首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The curves representing the reciprocal fluorescence yield of chlorophyll alpha of Photosystem II (PS II) in Chlorella vulgaris as a function of the concentration of m-dinitrobenzene in the states P Q and P Q-, are found to be straight parallel lines; P is the primary donor and Q the primary acceptor of PS II. In the weakly trapping state P Q- the half-quenching of dinitrobenzene is about 0.2 mM, in vitro it is of the order of 10 mM. The fluorescence yield as a function of the concentration of a quencher is described for three models for the energy transfer between the units, and the matrix model. If it is assumed that the rate constant of quenching by dinitrobenzene is high and thus the number of dinitrobenzene molecules per reaction center low, it can be concluded that the pigment system of PS II in C. vulgaris is a matrix of chlorophyll molecules in which the reaction centers are embedded. Theoretical and experimental evidence is consistent with such an assumption. For Cyanidium caldarium the zero fluorescence yield phi 0 and its quenching by dinitrobenzene were found to be much smaller than the corresponding quantities for C. vulgaris. Nevertheless, our measurements on C. caldarium could be interpreted by the assumption that the essential properties (rate constants, dinitrobenzene quenching) of PS II are the same for these two species belonging to such widely different groups. 2. The measured dinitrobenzene concentrations required for half-quenching in vivo and other observations are explained by (non-rate-limiting) energy transfer between the chlorophyll alpha molecules of PS II and by the assumptions that dinitrobenzene is approximately distributed at random in the membrane and does not diffuse during excitation. 3. The fluorescence kinetics of C. vulgaris during a 350 ns laser flash of variable intensity could be simulated on a computer using the matrix model. From the observed fluorescence quenching by the carotenoid triplet (CT) and the measurement of the the number of CT per reaction center via difference absorption spectroscopy, the rate constant for quenching of CT is calculated to be kT = 3.3 . 10(11)s-1 which is almost equal to the rate constant of trapping by an open reaction center (Duysens, L.N.M. (1979) CIBA Foundation Symposium 61 (New Series), pp. 323--340). 4. The fluorescence quenching by CT in non-treated spinach chloroplasts after a 500 ns laser flash (Breton, J., Geacintov, N.E. and Swenberg, C.E. (1979) Biochim, Biophys. Acta 548, 616--635) could be explained within the framework of the matrix model when the value for kT is used as given in point 3. 5. The observations mentioned under point 1 indicate that the fluorescence yield phi 0 for centers in trapping state P Q is probably for a fraction exceeding 0.8 emitted by PS II.  相似文献   

2.
The concept of photosynthetic unit (PSU) is reviewed in the light of the authors' results in the fields of fluorescence and luminescence (delayed light). Models of PSU are mainly distinguished by the amount of exciton exchange which is allowed between units. The “separate” model, with its “first-order” character, is not consistent with fluorescence kinetic data. The sigmoidal rise of fluorescence under actinic light is best explained by “nonseparate” models; however, most of these models assume a delocalization of excitons or centers. The “connected” model introduced here is not subject to this criticism. It discloses a new effect (the “îlot” effect): a nonrandom grouping of fluorescent units the consequences of which are discussed. It is noted that a “two-quantum” model for the photochemical reaction gives results very similar to those of the connected model. A relation between luminescence intensity and fluorescence yield is seen as a necessary consequence of the PSU concept. Its meaning is different in separate and nonseparate models. This relation is discussed in connection with the true system II fluorescence emission.  相似文献   

3.
We propose a dynamic model specifically designed to simulate changes in the photosynthetic electron transport rate, which is calculated from fluorescence measurements when plants are exposed, for a short time, to a series of increasing photon flux densities. This model simulates the dynamics of the effective yield of photochemical energy conversion from the maximum and natural chlorophyll fluorescence yields, taking into account a cumulative effect of successive irradiations on photosystems. To estimate a characteristic time of this effect on photosystems, two series of experiments were performed on two benthic diatom culture concentrations. For each concentration, two different series of irradiations were applied. Simplified formulations of the model were established based on the observed fluorescence curves. The simplified versions of the model streamlined the parameters estimation procedure. For the most simplified version of the model (only 4 parameters) the order of magnitude of the characteristic time of the residual effect of irradiation was about 38 s (within a confidence interval between 20 and 252 s). The model and an appropriate calibration procedure may be used to assess the physiological condition of plants experiencing short time-scale irradiance changes in experimental or field conditions.  相似文献   

