.8. The K+-selective ionophore, valinomycin, stimulated uptake in the presence of a ΔpH, and the protonophore, carbonyl cyanide m-chlorophenylhydrazone (CCCP), greatly inhibited ΔpH-dependent sucrose uptake. Addition of sucrose to the vesicles resulted in immediate alkalization of the medium. Alkalization was stimulated by valinomycin, was abolished by CCCP, and was sucrose-specific. These results demonstrate the presence of a tightly coupled H+/sucrose symporter in PM vesicles isolated from spinach leaves.  相似文献   

12.
The dynamics of ATP synthesis in Staphylococcus aureus cells was studied during membrane potential induction and K+ gradient generation in the presence of valinomycin. The starting level of intracellular ATP was 0.05 mM. Valinomycin (30 micrograms/ml) caused an increment of the intracellular ATP level up to 0.25 mM. The protonophore uncoupler, m-chlorinecarbonylcyanidephenylhydrazonium, and the H+-ATPase inhibitor, N,N'-dicyclohexylcarbodiimide, effectively suppress ATP synthesis induced by valinomycin. No ATP synthesis occurs at K+ concentration of 200 mM. The transmembrane gradient formation results in the synthesis of a smaller amount of ATP (0.10 mM).  相似文献   

13.
A total of 19 different crystal forms of complexes of valinomycin or its analogues with monovalent cations have been observed. The crystal structure determinations of valinomycin potassium tetrachloroaurate and valinomycin rubidium tetrachloroaurate are given here.Including this work complete structure determinations have now been published on 7 with 2 more soon to appear. Comparisons of these structural results suggest that the valinomycin complex opens at the D-valyl (lactyl) end and that contacts are possible between the complexed cation and other molecules. Such contacts may play an important part in membrane transport.  相似文献   

14.
We have prepared vesicles from cell envelope membranes of Halobacteriumhalobium strains R1 and ET-15 which are able to synthesize ATP in response to illumination. This photophosphorylation is inhibited by dicyclohexylcarbodiimide (DCCD) and by phloretin. ATP synthesis in L vesicles from the R1 strain (which contain bacteriorhodopsin) is inhibited by the protonophore 1799 but not by valinomycin. In M vesicles from the R1 strain and in ET-15 vesicles (both contain halorhodopsin) photophosphorylation is inhibited by both 1799 and valinomycin. These data are consistent with the idea that light-driven ATP synthesis can be coupled to the electrochemical H+ gradient generated by bacteriorhodopsin or by halorhodopsin through the membrane potential component of protonmotive force.  相似文献   

15.
Energy transduction in the anaerobic, thermophilic bacterium Clostridium fervidus relies exclusively on Na+ as the coupling ion. The Na+ ion gradient across the membrane is generated by a membrane-bound ATPase (G. Speelmans, B. Poolman, T. Abee, and W. N. Konings, J. Bacteriol. 176:5160-5162, 1994). The Na+-ATPase complex was purified to homogeneity. It migrates as a single band in native polyacrylamide gel electrophoresis and catalyzes Na+-stimulated ATPase activity. Denaturing gel electrophoresis showed that the complex consists of at least six different polypeptides with apparent molecular sizes of 66, 61, 51, 37, 26, and 17 kDa. The N-terminal sequences of the 66- and 51-kDa subunits were found to be significantly homologous to subunits A and B, respectively, of the Na+-translocating V-type ATPase of Enterococcus hirae. The purified V1V0 protein complex was reconstituted in a mixture of Escherichia coli phosphatidylethanolamine and egg yolk phosphatidylcholine and shown to catalyze the uptake of Na+ ions upon hydrolysis of ATP. Na+ transport was completely abolished by monensin, whereas valinomycin stimulated the uptake rate. This is indicative of electrogenic sodium transport. The presence of the protonophore SF6847 had no significant effect on the uptake, indicating that Na+ translocation is a primary event and in the cell is not accomplished by an H+-translocating pump in combination with an Na+-H+ antiporter.  相似文献   

