首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
In contrast to other P450 enzymes purified from rat liver microsomes, purified P450 IIIA1 (P450p) is catalytically inactive when reconstituted with NADPH-cytochrome P450 reductase and the synthetic lipid, dilauroylphosphatidylcholine. However, purified P450 IIIA1 catalyzes the oxidation of testosterone when reconstituted with NADPH-cytochrome P450 reductase, cytochrome b5, an extract of microsomal lipid, and detergent (Emulgen 911). The present study demonstrates that the microsomal lipid extract can be replaced with one of several naturally occurring phospholipids, but not with cholesterol, sphingosine, sphingomyelin, ceramide, cerebroside, or cardiolipin. The ratio of the testosterone metabolites formed by purified P450 IIIA1 (i.e., 2 beta-, 6 beta-, and 15 beta-hydroxytestosterone) was influenced by the type of phospholipid added to the reconstitution system. The ability to replace microsomal lipid extract with several different phospholipids suggests that the nature of the polar group (i.e., choline, serine, ethanolamine, or inositol) is not critical for P450 IIIA1 activity, which implies that P450 IIIA1 activity is highly dependent on the fatty acid component of these lipids. To test this possibility, P450 IIIA1 was reconstituted with a series of synthetic phosphatidylcholines. Those phosphatidylcholines containing saturated fatty acids were unable to support testosterone oxidation by purified P450 IIIA1, regardless of the acyl chain length (C6 to C18). In contrast, several unsaturated phosphatidylcholines supported testosterone oxidation by purified P450 IIIA1, and in this regard dioleoylphosphatidylcholine (PC(18:1)2) was as effective as microsomal lipid extract and naturally occurring phosphatidylcholine or phosphatidylserine. These results confirmed that P450 IIIA1 activity is highly dependent on the fatty acid component of phospholipids. A second series of experiments was undertaken to determine whether microsomal P450 IIIA1, like the purified enzyme, is dependent on cytochrome b5. A polyclonal antibody against purified cytochrome b5 was raised in rabbits and was purified by affinity chromatography. Anti-cytochrome b5 caused a approximately 60% inhibition of testosterone 2 beta-, 6 beta-, and 15 beta-hydroxylation by purified P450 IIIA1 and inhibited these same reactions by approximately 70% when added to liver microsomes from dexamethasone-induced female rats. Overall, these results suggest that testosterone oxidation by microsomal cytochrome P450 IIIA1 requires cytochrome b5 and phospholipid containing unsaturated fatty acids.  相似文献   

2.
The aim of the present study was to examine a recent proposal that inhibitory isozyme:isozyme interactions explain why membrane-bound isozymes of rat liver microsomal cytochrome P-450 exert only a fraction of the catalytic activity they express when purified and reconstituted with saturating amounts of NADPH-cytochrome P-450 reductase and optimal amounts of dilauroylphosphatidylcholine. The different pathways of testosterone hydroxylation catalyzed by cytochromes P-450a (7 alpha-hydroxylation), P-450b (16 beta-hydroxylation), and P-450c (6 beta-hydroxylation) enabled possible inhibitory interactions between these isozymes to be investigated simultaneously with a single substrate. No loss of catalytic activity was observed when purified cytochromes P-450a, P-450b, or P-450c were reconstituted in binary or ternary mixtures under a variety of incubation conditions. When purified cytochromes P-450a, P-450b, and P-450c were reconstituted under conditions that mimicked a microsomal system (with respect to the absolute concentration of both the individual cytochrome P-450 isozyme and NADPH-cytochrome P-450 reductase), their catalytic activity was actually less (69-81%) than that of the microsomal isozymes. These results established that cytochromes P-450a, P-450b, and P-450c were not inhibited by each other, nor by any of the other isozymes in the liver microsomal preparation. Incorporation of purified NADPH-cytochrome P-450 reductase into liver microsomes from Aroclor 1254-induced rats stimulated the catalytic activity of cytochromes P-450a, P-450b, and P-450c. Similarly, purified cytochromes P-450a, P-450b, and P-450c expressed increased catalytic activity in a reconstituted system only when the ratio of NADPH-cytochrome P-450 reductase to cytochrome P-450 exceeded that normally found in liver microsomes. These results indicate that the inhibitory cytochrome P-450 isozyme:isozyme interactions described for warfarin hydroxylation were not observed when testosterone was the substrate. In addition to establishing that inhibitory interactions between different cytochrome P-450 isozymes is not a general phenomenon, the results of the present study support a simple mass action model for the interaction between membrane-bound or purified cytochrome P-450 and NADPH-cytochrome P-450 reductase during the hydroxylation of testosterone.  相似文献   

3.