4.
The theoretical relationships between the fluorescence and photochemical yields of PS II and the fraction of open reaction centers are examined in a general model endowed with the following features: i) a homogeneous, infinite PS II domain; ii) exciton-radical-pair equilibrium; and iii) different rates of exciton transfer between core and peripheral antenna beds. Simple analytical relations are derived for the yields and their time courses in induction experiments. The introduction of the exciton-radical-pair equilibrium, for both the open and closed states of the trap, is shown to be equivalent to an irreversible trapping scheme with modified parameters. Variation of the interunit transfer rate allows continuous modulation from the case of separated units to the pure lake model. Broadly used relations for estimating the relative amount of reaction centers from the complementary area of the fluorescence kinetics or the photochemical yield from fluorescence levels are examined in this framework. Their dependence on parameters controlling exciton decay is discussed, allowing assessment of their range of applicability. An experimental induction curve is analyzed, with a discussion of its decomposition into alpha and beta contributions. The sigmoidicity of the induction kinetics is characterized by a single parameter J related to Joliot's p, which is shown to depend on both the connectivity of the photosynthetic units and reaction center parameters. On the other hand, the relation between J and the extreme fluorescence levels (or the deviation from the linear Stern-Volmer dependence of 1/phi f on the fraction of open traps) is controlled only by antenna connectivity. Experimental data are consistent with a model of connected units for PS II alpha, intermediate between the pure lake model of unrestricted exciton transfer and the isolated units model.  相似文献   

5.
An equation is developed from the matrix of rate constants which describes the behaviour of linear pharmacokinetic models for any initial condition as a function of time. This general matrix equation is then used to derive analogous expressions for drug distribution after a period of infusion, at the steady state, or during a multiple constant-dosage regimen. Matrix expressions are also derived for areas under drug concentration curves for any compartment after single doses or during multiple dosing. General matrix equations are shown to yield loading dosage schedules to achieve plateau concentrations throughout any open system.It is suggested that matrix methods have advantages over previously used mathematical techniques in pharmacokinetics in the simplicity of the algebraic expressions, and their ease of manipulation. An algebraic example of an open two-compartment model is worked to indicate the applicability of the general expressions.  相似文献   

6.
1. The curves representing the reciprocal fluorescence yield of chlorophyll a of Photosystem II (PS II) in Chlorella vulgaris as a function of the concentration of m-dinitrobenzene in the states P Q and P Q-, are found to be straight parallel lines; P is the primary donor and Q the primary acceptor of PS II. In the weakly trapping state P Q- the half-quenching of dinitrobenzene is about 0.2 mM, in vitro it is of the order of 10 mM. The fluorescence yield as a function of the concentration of a quencher is described for three models for the structure of pigment systems: the model of separate units, the model of limited energy transfer between the units, and the matrix model. If it is assumed that the rate constant of quenching by dinitrobenzene is high and thus the number of dinitrobenzene molecules per reaction center low, it can be concluded that the pigment system of PS II in C. vulgaris is a matrix of chlorophyll molecules in which the reaction centers are embedded. Theoretical and experimental evidence is consistent with such an assumption.

For Cyanidium caldarium the zero fluorescence yield Ф0 and its quenching by dinitrobenzene were found to be much smaller than the corresponding quantities for C. vulgaris. Nevertheless, our measurements on C. caldarium could be interpreted by the assumption that the essential properties (rate constants, dinitrobenzene quenching) of PS II are the same for these two species belonging to such widely different groups.

2. The measured dinitrobenzene concentrations required for half-quenching in vivo and other observations are explained by (non-rate-limiting) energy transfer between the chlorophyll a molecules of PS II and by the assumptions that dinitrobenzene is approximately distributed at random in the membrane and does not diffuse during excitation.

3. The fluorescence kinetics of C. vulgaris during a 350 ns laser flash of variable intensity could be simulated on a computer using the matrix model. From the observed fluorescence quenching by the carotenoid triplet (CT) and the measurement of the number of CT per reaction center via difference absorption spectroscopy, the rate constant for quenching of CT is calculated to be kT = 3.3 · 1011 s−1 which is almost equal to the rate constant of trapping by an open reaction center (Duysens, L.N.M. (1979) CIBA Foundation Symposium 61 (New Series), pp. 323–340).

