首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Burkholderia cepacia is an opportunistic pathogen involved in pulmonary infections related to cystic fibrosis. A clinical strain, BTS13, was isolated and the production of exopolysaccharides was tested growing the bacteria on two different media, one of which was rich in mannitol as carbon source. The primary structure of the polysaccharides was determined using mostly mass spectrometry and NMR spectroscopy. On both media an exopolysaccharide having the following repeating unit was produced: -->5)-beta-Kdop-(2-->3)-beta-D-Galp2Ac-(1-->4)-alpha-D-Galp-(1-->3)-beta-D-Galp-(1--> This polysaccharide has already been described as the biosynthetic product of another Burkholderia species, B. pseudomallei, the microbial agent causing melioidosis. In addition to this, when grown on the mannitol-rich medium, B. cepacia strain BTS13 produced another polysaccharide that was established to be levan: -->6)-beta-D-Fruf-(2-->. The content of levan was about 20% (w/w) of the total amount of polymers. The ability of B. cepacia to produce these two exopolysaccharides opens new perspectives in the investigation of the role of polysaccharides in lung infections.  相似文献   

2.
Bacteria belonging to the Burkholderia cepacia complex (BCC) are important opportunistic pathogens in patients with cystic fibrosis (CF). Since approximately 80% of the CF isolates examined produce exopolysaccharide (EPS), it was hypothesized that this EPS may play a role in the colonization and persistence of these bacteria in the CF lung. The present study describes the identification and physical organization of the EPS biosynthetic gene cluster. This bce gene cluster was identified following the isolation of three EPS-defective mutants from the highly mucoid CF isolate IST408, belonging to BCC genomovar I, based on random plasposon insertion mutagenesis and comparison of the nucleotide sequence of the interrupted genes with the available genome of Burkholderia cenocepacia J2315. This 16.2 kb cluster includes 12 genes and is located on chromosome 2. Database searches for homologous proteins and secondary structure analysis for the deduced Bce amino acid sequences revealed genes predicted to encode enzymes required for the formation of nucleotide sugar precursors, glycosyltransferases involved in the repeat-unit assembly, and other proteins involved in polymerization and export of bacterial surface polysaccharides.  相似文献   

3.
The purpose of this study was to develop a novel strategy for the isolation and identification of Burkholderia cepacia complex bacteria from the home environment of cystic fibrosis (CF) patients. Water and soil samples were enriched in a broth containing 0.1% l-arabinose, 0.1% l-threonine, and a mixture of selective agents including 1 microgml(-1) C-390, 600U ml(-1) polymyxin B sulfate, 10 microgml(-1) gentamycin, 2 microgml(-1) vancomycin and 10 microgml(-1) cycloheximide. On selective media (consisting of the same components as above plus 1.8% agar), several dilutions of the enrichment broth were inoculated and incubated for 5 days at 28 degrees C. Isolates with different randomly amplified polymorphic DNA patterns were inoculated in Stewart's medium. Putative B. cepacia complex bacteria were confirmed by means of recA PCR and further identified by HaeIII-recA restriction fragment length polymorphism analysis. Our results suggest that these organisms may be more widespread in the home environment than previously assumed and that plant associated soil and pond water may be reservoirs of B. cepacia complex infection in CF patients.  相似文献   

4.
Nineteen Burkholderia cepacia-like isolates of human and environmental origin could not be assigned to one of the seven currently established genomovars using recently developed molecular diagnostic tools for B. cepacia complex bacteria. Various genotypic and phenotypic characteristics were examined. The results of this polyphasic study allowed classification of the 19 isolates as an eighth B. cepacia complex genomovar (Burkholderia anthina sp. nov.) and to design tools for its identification in the diagnostic laboratory. In addition, new and published data for Burkholderia pyrrocinia indicated that this soil bacterium is also a member of the B. cepacia complex. This highlights another potential source for diagnostic problems with B. cepacia-like bacteria.  相似文献   

5.
Although sporadic human infection due to Burkholderia cepacia has been reported for many years, it has been only during the past few decades that species within the B. cepacia complex have emerged as significant opportunistic human pathogens. Individuals with cystic fibrosis, the most common inherited genetic disease in Caucasian populations, or chronic granulomatous disease, a primary immunodeficiency, are particularly at risk of life-threatening infection. Despite advances in our understanding of the taxonomy, microbiology, and epidemiology of B. cepacia complex, much remains unknown regarding specific human virulence factors. The broad-spectrum antimicrobial resistance demonstrated by most strains limits current therapy of infection. Recent research efforts are aimed at a better appreciation of the pathogenesis of human infection and the development of novel therapeutic and prophylactic strategies.  相似文献   