The aim of this study was to determine the effects of ionic strength and pH on the different pathways of testosterone oxidation catalyzed by rat liver microsomes. The catalytic activity of cytochromes P-450a (IIA1), P-450b (IIB1), P-450h (IIC11) and P-450p (IIIA1) was measured in liver microsomes from mature male rats and phenobarbital-treated rats as testosterone 7 alpha-, 16 beta-, 2 alpha- and 6 beta-hydroxylase activity, respectively. An increase in the concentration of potassium phosphate (from 25 to 250 mM) caused a marked decrease in the catalytic activity of cytochromes P-450a (to 8%), P-450b (to 22%) and P-450h (to 23%), but caused a pronounced increase in the catalytic activity of cytochrome P-450p (up to 4.2-fold). These effects were attributed to changes in ionic strength, because similar but less pronounced effects were observed with Tris-HCl (which has approximately 1/3 the ionic strength of phosphate buffer at pH 7.4). Testosterone oxidation by microsomal cytochromes P-450a, P-450b, P-450h and P-450p was also differentially affected by pH (over the range 6.8-8.0). The pH optima ranged from 7.1 (for P-450a and P-450h) to 8.0 (for P-450p), with an intermediate value of 7.4 for cytochrome P-450b. Increasing the pH from 6.8 to 8.0 unexpectedly altered the relative amounts of the 3 major metabolites produced by cytochrome P-450h. The decline in testosterone oxidation by cytochromes P-450a, P-450b and P-450h that accompanied an increase in ionic strength or pH could be duplicated in reconstitution systems containing purified P-450a, P-450b or P-450h, equimolar amounts of NADPH-cytochrome P-450 reductase and optimal amounts of dilauroylphosphatidylcholine. This result indicated that the decline in testosterone oxidation by cytochromes P-450a, P-450b and P-450h was a direct effect of ionic strength and pH on these enzymes, rather than a secondary effect related to the increase in testosterone oxidation by cytochrome P-450p. Similar studies with purified cytochrome P-450p were complicated by the atypical conditions needed to reconstitute this enzyme. However, studies on the conversion of digitoxin to digitoxigenin bisdigitoxoside by liver microsomes, which is catalyzed specifically by cytochrome P-450p, provided indirect evidence that the increase in catalytic activity of cytochrome P-450p was also a direct effect of ionic strength and pH on this enzyme.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Constitutive testosterone 6 beta-hydroxylase in rat liver   总被引:1,自引:0,他引:1  
The cytochrome P-450 that was purified from hepatic microsomes of male rats treated with phenobarbital and designated P450 PB-1 (Funae and Imaoka (1985) Biochim. Biophys. Acta 842, 119-132) had high testosterone 6 beta-hydroxylation activity (turnover rate, 13.5 nmol of product/min/nmol of P-450) in a reconstituted system consisting of cytochrome P-450, NADPH-cytochrome P-450 reductase, cytochrome b5, and a 1:1 mixture of lecithin and phosphatidylserine in the presence of sodium cholate. In ordinary conditions in the reconstituted system with cytochrome P-450, reductase, and dilauroylphosphatidylcholine, P450 PB-1 had little 6 beta-hydroxylase activity. The catalytic activities toward testosterone of two major constitutive forms, P450 UT-2 and P450 UT-5, were not affected by cytochrome b5, phospholipid, or sodium cholate. P450 PB-1 in rat liver microsomes was assayed by immunoblotting with specific antibody to P450 PB-1. P450 PB-1 accounted for 24.4 +/- 5.6% (mean +/- SD) of the total spectrally-measured cytochrome P-450 in hepatic microsomes of untreated adult male rats, and was not found in untreated adult female rats. P450 PB-1 was induced twofold with phenobarbital in male rats. P450 PB-1 was purified from untreated male rats and identified as P450 PB-1 from phenobarbital-treated rats by its NH2-terminal sequence, peptide mapping, and immunochemistry. These results showed that P450 PB-1 is a constitutive male-specific form in rat liver. There was a good correlation (r = 0.925) between the P450 PB-1 level and testosterone 6 beta-hydroxylase activity in rat liver microsomes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Sodium cholate, Emulgen 911, and (3-[(-cholamidopropyl)-dimethyl- ammonio]-1-propanesulfonate) (CHAPS) were selected to examine the effects of ionic, nonionic, and zwitterionic detergents on testosterone hydroxylation catalyzed by four purified isozymes of rat liver microsomal cytochrome P-450, namely P-450a, P-450b, P-450c, and P-450h, in reconstituted systems containing optimal amounts of dilauroylphosphatidylcholine and saturating amounts of NADPH- cytochrome P-450 reductase (reductase). The major phenobarbital-inducible form of rat liver microsomal cytochrome