4. The fluorescence quenching by CT in non-treated spinach chloroplasts after a 500 ns laser flash (Breton, J., Geacintov, N.E. and Swenberg, C.E. (1979) Biochim. Biophys. Acta 548, 616–635) could be explained within the framework of the matrix model when the value for kT is used as given in point 3.

5. The observations mentioned under point 1 indicate that the fluorescence yield Ф0 for centers in trapping state P Q is probably for a fraction exceeding 0.8 emitted by PS II.  相似文献   


7.
A number of useful photosynthetic parameters are commonly derived from saturation pulse-induced fluorescence analysis. We show, that q(P), an estimate of the fraction of open centers, is based on a pure 'puddle' antenna model, where each Photosystem (PS) II center possesses its own independent antenna system. This parameter is incompatible with more realistic models of the photosynthetic unit, where reaction centers are connected by shared antenna, that is, the so-called 'lake' or 'connected units' models. We thus introduce a new parameter, q(L), based on a Stern-Volmer approach using a lake model, which estimates the fraction of open PS II centers. We suggest that q(L) should be a useful parameter for terrestrial plants consistent with a high connectivity of PS II units, whereas some marine species with distinct antenna architecture, may require the use of more complex parameters based on intermediate models of the photosynthetic unit. Another useful parameter calculated from fluorescence analysis is Phi(II), the yield of PS II. In contrast to q(L), we show that the Phi(II) parameter can be derived from either a pure 'lake' or pure 'puddle' model, and is thus likely to be a robust parameter. The energy absorbed by PS II is divided between the fraction used in photochemistry, Phi(II), and that lost non-photochemically. We introduce two additional parameters that can be used to estimate the flux of excitation energy into competing non-photochemical pathways, the yield induced by downregulatory processes, Phi(NPQ), and the yield for other energy losses, Phi(NO).  相似文献   

8.
An integrated impact assessment model is used to calculate the impact per tonne of SO2, NOx, fine particles, and NMVOC emitted from different source countries on human health, acidification, eutrophication, and the man-made environment (crop yield and building materials). Indicators on the endpoint level are used to measure the effects resulting from a marginal change in emission levels. While the assessment of impacts on ecosystems and the man-made environment is limited to Europe, damage factors for health effects are also derived for Asia and South America. For Europe, emission scenarios for the years 1990 and 2010 are considered to analyse the influence of changing background conditions on the resulting impacts. Results show that there is a significant variation in the damage resulting from a unit emission for some of the impact categories, both between countries and between base years. Depending on the scope of the study and the information available from the life cycle inventory, results from the paper can be used to consider site dependent conditions in life cycle impact assessment as a complement to the current site-independent (or global) approach.  相似文献   

9.
The yield of fluorescence in Chlorella from a 7 ns pulse of light is found to decrease gradually as a function of the number of hits in the photosynthetic units. The fivefold decrease in yield is spread over some three orders of magnitude of pulse energy and strongly suggests another random process in addition to that of photon absorption. Evidence supports the view that this random process is not in the time but in the spatial domain. The model used to fit the data is that of a unit with multiple traps for the singlet excitation. An excitation is captured by an open trap or destroyed by a filled trap with equal probability. These studies give evidence for the connectivity of the photosynthetic energy transfer apparatus on the short time scale. The short fluorescence lifetimes following picosecond pulse excitation of photosynthetic systems reported by several laboratories may be explained by the effect of multiple excitations.  相似文献   

10.
A biosensor model was developed for a commercial NADH fluorescence probe to describe the single-frequency excitation and emission fluorescence behavior of an aqueous mixture of fluorophores. This model is essential in correlating the measured signals to the concentrations of fluorescent compounds in a bioreactor. In addition to the concentrations of fluorescent components, the relevant parameters of the model are the absorbance at both the excitation and the emission frequencies by the solvent and other absorbing species, the background signals, the light path length of the bioreactor vessel, the fluorescence yield, and the lampdetector configuration. Due to inner-filter effects and other interferences, the probe signal is intrinsically nonlinear in both the fluorophore concentration and the path length. An important parameter in the model is the geometric constant, S, which accounts for variations in the monitoring efficiency throughout the sample because fluorescent light is emitted in all directions. Previous models, derived from an unrealistic assumption that fluorescent light is emitted only in one direction parallel to the probe axis, are shown to be seriously deficient. The validity of the model was verified experimentally for a single-component solution in which both the fluorophore concentration and path length were varied.  相似文献   

