共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
The possibility that fitness relationships associated with an inversion polymorphism in D. paulistorum were frequency dependent was investigated. Using allozymes of tetrazolium oxidase to mark inversions, the effects of genotype frequency, larval density, and culture conditions on fitness were assessed. The proportions of genotypes among egg-laying females were varied, thus changing the expected proportions of progeny produced in the absence of fecundity or viability selection. The genotypes of progeny were determined by electrophoresis and comparisons of the ratio of the numbers of the different genotypes produced to the expected ratio was used to evaluate fitness relationships. Fitness relationships were dependent on genotype frequency, larval density, and culture conditions. Selection was either absent, directional, frequency dependent (favoring rare types), or heterotic depending on density and culture conditions. It is implied that the adaptive value of genetic variants need not be apparent in all environments, or may change with changing conditions. There is evidence for different criteria for selection in the two sexes. These results add to the evidence supporting the importance of frequency-dependent selection. It is argued that for frequency dependence to be of general importance, selection must act on genes in groups, either as an inversion or as lengths of chromosome with integrity maintained by disequilibrium. 相似文献
8.
9.
10.
11.
12.
13.
14.
15.
16.
The Phylogenetic Relationships of the Species in the DROSOPHILA MELANICA Group 总被引:1,自引:0,他引:1
下载免费PDF全文

Harrison D. Stalker 《Genetics》1966,53(2):327-342
17.
Patterns of Molecular Variation. II. Associations of Electrophoretic Mobility and Larval Substrate within Species of the DROSOPHILA MULLERI Complex
下载免费PDF全文

Electromorphic variation among populations of Drosophila mojavensis, D. arizonensis and D. longicornis was examined for seven genetic loci. The average electrophoretic mobility for a population was used as the metric. D. mojavensis and D. arizonensis use larval substrates in different parts of their geographic ranges, while D. longicornis is more narrowly restricted to different species of the cactus Opuntia in different localities. There is marked electromorphic variation among populations of either D. mojavensis or D. arizonensis, and the bulk of this variation is accounted for by differences in laval substrate. There is somewhat less variation among populations of D. longicornis, and only a moderate portion of this is accounted for by larval substrate differences. There appears to be an association between the taxonomic diversity of the larval substrates and the electromorphic diversity of the Drosophila populations utilizing those substrates. Evidence is reviewed that suggests physiological mechanisms for these possibly adaptive associations. 相似文献
18.
Kohta Yoshida Takashi Makino Katsushi Yamaguchi Shuji Shigenobu Mitsuyasu Hasebe Masakado Kawata Manabu Kume Seiichi Mori Catherine L. Peichel Atsushi Toyoda Asao Fujiyama Jun Kitano 《PLoS genetics》2014,10(3)
Sex chromosomes turn over rapidly in some taxonomic groups, where closely related species have different sex chromosomes. Although there are many examples of sex chromosome turnover, we know little about the functional roles of sex chromosome turnover in phenotypic diversification and genomic evolution. The sympatric pair of Japanese threespine stickleback (Gasterosteus aculeatus) provides an excellent system to address these questions: the Japan Sea species has a neo-sex chromosome system resulting from a fusion between an ancestral Y chromosome and an autosome, while the sympatric Pacific Ocean species has a simple XY sex chromosome system. Furthermore, previous quantitative trait locus (QTL) mapping demonstrated that the Japan Sea neo-X chromosome contributes to phenotypic divergence and reproductive isolation between these sympatric species. To investigate the genomic basis for the accumulation of genes important for speciation on the neo-X chromosome, we conducted whole genome sequencing of males and females of both the Japan Sea and the Pacific Ocean species. No substantial degeneration has yet occurred on the neo-Y chromosome, but the nucleotide sequence of the neo-X and the neo-Y has started to diverge, particularly at regions near the fusion. The neo-sex chromosomes also harbor an excess of genes with sex-biased expression. Furthermore, genes on the neo-X chromosome showed higher non-synonymous substitution rates than autosomal genes in the Japan Sea lineage. Genomic regions of higher sequence divergence between species, genes with divergent expression between species, and QTL for inter-species phenotypic differences were found not only at the regions near the fusion site, but also at other regions along the neo-X chromosome. Neo-sex chromosomes can therefore accumulate substitutions causing species differences even in the absence of substantial neo-Y degeneration. 相似文献
19.
Tissue-Specific and Complex Complementation Patterns in the Punch Locus of DROSOPHILA MELANOGASTER
下载免费PDF全文

Mutations in the Punch locus result in loss of GTP cyclohydrolase activity, but all mutations do not affect the enzyme in the same way. There are at least three classes of Punch mutations. One class results in a dominant eye color, recessive lethal phenotype. A second class of mutations also causes a recessive lethal phenotype, but heterozygous mutants have normal eye color. They show loss of GTP cyclohydrolase function in all tissues where activity can be measured. Alleles comprising a third class are recessive eye color mutations that are homozygous viable. Individuals with this third type of mutation show loss of enzyme activity in the eye, but show normal or near-normal activity elsewhere. In order to examine the organization and function of this locus further, we have performed interallelic complementation tests on 25 Punch mutations, monitoring viability and enzyme activity in prepupae and adults. Most allele combinations are lethal. Those that complement do so in ways that are tissue-or stage-specific and unpredictable. Tests of mutants with tissue-specific phenotypes and of individuals mutant for complementing Punch lethal alleles lead us to conclude that Punch is a complex locus, both with respect to its organization and to its products. 相似文献
20.
Synaptonemal Complex and Recombination Nodules in Wild-Type DROSOPHILA MELANOGASTER Females 总被引:2,自引:0,他引:2
下载免费PDF全文

Adelaide T. C. Carpenter 《Genetics》1979,92(2):511-541
Electron microscope serial section reconstruction analysis of all zygotene-pachytene nuclei of meiotic cells from three wild-type germaria (a subunit of the ovary containing the early meiotic stages arrayed in temporal developmental sequence) of Drosophila melanogaster females corroborates and extends earlier observations (Carpenter 1975a) on the nature and sequence of ultrastructural events occurring during the time of meiotic recombination. Emphasis has been placed on (1) the time of appearance and disappearance of the synaptonemal complex (SC) and the changes in its dimensions that accompany a cell's progression through pachytene, and (2) the appearance, disappearance, number and chromosomal locations of recombination nodules (Carpenter 1975b). For both the SC and the recombination nodule the availability of several developmental series has provided an estimate of the biological variability in the properties of these recombination-associated structures. The much more extensive data presented here substantiate the earlier hypothesis that recombination nodules occur at sites where reciprocal meiotic recombination will occur, has occurred, or is occurring. A second morphological type of recombination nodule is reported; it is suggested that the presence of the latter type of nodule may correlate with sites of gene conversion. The hypothesis that there may be two types of meiotic recombination processes is discussed. 相似文献