P-450, designated P-450b, was extremely sensitive to the inhibitory effects of Emulgen 911, which is used in several procedures to purify this and other forms of cytochrome P-450. In contrast, sodium cholate and CHAPS had little effect on the catalytic activity of cytochrome P-450b, even at ten times the concentration of Emulgen 911 effecting 50% inhibition (IC-50). By substituting the zwitterionic detergent CHAPS for Emulgen 911, we purified cytochrome P-450b without the use of nonionic detergent. The protein is designated cytochrome P-450b* to distinguish it from cytochrome P-450b purified with the use of Emulgen 911. NADPH-cytochrome P-450 reductase was also purified both with and without the use of nonionic detergent. The absolute spectra of cytochrome P-450b and P-450b* were indistinguishable, as were the carbon monoxide (CO)- and metyrapone-difference spectra of the dithionite-reduced hemoproteins. When reconstituted with NADPH-cytochrome P-450 reductase and dilauroylphosphatidylcholine, cytochromes P-450b and P-450b* catalyzed the N-demethylation of benzphetamine and aminopyrine, the 4-hydroxylation of aniline, the O-dealkylation of 7-ethoxycoumarin, the 3-hydroxylation of hexobarbital, and the 6-hydroxylation of zoxazolamine. Both hemo-proteins catalyzed the 16α- and 16β-hydroxylation of testosterone, as well as the 17-oxidation of testosterone to androstenedione. Both hemoproteins were poor catalysts of erythromycin demethylation and benzo[a]pyrene 3-/9-hydroxylation. The rate of biotransformation catalyzed by cytochrome P-450b* was up to 50% greater than the rate catalyzed by cytochrome P-450b when reconstituted with either reductase or reductase*. The activity of cytochrome P-450b and P-450b* increased up to 50% when reconstituted with reductase* instead of reductase. In addition to establishing the feasibility of purifying an isozyme of rat liver microsomal cytochrome P-450 without the use of nonionic detergent, these results indicate that the catalytic activity of cytochrome P-450 is not unduly compromised by residual contamination with the nonionic detergent Emulgen 911.  相似文献   

6.
Two types of cytochrome P-450, P-450LM2 and P-450LM3, have been purified from rabbit liver microsomes and incorporated into phospholipid vesicles by a cholate gel filtration technique together with purified preparations of NADPH-cytochrome P-450 reductase. The catalytic properties of the vesicles have been compared with a system reconstituted with small amounts of dilauroylphosphatidylcholine (DLPC). 6 beta-Hydroxylation of androstenedione proceeded at a rate 10 times higher in the vesicles compared to the DLPC-system. The kinetics for the reaction were the same in the vesicles as in intact microsomes i.e. sigmoidal substrate curves were obtained and Hill-coefficients of about 1.4 were calculated in these systems. In contrast, Michaelis-Menten kinetics were obtained for 6 beta-hydroxylation in the DLPC-system. The results could indicate cooperativity between different P-450 molecules in the intact membrane but not in the DLPC-system. P-450LM2-catalyzed 16-hydroxylation of androstenedione was in contrast to the situation with P-450LM3 inhibited in the vesicles as compared to the DLPC system. It is suggested that for evaluation of substrate specificity and other properties of different types of liver microsomal P-450, phospholipid vesicles may be a more relevant integration level than the DLPC-system.  相似文献   

7.
A reconstituted lipid peroxidation system consisting of rat liver microsomal NADPH-cytochrome P450 reductase and cytochrome P450 incorporated into phospholipid vesicles was developed and characterized. Peroxidation of the vesicles required NADPH and ADP-Fe3+, just as in the NADPH-dependent peroxidation of microsomes. The peroxidation of the vesicles was inhibited 30-50% by superoxide dismutase, depending upon their cytochrome P450 content: those with higher cytochrome P450 contents exhibited greater rates of malondialdehyde formation which were less sensitive to inhibition by superoxide dismutase. When cytochrome P450 was incorporated into vesicles, EDTA-Fe3+ was not required for lipid peroxidation, distinguishing this system from the one previously described by Pederson and Aust [Biochem. Biophys. Res. Comm. 48, 789; 1972]. Since at least 50% of the malondialdehyde formation in the vesicular system was not inhibited by superoxide dismutase, alternative means of iron reduction (O2-.-independent) were examined. It was found that rat liver microsomes or a reconstituted mixed function oxidase system consisting of NADPH-cytochrome P450 reductase and cytochrome P450 in dilauroylphosphatidylcholine micelles reduced ADP-Fe3+ under anaerobic conditions.  相似文献   

8.