11.
A nonlinear regression technique for estimating the Monod parameters describing biodegradation kinetics is presented and analyzed. Two model data sets were taken from a study of aerobic biodegradation of the polycyclic aromatic hydrocarbons (PAHs), naphthalene and 2-methylnaphthalene, as the growth-limiting substrates, where substrate and biomass concentrations were measured with time. For each PAH, the parameters estimated were: q(max), the maximum substrate utilization rate per unit biomass; K(S), the half-saturation coefficient; and Y, the stoichiometric yield coefficient. Estimating parameters when measurements have been made for two variables with different error structures requires a technique more rigorous than least squares regression. An optimization function is derived from the maximumlikelihood equation assuming an unknown, nondiagonal covariance matrix for the measured variables. Because the derivation is based on an assumption of normally distributed errors in the observations, the error structures of the regression variables were examined. Through residual analysis, the errors in the substrate concentration data were found to be distributed log-normally, demonstrating a need for log transformation of this variable. The covariance between ln C and X was found to be small but significantly nonzero at the 67% confidence level for NPH and at the 94% confidence level for 2MN. The nonlinear parameter estimation yielded unique values for q(max), K(S), and Y for naphthalene. Thus, despite the low concentrations of this sparingly soluble compound, the data contained sufficient information for parameter estimation. For 2-methylnaphthalene, the values of q(max) and K(S) could not be estimated uniquely; however, q(max)/K(S) was estimated. To assess the value of including the relatively imprecise biomass concentration data, the results from the bivariate method were compared with a univariate method using only the substrate concentration data. The results demonstrated that the bivariate data yielded a better confidence in the estimates and provided additional information about the model fit and model adequacy. The combination of the value of the bivariate data set and their nonzero covariance justifies the need for maximum likelihood estimation over the simpler nonlinear least squares regression.  相似文献   

12.
Two coastal Synechococcus stains PCC 7002 and CC9311 and one oceanic strain WH8102 were cultured with 4–1000 nM Fe in Aquil medium. Compared with those under iron‐replete conditions, their growth rates were significantly decreased by 59% for WH8102 at 15 nM Fe, by 37% for CC9311 at 15 nM Fe and by 57% for PCC 7002 at 4 nM Fe. Among these three strains, PCC 7002 was the most tolerant to iron limitation while WH8102 was the most sensitive to iron limitation. For each strain under the same iron concentration, the growth rates calculated from the minimal fluorescence yield and cell concentration showed no significant difference. The linear correlation was established between the minimal fluorescence yield and cell concentration although the minimal fluorescence yield per cell varied depending on the strains and iron levels. Under iron‐replete conditions, the minimal fluorescence yield per cell was 100‐fold higher for the phycoerythrin‐lacking strain PCC 7002 than two phycoerythrin‐containing strains WH8102 and CC9311. Under iron‐deplete conditions, it was increased respectively by 128% and 7% for WH8102 and CC9311 but was decreased by 30% for PCC 7002. Furthermore, the minimal fluorescence yield per cell for PCC 7002 and CC9311 showed little difference throughout the light and dark diel cycle. However, it was significantly higher for WH8102 in the daytime than in the dark.  相似文献   

13.
A master equation theory is formulated to describe the dependence of the fluorescence yield (phi) in photosynthetic systems on the number of photons (Y) absorbed per photosynthetic unit (or domain). This theory is applied to the calculation of the dependence of the fluorescence yield on Y in (a) fluorescence induction, and (b) singlet exciton-triplet excited-state quenching experiments. In both cases, the fluorescence yield depends on the number of previously absorbed photons per domain, and thus evolves in a nonlinear manner with increasing Y. In case a, excitons transform the photosynthetic reaction centers from a quenching state to a nonquenching state, or a lower efficiency of quenching state; subsequently, absorbed photons have a higher probability of decaying by radiative pathways and phi increases as Y increases. In case b, ground-state carotenoid molecules are converted to long-lived triplet excited-state quenchers, and phi decreases as Y increases. It is shown that both types of processes are formally described by the same theoretical equations that relate phi to Y. The calculated phi (Y) curves depend on two parameters m and R, where m is the number of reaction centers (or ground-state carotenoid molecules that can be converted to triplets), and R is the ratio phi (Y leads to infinity)/(Y leads to 0). The finiteness of the photosynthetic units is thus taken into account. The m = 1 case corresponds to the "puddle" model, and m leads to infinity to the "lake," or matrix, model. It is shown that the experimental phi (Y) curves for both fluorescence induction and singlet-triplet exciton quenching experiments are better described by the m leads to infinity cases than the m = 1 case.  相似文献   