16.
Mechanisms of Na+ transport into the inside-out subcellular vesicles of alkalo- and halotolerant Bacillus FTU and of Escherichia coli grown at different pH have been studied. Both microorganisms growing at pH 7.5 are shown to possess a system of the respiration-dependent Na+ transport which (i) is inhibited by protonophorous uncoupler, by delta pH-discharging agent diethylammonium (DEA) acetate, by micromolar cyanide arresting the H(+)-motive respiratory chain, and by amiloride, and (ii) is resistant to the Na+/H+ antiporter monensin and to Ag+, inhibitor of the Na(+)-motive respiratory chain. Growth at pH 8.6 strongly changes the activator and inhibitor pattern. Now (1) protonophore stimulates the Na+ transport, (2) DEA acetate is without effect in the absence of protonophore and is stimulating in its presence, (3) amiloride and low cyanide are ineffective, (4) monensin and Ag+ completely arrest the Na+ accumulation in the vesicles. Independent of pH of the growth medium, (a) valinomycin is stimulatory for the Na+ transport, (b) Na+ ionophore ETH 157 is inhibitory and, (c) Na+ transport can be supported by NADH----fumarate as well as by ascorbate (TMPD)----O2 electron transfers. Growth at alkaline pH results in the appearance of ascorbate (TMPD) oxidation resistant to low and sensitive to high cyanide concentrations. These relationships are in agreement with the concept (Skulachev, V.P. (1984) Trends Biochem. Sci. 9, 483-485) that adaptation to alkaline conditions in bacteria growing in the high [Na+] media causes substitution of Na+ for H+ as a coupling ion. The obtained data indicate that under alkaline conditions, Na+ can be pumped from the cell by the Na(+)-motive respiratory chain with neither H(+)-motive respiration nor the Na+/H+ antiporter involved. In the Na(+)-motive respiratory chain of Bac. FTU or E. coli, two Na+ pumps are localized, one in its initial and the other in its terminal spans.  相似文献   

17.
Vacuolar membrane vesicles of Saccharomyces cerevisiae accumulate Ca2+ ion in the presence of ATP, not in the presence of ADP or adenyl-5'-yl imidodiphosphate. Calcium transport showed saturation kinetics with a Km value of 0.1 mM and optimal pH of 6.4. Ca2+ ion incorporated in the vesicles was exchangeable and released completely by a protonophore uncoupler, 3,5-di-tert-butyl-4-hydroxybenzilidenemalononitrile (SF6847), or calcium-specific ionophore, A23187. The transport required Mg2+ ion but was inhibited by Cu2+ or Zn2+ ions, inhibitors of H+-ATPase of the vacuolar membrane. The transport activity was sensitive to the H+-ATPase inhibitor N,N'-dicyclohexylcarbodiimide, but not to oligomycin or sodium vanadate. SF6847 or nigericin blocked Ca2+ uptake completely, but valinomycin stimulated it 1.35-fold. These results indicate that an electrochemical potential difference of protons is a driving force for this Ca2+ transport. The ATP-dependent formation of the deltapH in the vesicles and its partial dissipation by CaCl2 were demonstrated by fluorescence quenching of quinacrine. This Ca2+ uptake by vacuolar membrane vesicles is suggested to be catalyzed by a Ca2+/H+ antiport system.  相似文献   

18.
Vacuoles of yeast grown in peptone medium possessed high ATPase activity (up to 1 mumol X mg protein-1 X min-1). Membrane-bound and solubilized ATPase activities were insensitive to vanadate and azide, but were inhibited by NO-3 . K+ and cyclic AMP stimulated both membrane-bound and solubilized ATPase activities. Dio-9 activated the membrane form of vacuolar ATPase 1.5-2-fold and did not affect the solubilized enzyme. Solubilized and partially purified vacuolar ATPase was reconstituted with soy-bean phospholipids by a freeze-thaw procedure. ATPase activities in native vacuoles and proteoliposomes were stimulated effectively by Dio-9, the protonophore FCCP and ionophores valinomycin and nigericin. ATP-dependent H+ transport into proteoliposomes was also shown by quenching of ACMA fluorescence. Vacuolar and partially purified ATPase preparations possessed also GTPase activity. Unlike ATPase, however, GTPase was not incorporated as a proton pump into liposomes.  相似文献   