The pathways of testosterone oxidation catalyzed by purified and membrane-bound forms of rat liver microsomal cytochrome P-450 were examined with an HPLC system capable of resolving 14 potential hydroxylated metabolites of testosterone and androstenedione. Seven pathways of testosterone oxidation, namely the 2 alpha-, 2 beta-, 6 beta-, 15 beta-, 16 alpha-, and 18-hydroxylation of testosterone and 17-oxidation to androstenedione, were sexually differentiated in mature rats (male/female = 7-200 fold) but not in immature rats. Developmental changes in two cytochrome P-450 isozymes largely accounted for this sexual differentiation. The selective expression of cytochrome P-450h in mature male rats largely accounted for the male-specific, postpubertal increase in the rate of testosterone 2 alpha-, 16 alpha, and 17-oxidation, whereas the selective repression of cytochrome P-450p in female rats accounted for the female-specific, postpubertal decline in testosterone 2 beta-, 6 beta-, 15 beta-, and 18-hydroxylase activity. A variety of cytochrome P-450p inducers, when administered to mature female rats, markedly increased (up to 130-fold) the rate of testosterone 2 beta-, 6 beta-, 15 beta-, and 18-hydroxylation. These four pathways of testosterone hydroxylation were catalyzed by partially purified cytochrome P-450p, and were selectively stimulated when liver microsomes from troleandomycin- or erythromycin estolate-induced rats were treated with potassium ferricyanide, which dissociates the complex between cytochrome P-450p and these macrolide antibiotics. Just as the testosterone 2 beta-, 6 beta-, 15 beta-, and 18-hydroxylase activity reflected the levels of cytochrome P-450p in rat liver microsomes, so testosterone 7 alpha-hydroxylase activity reflected the levels of cytochrome P-450a; 16 beta-hydroxylase activity the levels of cytochrome P-450b; and 2 alpha-hydroxylase activity the levels of cytochrome P-450h. It is concluded that the regio- and stereoselective hydroxylation of testosterone provides a functional basis to study simultaneously the regulation of several distinct isozymes of rat liver microsomal cytochrome P-450.  相似文献   

9.
Cytochrome P450a was purified to electrophoretic homogeneity from liver microsomes from immature male Long-Evans rats treated with Aroclor 1254. Rabbit polyclonal antibody raised against cytochrome P450a cross-reacted with cytochromes P450b, P450e, and P450f (which are structurally related to cytochrome P450a). The cross-reacting antibodies were removed by passing anti-P450a over an N-octylamino-Sepharose column containing these heterologous antigens. The immunoabsorbed antibody recognized only a single protein (i.e., cytochrome P450a) in liver microsomes from immature male rats treated with Aroclor 1254 (i.e., the microsomes from which cytochrome P450a was purified). However, the immunoabsorbed antibody recognized three proteins in liver microsomes from mature male rats, as determined by Western immunoblot. As expected, one of these proteins (Mr 48,000) corresponded to cytochrome P450a. The other two proteins did not correspond to cytochromes P450b, P450e, or P450f (as might be expected if the antibody were incompletely immunoabsorbed), nor did they correspond to cytochromes P450c, P450d, P450g, P450h, P450i, P450j, P450k, or P450p. One of these proteins was designated cytochrome P450m (Mr approximately 49,000), the other cytochrome P450n (Mr approximately 50,000). Like cytochrome P450a, cytochrome P450n was present in liver microsomes from both male and female rats. However, whereas cytochrome P450a was detectable in liver microsomes from 1-week-old rats, cytochrome P450n was barely detectable until the rats were at least 3 weeks old. Furthermore, in contrast to cytochrome P450a, the levels of cytochrome P450n did not decline appreciably with age in postpubertal male rats. Cytochrome P450m was detectable only in liver microsomes from postpubertal (greater than 4 week-old) male rats. Cytochromes P450m and P450n were isolated from liver microsomes from mature male rats and purified to remove cytochrome P450a. When reconstituted with NADPH-cytochrome P450 reductase and lipid, cytochrome P450n exhibited little testosterone hydroxylase activity, whereas cytochrome P450m catalyzed the 15 alpha-, 18-, 6 beta-, and 7 alpha-hydroxylations of testosterone at 10.8, 4.6, 2.0, and 1.9 nmol/nmol P450/min, respectively. The ability of cytochrome P450m to catalyze the 7 alpha-hydroxylation of testosterone was not due to contamination with cytochrome P450a, which catalyzed this reaction at approximately 25 nmol/nmol P450a/min. Cytochrome P450m also converted testosterone to several minor metabolites, including androstenedione and 15 beta-, 14 alpha-, and 16 alpha-hydroxytestosterone.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Debromination of 1,2-dibromoethane (DBE) by a rabbit liver microsomal preparation and a reconstituted cytochrome P-450 enzyme system was investigated. The reaction was performed in our newly constructed reaction vessel, in which a bromide electrode was installed. During the reaction, the liberated bromide ion was continuously measured by the bromide electrode, and the amount was recorded. In the microsomal preparation, the DBE-debromination rate per nmol cytochrome P-450 was enhanced by phenobarbital-pretreatment of rabbits compared with the untreated microsomes, whereas it was diminished by 3-methylcholanthrene-pretreatment. The debromination reaction was reconstituted in a purified enzyme system containing phenobarbital-inducible rabbit liver microsomal cytochrome P-450 (P-450PB), NADPH-cytochrome P-450 reductase, and NADPH. The optimum conditions required the presence of dilauroylphosphatidylcholine and cytochrome b5. Cytochrome b5 was found not to be an obligatory component for the DBE-debromination in the reconstituted system, but it stimulated the activity about 3.4-fold. Preincubation of the reconstituted mixture with guinea pig anti-cytochrome P-450PB antiserum markedly inhibited the debromination reaction.  相似文献   

11.