14.
I Moya 《BBA》1974,368(2):214-227
Lifetime and yield of chlorophyll fluorescence in vivo: Their relationship in different models of photosynthetic unitsWe have used phase fluorimetry to measure the relation between fluorescence lifetime (τ) and yield (Ф) of chlorophyll during the induction phase of photosynthesis in isolated chloroplasts and in vivo. This relationship is usually non-linear, curving slightly toward negative values of τ, and does not extrapolate to zero. In the discussion we examine the conditions which might give rise to curvature and a non-zero intercept. A model of connected photosynthetic units, characterized by an intersystem frequency of energy exchange, T, can account for the concavity of the experimental curves when 0.6 ? T ? 1 ns?1.Two hypotheses are suggested to account for the non-zero intercept: the occurrence of sensitized fluorescence emission, or the existence in the initial fluorescence of a constant fraction independent of System II.  相似文献   

15.
1. The decay of delayed fluorescence from chloroplasts blocked with 3-(3,4-dichlorophenyl)-1,1-dimethylurea and uncoupled with gramicidin has been measured in the time range 0.75--45 ms by use of a laser phosphoroscope. 2. The decays have been analysed as the sum of three first-order components of approximate half-lives 0.2, 2.5 and 300 ms by a computer-assisted least-squares fit procedure. 3. The prompt fluorescence yield of the chloroplasts was manipulated by changing the cation concentration of the chloroplast-suspending medium. 4. Analysis of the concentration dependence of the components of the delayed fluorescence decay and of the prompt fluorescence inductions indicates that the emission yield of the intermediate (tau approximately 2.5 ms) component of the decay is equal to the fluorescence yield of a Photosystem II photosynthetic unit with an open trap, and that for the slow (tau approximately 300 ms) component the emission yield is equal to the total Photosystem II prompt fluorescence yield. 5. It is concluded that the delayed fluorescence yield in the time range studied is a complex function of time, which may be due to there being different mechanisms leading to delayed fluorescence production at short and long times after cessation of illumination.  相似文献   

16.
Oligosaccharide fragments of glycosaminoglycans may be separated for rapid analysis by electrophoresis through a 10% polyacrylamide matrix. An extensive ladder-like set of bands is observed for partial testicular hyaluronidase digests of chondroitin 4- or 6-sulphate, and for dermatan sulphate. Co-electrophoresis of purified oligosaccharides has established that the major bands of these patterns represent fragments differing in chain length by one disaccharide unit, with the smallest fragments having the greatest mobility. Additional minor bands, representing heterogeneity in the repeating unit structure, are also observed. There are slight differences in the mobilities of oligosaccharides derived from the three major types of sulphated glycosaminoglycans. Alcian Blue is employed for visualization of the digest fragments. Sample loads of 5-10 micrograms per band appear optimum. The smallest oligosaccharide which may be stained by this method is the hexasaccharide. After consideration of this effect, a good correlation is found to exist between densitometric scans of the gel-electrophoretic patterns and gel-filtration chromatographic profiles based on uronic acid concentration.  相似文献   

17.
This study aimed to assess effects of chronic occupational exposure on immune status in Mayak workers chronically exposed to ionizing radiation (IR). The study cohort consists of 77 workers occupationally exposed to external gamma-rays at total dose from 0.5 to 3.0 Gy (14 individuals) and workers with combined exposure (external gamma-rays at total dose range 0.7–5.1 Gy and internal alpha-radiation from incorporated plutonium with a body burden of 0.3–16.4 kBq). The control group consists of 43 age- and sex-matched individuals who never were exposed to IR, never involved in any cleanup operations following radiation accidents and never resided at contaminated areas. Enzyme-linked immunoassay and flow cytometry were used to determine the relative concentration of lymphocytes and proteins. The concentrations of T-lymphocytes, interleukin-8 and immunoglobulins G were decreased in external gamma-exposed workers relative to control. Relative concentrations of NKT-lymphocytes, concentrations of transforming growth factor-β, interferon gamma, immunoglobulins A, immunoglobulins M and matrix proteinase-9 were higher in this group as compared with control. Relative concentrations of T-lymphocytes and concentration of interleukin-8 were decreased, while both the relative and absolute concentration of natural killers, concentration of immunoglobulins A and M and matrix proteinase-9 were increased in workers with combined exposure as compared to control. An inverse linear relation was revealed between absolute concentration of T-lymphocytes, relative and absolute concentration of T-helpers cells, concentration of interferon gamma and total absorbed dose from external gamma-rays in exposed workers. For workers with incorporated plutonium, there was an inverse linear relation of absolute concentration of T-helpers as well as direct linear relation of relative concentration of NKT-lymphocytes to total absorbed red bone marrow dose from internal alpha-radiation. In all, chronic occupational IR exposure of workers induced a depletion of immune cells in peripheral blood of the individuals involved.  相似文献   