6.
Cepacian is an exopolysaccharide produced by the majority of the isolates belonging to the Burkholderia cepacia complex bacteria, a group of 17 species, some of which infect cystic fibrosis patients, sometime with fatal outcome. The repeating unit of cepacian consists of a backbone having a trisaccharidic repeating unit with three side chains, as reported in the formula below. The exopolysaccharide is also acetylated, carrying from one to three acetyl esters per repeating unit, depending on the strain examined. The consequences of O-acetyl substitution in a polysaccharide are important both for its biological functions and for industrial applications, including the preparation of conjugated vaccines, since O-acetyl groups are important immunogenic determinants. The location of acetyl groups was achieved by NMR spectroscopy and ESI mass spectrometry and revealed that these substituents are scattered in non-stoichiometric ratio on many sugar residues in different positions, a feature which adds to the already unique carbohydrate structure of the polysaccharide.  相似文献   

7.
The bceA gene is part of the Burkholderia cepacia IST408 exopolysaccharide (EPS) biosynthetic cluster. It encodes a 55.3-kDa bifunctional protein (type II PMI family) with phosphomannose isomerase (PMI) and GDP-mannose pyrophosphorylase (GMP) activities. GMP activity is strongly dependent on the presence of Ca(2+) or Mn(2+), while PMI activity can use a broader variety of divalent cations (Ca(2+)>Mn(2+)>Mg(2+)>Co(2+)>Ni(2+)). The lack of a functional bceA gene does not affect EPS production yield in a non-polar insertion bceA mutant. The in silico search for putative bceA homologues revealed the presence of 2-5 bceA orthologues in the Burkholderia genomes available. This suggests that in B. cepacia IST408 putative bceA functional homologues may compensate the bceA mutation. However, the viscosity of aqueous solutions prepared with the EPS produced by the bceA mutant was significantly reduced compared with wild-type biopolymer and the mutant forms biofilms with a size reduced by 6-fold.  相似文献   

8.
The Burkholderia cepacia complex is a group of closely related species with conflicting biological properties. Triggered by the devastating effect of pulmonary infections in cystic fibrosis patients, the scientific community generated an unusually large amount of taxonomic data for these bacteria during the past 15 years. This review presents the polyphasic, multilocus and genomic methodology used for the classification and identification of these bacteria. The current state-of-the-art demonstrates that present day taxonomists can replace traditional DNA-DNA hybridizations for species level demarcation and 16S rRNA sequence analysis for studying phylogeny by superior whole genome sequence-based parameters within the framework of polyphasic taxonomic studies.  相似文献   

9.
The Burkholderia cepacia complex comprises at least nine phylogenetically related genomic species (genomovars) which cause life-threatening infection in immunocompromised humans, particularly individuals with cystic fibrosis or chronic granulomatous disease. Prior to recognition that 'B. cepacia' comprise multiple species, in vitro studies revealed that the lipopolysaccharide (LPS) of these Gram-negative bacteria is strongly endotoxic. In this study, we used 117 B. cepacia complex isolates to determine if there is a correlation between O-antigen serotype and genomovar status. Isolates were also tested for their ability to act as bacterial hosts for the LPS-binding bacteriophages NS1 and NS2. The absence of genomovar II (Burkholderia multivorans) in 'historical B. cepacia' isolates was notable. Neither O-serotype nor phage susceptibility correlated with genomovar status. We conclude that variability in LPS may contribute to the success of these highly adaptable bacteria as human pathogens.  相似文献   

10.
The repeating unit of cepacian, the exopolysaccharide produced by the majority of the microorganisms belonging to the Burkholderia cepacia complex, was isolated from inner bacterial membranes and investigated by mass spectrometry, with and without prior derivatisation. Interpretation of the mass spectra led to the determination of the biological repeating unit primary structure, thus disclosing the nature of the oligosaccharide produced in vivo. Moreover, mass spectra recorded on the native sample revealed that acetyl substitution was very variable, producing a mixture of repeating units containing zero to four acyl groups. At the same time, finding acetylated oligosaccharides showed that binding of these substituents occurred in the cellular periplasmic space, before the polymerisation process took place. In the chromatographic peak containing the repeating unit, oligosaccharides shorter than the repeating unit co-eluted. Mass spectrometric analysis showed that they were biosynthetic intermediates of the repeating unit and further investigation revealed the biosynthetic sequence of cepacian building block.  相似文献   

11.
We present a computational conformational analysis of the exopolysaccharide of Burkholderia cepacia, which is believed to play a role in colonization and persistence of B. cepacia in the lungs of cystic fibrosis patients. The repeating unit of the exopolysaccharide is a heptasaccharide with three branches, which cause significant steric restraints. Conformational searches using glygal, an in-house developed software using genetic algorithm search methods, were performed on fragments as well as on the complete repeating unit with wrap-over residues. The force field used for the calculations was MM3(96). The search showed four favored conformations for an isolated repeating unit. However, for a sequence of several repeating units, the calculations indicate a single, well-defined linear conformation.  相似文献   