Testosterone metabolism by cytochrome P-450 isozymes RLM3 and RLM5 in a reconstituted system and by rat liver microsomes was examined. Eleven metabolites were detected. Two of these, found in spots 2 and 4 of a thin layer plate, were only formed by the rat liver microsomes and may represent reductive metabolites of testosterone. A number of monohydroxy metabolites were conclusively identified by gas chromatography-mass spectrometry. These include the 2-, 6 beta-, 7 alpha-, and 16 alpha-hydroxy isomers. Liver microsomes formed the 2 alpha- and 2 beta-epimers in a 1:2 ratio and both co-chromatographed with a third reduced metabolite in thin layer plate spot 4. In contrast with RLM5 about 90% of the 2-hydroxy isomer was the 2 alpha-epimer. RLM3 did not perform the 2-hydroxylation in detectable amounts. The 6 beta-isomer was a major metabolite of RLM3 and microsomes, but a minor product of metabolism by RLM5. In contrast, the 7 alpha-isomer was a minor metabolite of RLM3, was not formed by RLM5, and was a major microsomal metabolite. Hydroxylation at position 16 alpha was a major activity of RLM5 and the heterogeneous microsomal cytochromes, but with RLM3 it was a minor reaction. One new metabolite was found which appeared to be hydroxylated in the D-ring, had a mass spectrum different from both 16 alpha- and 16 beta-hydroxytestosterone, and was tentatively identified as a 15-hydroxy isomer. In agreement with the literature, androstene-3,17-dione was found to be an oxidative metabolite of testosterone by both microsomes and purified cytochrome P-450. It was a major metabolite of RLM5 but was not produced by RLM3. Studies with 18O2 and H218O conclusively show that oxidation of testosterone at C-17 does not involve transient incorporation of an oxygen atom in this position. A mechanism is suggested whereby cytochrome P-450 acts as a peroxidase in the formation of androstenedione.  相似文献   

12.
Two forms of cytochrome P-450 (P-450 human-1 and P-450 human-2) have been purified from human liver microsomes to electrophoretic homogeneity. P-450 human-1 and P-450 human-2 differ in their apparent molecular weights (52,000 and 56,000, respectively) and Soret peak maxima in the CO-binding reduced difference spectrum (447.6 and 450.3 nm, respectively). In the reconstituted system using rat liver NADPH-cytochrome c (P-450) reductase, P-450 human-2 more effectively oxidized benzo(a)pyrene (80-fold), ethylmorphine (2-fold), and 7-ethoxycoumarin (2-fold) than did P-450 human-1. However, P-450 human-1 showed higher testosterone 6 beta-hydroxylase activity, and the activity was markedly increased by the inclusion of cytochrome b5 or spermine in the reconstituted system. Antibodies raised against P-450 human-1 inhibited more than 80% of microsomal testosterone 6 beta-hydroxylase activity in human liver. Immunoblotting analysis using anti-P-450 human-1 IgG revealed a single immuno-staining band near Mr 52,000 in all human liver samples examined. The amount of immunochemically determined P-450 human-1 varied in parallel with the testosterone 6 beta-hydroxylase activity in human liver. These results indicate that P-450 human-1 is a major form of cytochrome P-450 responsible for microsomal testosterone 6 beta-hydroxylation. Thus, this paper is the first report on human cytochrome P-450 responsible for testosterone 6 beta-hydroxylation, which is the major hydroxylation pathway in human liver microsomes.  相似文献   

13.