18.
It has been demonstrated that excess substrate can cause uncoupling between anabolism and catabolism, which leads to energy spilling. However, the Luedeking-Piret equation for product formation does not account for the energy spilling-associated product formation due to substrate excess. Based on the growth yield and energy uncoupling models proposed earlier, a kinetic model describing energy spilling-associated product formation in relation to residual substrate concentration was developed for substrate-sufficient continuous culture and was further verified with literature data. The parameters in the proposed model are well defined and have their own physical meanings. From this model, the specific productivity of unit energy spilling-associated substrate consumption, and the maximum product yield coefficient, can be determined. Results show that the majority of energy spilling-associated substrate consumption was converted to carbon dioxide and less than 6% was fluxed into the metabolites, while it was found that the maximum product yield coefficients varied markedly under different nutrient limitations. The results from this research can be used to develop the optimized bioprocess for maximizing valuable product formation.  相似文献   

19.
The relation between plant yield and plant nutrient concentration is sometimes found to be negative, a phenomenon called the Piper-Steenbjerg (PS) effect. A model was used to examine the underlying causes of the PS effect, and the conditions under which it is most likely to occur. The model uses the nutrient productivity concept for plant growth and a nutrient uptake equation in which root growth rate and external nutrient concentration determine the uptake rate. The study suggests that the PS effect occurs when the fast growth of plants grown in an initially higher nutrient medium eventually leads to a more rapid depletion of external nutrients than the slow growth of plants grown in an initially lower nutrient medium. The fast growth of plants combined with a rapid decrease of nutrient uptake leads to a fall in plant nutrient concentration. When these large plants with very low nutrient concentrations are compared with the smaller, slow-growing plants, a PS effect may be found depending on the time at which the plants are harvested, and on the range of initial values of the external nutrient content. When it occurs, the effect is greatest when the depletion volume per unit new root (Vd) is lowest, and when the mobility of nutrients in the medium is highest (α=1). The results are sufficiently general to apply to a variety of nutrients, plant species and growth media.  相似文献   

20.
Photosynthetic electron transport of beachrock microbial mats growing in the intertidal zone of Heron Island (Great Barrier Reef, Australia) was investigated with a pulse amplitude modulation chl fluorometer providing four different excitation wavelengths for preferential excitation of the major algal groups (cyanobacteria, green algae, diatoms/dinoflagellates). A new type of fiberoptic emitter‐detector unit (PHYTO‐EDF) was used to measure chl fluorescence at the sample surface. Fluorescence signals mainly originated from cyanobacteria, which could be almost selectively assessed by 640‐nm excitation. Even after desiccation for long time periods under full sunlight, beachrock showed rapid recovery of photosynthesis after rehydration in the light (t1/2~ 15 min). However, when rehydrated in the dark, the quantum yield of energy conversion of PSII remained zero over extended periods of time. Parallel measurements of O2 concentration with an oxygen microoptode revealed zero oxygen concentration in the surface layer of rehydrated beachrock in the dark. Upon illumination, O2 concentration increased in parallel with PSII quantum yield and decreased again to zero in the dark. It is proposed that oxygen is required for preventing complete dark reduction of the PSII acceptor pools via the NADPH‐dehydrogenase/chlororespiration pathway. This hypothesis is supported by the observation that PSII quantum yield could be partially induced in the dark by flushing with molecular oxygen. Abbreviations: EDF, emitter‐detector unit; Fo, fluor‐escence yield of dark‐adapted sample; Fm, maximal fluorescence yield measured during saturation pulse; Fv, variable fluorescence yield; LED, light‐emitting diode; PAM, pulse amplitude modulation; PQ, plastoquinone  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号