12.
Previous studies have identified specific Burkholderia cepacia complex strains that are common to multiple persons with cystic fibrosis (CF). Such so-called epidemic strains have an apparent enhanced capacity for inter-patient spread and reside primarily in Burkholderia cenocepacia (formerly B. cepacia complex genomovar III). We sought to identify strains from B. cepacia complex species other than B. cenocepacia that are similarly shared by multiple CF patients. We performed genotype analysis of 360 recent sputum culture isolates from 360 persons residing in 29 cities by using repetitive extragenic palendromic polymerase chain reaction (rep-PCR) and pulsed field gel electrophoresis. The results indicate that sharing of a common Burkholderia multivorans strain occurs relatively infrequently; however, several small clusters of patients infected with the same strain were identified. A cluster of seven patients infected with the same B. cepacia (genomovar I) strain was found. We also identified a large group of 28 patients receiving care in the same treatment center and infected with the same Burkholderia dolosa strain. These observations suggest that B. cepacia complex strains in species other than B. cenocepacia may be spread among CF patients.  相似文献   

13.
A pure culture of an EDTA-degrading strain was isolated from the Taiwan environment. It was identified as Burkholderia cepacia, an aerobic bacterium, elliptically shaped with a length of 5–15 m. The degradation assay showed that the degradation efficiency of Fe-EDTA by B. cepacia was approximately 91%. Evaluation of kinetic parameters showed that Fe-EDTA degradation followed substrate inhibition kinetics. This is evident from the decrease in specific growth rate with an increase in the initial substrate concentration greater than 500 mg/l. To estimate the kinetic parameters – max, KS and KI, five substrate–inhibition models were used. From the results of non-linear regression, the value of max ranged from 0.150 to 0.206 d–1, KS from 74 to 87 mg/l, and KI from 890 to 2289 mg/l. The five models were found to underestimate the maximum specific growth rate by 1.5–3.7. Therefore, predictions based on these models would result in lower predicted value than those from the experimental kinetic data.  相似文献   

14.
The O-chain polysaccharide of the lipopolysaccharide from the endophytic bacterium Burkholderia cepacia strain was characterized. The structure was studied by means of chemical analysis and 2D NMR spectroscopy and shown to be the following: -->2)-beta-D-Ribf-(1-->6)-alpha-D-Glcp-(1-->.  相似文献   

15.
AIMS: Burkholderia cepacia complex (Bcc) isolates causing pulmonary infection in cystic fibrosis (CF) patients grow within an acidic environment in the lung. As exposure to acid pH has been shown to increase intracellular inorganic polyphosphate (polyP) formation in some bacteria, we investigated the inter-relationship between acidic pH and polyP accumulation in Bcc isolates. METHODS AND RESULTS: The formation of polyP by one Burkholderia cenocepacia clinical isolate was initially examined at a range of pH values by measuring total intracellular polyP accumulation and phosphate uptake. The pattern of polyP accumulation corresponded with the pattern of phosphate uptake with the maximum for both occurring at pH 5.5. Phosphate uptake and formation of polyP by this isolate was further determined over 48 h at pH 5.5, 6.5 and 7.5; formation of polyP was maximal at pH 5.5 at all time points studied. Sixteen of 17 additional clinical and environmental Bcc isolates examined also exhibited maximum phosphate uptake at pH 5.5. CONCLUSIONS: Both clinical and environmental Bcc isolates, of five genomovars, show enhanced formation of polyP in an acidic environment. Given both the speculated role of polyP in pathogenesis, cell signalling and biofilm formation and the acidic nature of the CF lung, this may be of considerable clinical importance. SIGNIFICANCE AND IMPACT OF THE STUDY: Growth of Bcc in an acidic environment, such as that found in the lungs of CF patients may be influenced in part by polyP accumulation.  相似文献   

16.
The production of exopolysaccharides (EPSs) by a mucoid clinical isolate of Burkholderia cepacia involved in infections in cystic fibrosis patients, was studied. Depending on the growth conditions, this strain was able to produce two different EPS, namely PS-I and PS-II, either alone or together. PS-I is composed of equimolar amounts of glucose and galactose with pyruvate as substituent, and was produced on all media tested. PS-II is constituted of rhamnose, mannose, galactose, glucose and glucuronic acid in the ratio 1:1:3:1:1, with acetate as substituent, and was produced on either complex or minimal media with high-salt concentrations (0.3 or 0.5 M NaCl). Although this behavior is strain-specific, and not cepacia-specific, the stimulation of production of PS-II in conditions that mimic those encountered by B. cepacia in the respiratory track of cystic fibrosis patients, suggests a putative role of this EPS in a pathologic context.  相似文献   