The kinetic parameters of NADPH-dependent cytochrome P450 LM2 (2B4) reduction and substrate oxidation in the monomeric reconstituted system, consisting of purified NADPH-cytochrome P450 reductase and cytochrome P450 LM2 monomers, and in phenobarbital-induced rabbit liver microsomes were compared. In the absence of benzphetamine, NADPH-dependent reduction of cytochrome P450 LM2 was monophasic in the monomeric reconstituted system and biphasic in the microsomes. The presence of the substrate in the monomeric reconstituted system caused the appearance of the fast phase. In this system substrate-free cytochrome P450 LM2 was entirely low-spin, and the addition of benzphetamine shifted the spin equilibrium to a high state very weakly. No correlation between high-spin content and the proportion of the fast phase of NADPH-dependent LM2 reduction was found in the system. Vmax values for the oxidation of type I substrates (benzphetamine, dimethylaniline, aminopyrine) in the monomeric reconstituted system were higher or the same as in the microsomes, whereas Km values for the substrates and NADPH were lower in the microsomes. Maximal activity of the monomeric reconstituted system was observed at a 1:1 NADPH-cytochrome P450 reductase/cytochrome P450 LM2 ratio. Measurements of benzphetamine oxidation as a function of NADPH-cytochrome P450 reductase/cytochrome P450 LM2 ratio at a constant total protein concentration allowed the Kd of the NADPH-cytochrome P450 reductase/cytochrome P450 LM2 complex to be estimated as 6.4 +/- 0.5 microM. Complex formation between the NADPH-cytochrome P450 reductase and cytochrome P450 LM2 monomers was not detected by recording the difference binding spectra of the reductase monomers with LM2 monomers or by treatment the mixture of the monomers of the proteins with the crosslinking reagent, water-soluble carbodiimide.  相似文献   

14.
Aldrin epoxidation was studied in monooxygenase systems reconstituted from purified rat liver microsomal cytochrome P-450 or P-448, NADPH-cytochrome c reductase, dilauroylphosphatidylcholine and sodium cholate. Cytochrome P-450, purified from hepatic microsomes of phenobarbital-treated rats, exhibited a high rate of dieldrin formation. The low enzyme activity observed in the absence of the lipid and sodium cholate was increased threefold by addition of dilauroylphosphatidylcholine and was further stimulated twofold by addition of sodium cholate. The apparent Km for aldrin in the complete system was 7 +/- 2 microM. SKF 525-A, at a concentration of 250 microM, inhibited aldrin epoxidation by 65%, whereas 7,8-benzoflavone had no inhibitory effect at concentrations up to 250 microM. Addition of ethanol markedly increased epoxidase activity. The increase was threefold in the presence of 5% ethanol. When cytochrome P-448 purified from hepatic microsomes of 3-methylcholanthrene-treated rats was used, a very low rate of epoxidation was observed which was less than 3% of the activity mediated by cytochrome P-450 under similar assay conditions. Enzyme activity was independent of the lipid factor dilauroylphosphatidylcholine. The apparent Km for aldrin was 27 +/- 7 microM. The modifiers of monooxygenase reactions, 7,8-benzoflavone, SKF 525-A and ethanol, inhibited the activity mediated by cytochrome P-448. The I50 was 0.05, 0.2 and 800 mM, respectively. These results indicate that aldrin is a highly selective substrate for cytochrome P-450 species present in microsomes of phenobarbital-treated animals and is a poor substrate for cytochrome P-448. The two forms of aldrin epoxidase can be characterised by their turnover number, their apparent Km and their sensitivity to modifiers, like 7,8-benzoflavone and ethanol.  相似文献   

15.