19.
Reconstitution of ATP-dependent calcium transport from streptococci   总被引:6,自引:0,他引:6  
Membrane vesicles of three streptococcal strains (Streptococcus faecalis, Streptococcus lactis, and Streptococcus sanguis) were extracted with octyl-beta-D-glucoside in the presence of Escherichia coli lipid and glycerol. For reconstitution, the detergent extract was mixed with bath-sonicated E. coli lipid, in the presence of octyl-beta-D-glucoside, and proteoliposomes were formed by a 25-fold dilution. ATP-dependent calcium accumulation by proteoliposomes was comparable to that found in parent vesicles. Recovery of this calcium transport activity was dependent on the inclusion of an osmolyte protein stabilant (glycerol, etc.) during solubilization. The properties of ATP-driven calcium transport were studied in the reconstituted system. In proteoliposomes, ATP-linked calcium accumulation was not affected by the protonophore, carbonyl cyanide p-trifluoromethoxyphenylhydrazone, or by the ionophores, valinomycin and nigericin, in the presence of potassium, or by N,N'-dicyclohexylcarbodiimide, an inhibitor of the F0F1-ATPase. On the other hand, calcium transport was completely blocked by micromolar levels of orthovanadate; half-maximal inhibitions were observed at 0.4, 4, and 4 microM vanadate, for S. faecalis, S. lactis, and S. sanguis, respectively. This marked sensitivity to orthovanadate suggests operation of an E1E2-type ion-motive pump. These data demonstrate that, in a reconstituted system, calcium transport is not linked to an ATP-dependent proton circulation via the F0F1-ATPase, but rather is driven by a calcium-translocating ATPase. Thus, calcium extrusion from the cytosol of enteric, lactic acid, or oral streptococci is mediated by an ATP-linked process analogous to the ion-motive ATPases of eukaryotic membranes.  相似文献   

20.
H. Mell  C. Wellnitz  A. Kr  ger 《BBA》1986,852(2-3):212-221
The electrochemical proton potential across the cytoplasmic membrane ( ) as well as the H+ / e ratio, which were brought about by the electron transport of Wolinella succinogenes, was measured with the aim of understanding the mechanism of electron-transport-coupled phosphorylation in this anaerobic bacterium. (1) Inverted vesicles derived from the bacterial membrane were found to take up protons from the external medium on initiation of fumarate reduction by H2. Proton uptake was dependent on the presence of K+ within the vesicles, was enhanced by the presence of valinomycin and DCCD and high internal buffer concentration, and was abolished by protonophores. The maximum H+ / e ratio slightly exceeded 1. (2) The vesicles accumulated thiocyanate in the steady state of fumarate reduction by H2. The concentration ratio (internal / external) was close to 1000 at an external thiocyanate concentration below 10 μM. Under the same conditions the uptake of methylamine was negligible. Thiocyanate uptake was abolished by the presence of a protonophore. (3) Cells of W. succinogenes accumulated tetraphenylphosphonium cation (TPP) in the steady state of fumarate reduction with H2 or formate. Under the same conditions the uptake of benzoic acid was negligible. From the amount of TPP taken up by the bacteria, the free internal concentration of TPP was evaluated according to the procedure of Zaritsky et al. (Zaritsky, A., Kihara, M. and MacNab, R.M. (1981) J. Membrane Biol. 63, 215–231). The concentration ratio (internal / external) was 700 in the absence and close to 1 in the presence of a protonophore or in the absence of external Na+. (4) The experimental results are consistent with the view that the energy transduction from electron transport to phosphorylation is done by means of the across the bacterial membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号