17.
Endo-polygalacturonases (endoPGs) belong to the glycoside hydrolase family 28 and hydrolyze the alpha-1,4 glycosidic bond present in the smooth regions of pectins. Pectic substances are among the principal macromolecular components of the primary plant cell walls and are subjected to enzymatic degradation not only in the course of important physiological processes such as plant senescence and ripening, but also during infection events by plant pathogens. Here we report, for the first time, the isolation and the purification of an endoPG (PehA) from the supernatant of the plant pathogen Burkholderia cepacia strain ATCC 25416. In order to obtain adequate amounts of protein required for structural and functional studies, the gene coding for pehA was PCR-amplified and cloned in Escherichia coli cells. The recombinant protein was purified to homogeneity and characterized. PehA exhibited a pI value of 8.0 and an optimal activity at pH 3.5. Far-UV circular dichroism (CD) measurements show that PehA assumes a beta-helix fold super-secondary structural motif.  相似文献   

18.
Degradation of polyaromatic hydrocarbons by Burkholderia cepacia 2A-12   总被引:1,自引:1,他引:0  
A new strain of bacterium degrading polyaromatic hydrocarbons (PAHs), Burkholderia cepacia 2A-12, was isolated from oil-contaminated soil. Of three PAHs, the isolated strain could utilize naphthalene (Nap) and phenanthrene (Phe) as a sole carbon source but not pyrene (Pyr). However, the strain could degrade Pyr when a cosubstrate such as yeast extract (YE) was supplemented. The PAH degradation rate of the strain was enhanced by the addition of other organic materials such as YE, peptone, glucose, and sucrose. YE was a particularly effective additive in stimulating cell growth as well as PAH degradation. When 1 g YE l–1, an optimum concentration, was supplemented into the basal salt medium (BSM) with 215 mg Phe l–1, the specific growth rate (0.30 h–1) and Phe-degrading rate (29.6 mol l–1 h–1) were enhanced approximately ten and three times more than those obtained in the BSM with 215 mg Phe l–1, respectively. Both cell growth and PAH degradation rates were increased with increasing Phe and Pyr concentrations, and B. cepacia 2A-12 had a tolerance against Phe and Pyr toxicity at the high concentration of 730–760 mg l–1. Through kinetic analysis, the maximum specific growth rate ( max) and PAH degrading rate ( max) for Phe were obtained as 0.39 h–1 and 300 mol l–1 h–1, respectively. Also, max and max for Pyr were 0.27 h–1 and 52 mol l–1 h–1, respectively. B. cepacia 2A-12 could simultaneously degrade crude oil as well as PAHs, indicating that this bacterium is very useful for the removal of oils and PAHs contaminants.  相似文献   

19.
Conformational energy calculations and molecular dynamics investigations, both in water and in dimethyl sulfoxide, were carried out on the exopolysaccharide cepacian produced by the majority of the clinical strains of Burkholderia cepacia, an opportunistic pathogen causing serious lung infection in patients affected by cystic fibrosis, The investigation was aimed at defining the structural and conformational features, which might be relevant for clarification of the structure-function relationships of the polymer. The molecular dynamics calculations were carried out by Ramachandran-type energy plots of the disaccharides that constitute the polymer repeating unit. The dynamics of an oligomer composed of three repeating units were investigated in water and in Me2SO, a non-aggregating solvent. Analysis of the time persistence of hydrogen bonds showed the presence of a large number of favourable interactions in water, which were less evident in Me2SO. The calculations on the cepacian chain indicated that polymer conformational features in water were affected by the lateral chains, but were also largely dictated by the presence of solvent. Moreover, the large number of intra-chain hydrogen bonds in water disappeared in Me2SO solution, increasing the average dimension of the polymer chains.  相似文献   

20.
Zheng Y  Ye ZL  Fang XL  Li YH  Cai WM 《Bioresource technology》2008,99(16):7686-7691
A bioflocculant-producing bacterium isolated from soil was identified as Bacillus sp. and the bioflocculant produced was named MBFF19. Effects of physico-chemical conditions including pH, carbon sources and nitrogen sources on MBFF19 production were studied. Chemical analyses of the purified bioflocculant MBFF19 indicated that it was a sugar-protein derivative, composed of neutral sugar (3.6%, w/w), uronic acid (37.0%, w/w), amino sugars (0.5%, w/w) and protein (16.4%, w/w). The two neutral sugar components were mannose and glucose and the molar ratio was 1.2:1. Infrared spectrophotometry analysis revealed that MBFF19 contained carboxyl, hydroxyl and methoxyl groups in its structural. Flocculating properties of bioflocculant MBFF19 was examined using kaolin, activated carbon and fly coal suspension. Cation supplement had no positive effects on the flocculating activity whereas the presence of Fe3+ inhibited flocculation. Influences of pH and bioflocculant dosage on the flocculation were also examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号