It has been shown previously that liver microsomal steroid 5 alpha-reductase activity increases with age in female but not male rats, which coincides with a female-specific, age-dependent decline in the cytochrome P-450-dependent oxidation of testosterone to 1 beta-, 2 alpha-, 2 beta-, 6 alpha-, 6 beta-, 7 alpha-, 15 beta-, 16 alpha-, 16 beta-, and 18-hydroxytestosterone and androstenedione. To determine whether the increase in steroid 5 alpha-reductase activity is responsible for the decrease in testosterone oxidation, we have examined the effects of the steroid 5 alpha-reductase inhibitor, 4-MA (17 beta-N,N-diethylcarbamoyl-4-methyl-4-aza-5 alpha-androstan-3-one), on the pathways of testosterone oxidation catalyzed by rat liver microsomes. We have also determined which hydroxytestosterone metabolites are substrates for steroid 5 alpha-reductase. At concentrations of 0.1 to 10 microM, 4-MA completely inhibited steroid 5 alpha-reductase activity without inhibiting the pathways of testosterone oxidation catalyzed by liver microsomes from rats of different age and sex, and from rats induced with phenobarbital or pregnenolone-16 alpha-carbonitrile. 4-MA (10 microM) had little or no effect on the oxidation of testosterone catalyzed by liver microsomes from mature male rats (which have low steroid 5 alpha-reductase activity). In contrast, the hydroxylated testosterone metabolites formed by liver microsomes from mature female rats (which have high steroid 5 alpha-reductase activity) accumulated to a much greater extent in the presence of 4-MA. Evidence is presented that 4-MA increases the accumulation of hydroxytestosterones by two mechanisms. First, 4-MA inhibited the 5 alpha-reduction of those metabolites (such as 6 beta-hydroxytestosterone) that were found to be excellent substrates for steroid 5 alpha-reductase. In the absence of 4-MA, these metabolites eventually disappeared from incubations containing liver microsomes from mature female rats. Second, 4-MA inhibited the formation of 5 alpha-dihydrotestosterone, which otherwise competed with testosterone for oxidation by cytochrome P-450. This second mechanism explains why 4-MA increased the accumulation of metabolites (such as 7 alpha-hydroxytestosterone) that were found to be poor substrates for steroid 5 alpha-reductase. Despite its marked effect on the accumulation of hydroxylated testosterone metabolites, 4-MA had no effect on their initial rate of formation by liver microsomes from either male or female rats.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
In the preceding paper, evidence was presented that rat liver microsomes contain two structurally related isozymes of cytochrome P450, namely cytochromes P450a and P450m, that can both catalyze the 7 alpha-hydroxylation of testosterone. The aim of the present study was to determine the extent to which these two P450 isozymes are responsible for the 7 alpha-hydroxylation of testosterone catalyzed by rat liver microsomes. Four monoclonal antibodies against cytochrome P450a, designated A2, A4, A5, and A7, were prepared in BALB/c mice. Monoclonal antibodies A2 (an IgM), A4 (an IgG2b), and A5 (an IgG1) were determined to be distinct immunoglobulins, whereas A7 could not be distinguished from A5. All of the antibodies were highly specific for cytochrome P450a; none cross-reacted with cytochrome P450m or with 10 other P450 isozymes purified from rat liver microsomes. Competition experiments between unlabeled and horseradish peroxidase-conjugated antibodies revealed that each of the monoclonal antibodies recognized the same epitope on cytochrome P450a. None of the monoclonal antibodies bound to denatured cytochrome P450a, suggesting that they each bound to a spatial epitope. A monospecific, polyclonal antibody against cytochrome P450a was also prepared, as described in the preceding paper. The levels of cytochrome P450a in liver microsomes were determined by single radial immunodiffusion, Western immunoblot (with polyclonal antibody), and enzyme-linked immunosorbent assay with monoclonal antibody. The levels of cytochrome P450a declined with age in male but not female rats, and were inducible up to 10-fold by treatment of rats with various xenobiotics. The levels of cytochrome P450a (but not cytochrome P450m) were also elevated (approximately 3-fold) by thyroidectomy of mature male rats. Near normal levels of cytochrome P450a were restored by treatment of athyroid rats with triiodothyronine, whereas treatment with thyroxine was less effective in this regard. These changes in the levels of cytochrome P450a were highly correlated (r = 0.995) with changes in testosterone 7 alpha-hydroxylase activity. None of the monoclonal antibodies inhibited the catalytic activity of cytochrome P450a when reconstituted with NADPH-cytochrome P450 reductase and lipid. In contrast, the polyclonal antibody not only inhibited the catalytic activity of purified cytochrome P450a, but also completely inhibited (greater than 96%) the 7 alpha-hydroxylation of testosterone catalyzed by liver microsomes from immature and mature rats of both sexes and by liver microsomes from male rats treated with a variety of cytochrome P450 inducers.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Rat and rabbit liver microsomes catalyze an NADPH-cytochrome P-450 reductase-dependent peroxidation of endogenous lipid in the presence of the chelate, ADP-Fe3+. Although liver microsomes from both species contain comparable levels of NADPH-cytochrome P-450 reductase and cytochrome P-450, the rate of lipid peroxidation (assayed by malondialdehyde and lipid hydroperoxide formation) catalyzed by rabbit liver microsomes is only about 40% of that catalyzed by rat liver microsomes. Microsomal lipid peroxidation was reconstituted with liposomes made from extracted microsomal lipid and purified protease-solubilized NADPH-cytochrome P-450 reductase from both rat and rabbit liver microsomes. The results demonstrated that the lower rates of lipid peroxidation catalyzed by rabbit liver microsomes could not be attributed to the specific activity of the reductase. Microsomal lipid from rabbit liver was found to be much less susceptible to lipid peroxidation. This was due to the lower polyunsaturated fatty acid content rather than the presence of antioxidants in rabbit liver microsomal lipid. Gas-liquid chromatographic analysis of fatty acids lost during microsomal lipid peroxidation revealed that the degree of fatty acid unsaturation correlated well with rates of lipid peroxidation.  相似文献   

18.
Two new cytochrome P-450 forms were purified from liver microsomes of the marine fish Stenotomus chrysops (scup). Cytochrome P-450A (Mr = 52.5K) had a CO-ligated, reduced difference spectrum lambda max at 447.5 nm, and reconstituted modest benzo[a]pyrene hydroxylase activity (0.16 nmol/min/nmol P-450) and ethoxycoumarin O-deethylase activity (0.42 nmol/min/nmol P-450). Cytochrome P-450A reconstituted under optimal conditions catalyzed hydroxylation of testosterone almost exclusively at the 6 beta position (0.8 nmol/min/nmol P-450) and also catalyzed 2-hydroxylation of estradiol. Cytochrome P-450A is active toward steroid substrates and we propose that it is a major contributor to microsomal testosterone 6 beta-hydroxylase activity. Cytochrome P-450A had a requirement for conspecific (scup) NADPH-cytochrome P-450 reductase and all reconstituted activities examined were stimulated by the addition of purified scup cytochrome b5. Cytochrome P-450B (Mr = 45.9K) had a CO-ligated, reduced difference spectrum lambda max at 449.5 nm and displayed low rates of reconstituted catalytic activities. However, cytochrome P-450B oxidized testosterone at several different sites including the 15 alpha position (0.07 nmol/min/nmol P-450). Both cytochromes P-450A and P-450B were distinct from the major benzo[a]pyrene hydroxylating form, cytochrome P-450E, by the criteria of spectroscopic properties, substrate profiles, minimum molecular weights on NaDodSO4-polyacrylamide gels, peptide mapping and lack of cross-reaction with antibody raised against cytochrome P-450E. Cytochrome P-450E shares epitopes with rat cytochrome P-450c indicating it is the equivalent enzyme, but possible homology between scup cytochromes P-450A or P-450B and known P-450 isozymes in other vertebrate groups is uncertain, although functional analogs exist.  相似文献   

19.
Estrogen synthetase (aromatase) catalyzes the conversion of androgen into estrogen via two hydroxylations at C19 and a subsequent C19-10 lyase reaction. We report here the results of a reconstitution study using a highly purified aromatase cytochrome P450 monooxygenase enzyme system, with both protein components (cytochrome P450 and NADPH-cytochrome P450 reductase) obtained from human term placental microsomes. By varying one of the components (amounts of cytochrome P450, NADPH-cytochrome P450 reductase, or androgen substrate) as the other two were held constant in four different environments (phospholipid, non-ionic detergent, mixture of phospholipid and non-ionic detergent and buffer alone), we obtained evidence supporting the following conclusions. The reconstituted enzyme is more active and the protein components exhibit much lower apparent Km values in the detergent and/or lipid environment compared with buffer alone. Although the apparent Km and Vmax values for each aromatase protein component differ significantly in most cases with the particular limiting component and environment, the catalytic efficiency (Kcat/Km) was independent of the limiting protein component and varied with the environment only (highest in the lipid-detergent mixture and lowest in lipid alone). When the concentration of androgen substrate (androstenedione or testosterone) was varied at constant amounts of the aromatase protein components (NADPH-cytochrome P450 reductase saturating), the Km was lower and the Vmax was higher for adrostenedione. The specificity constant (Vmax/Km) was a function of the reconstitution environment (highest in lipid alone and lowest in detergent alone) and was, on average, about 4-fold higher for androstenedione in a particular environment. The extent of production of 19-oxygenated androgen intermediates (19-hydroxy and 19-oxo androstenedione) was examined at three different levels of aromatase cytochrome P450 (subsaturating, saturating, super-saturating) relative to the NADPH-cytochrome P450 reductase component in the three different hydrophobic environments using androstenedione as substrate. Both 19-oxygenated androgens, each made in comparable amounts relative to control, were isolatable in greatest amounts under cytochrome P450 super-saturating conditions in the detergent-lipid mixed environment, and in least amounts under cytochrome P450 subsaturating conditions in the lipid-only environment. Based on these data, we propose that 19-oxygenated androgen intermediates are biosynthesized sequentially in a step-wise fashion as the cytochrome P450 and NADPH-cytochrome P450 reductase form transient complexes, and that the amount of isolatable 19-oxygenated androgen is proportional to the amount of excess cytochrome P450 component.  相似文献   

20.
The regularities of changes in the functional activity of the microsomal monooxygenase system reconstituted by self-assembly from intact rat liver microsomes solubilized with 4% sodium cholate were studied at variable levels of NADPH-cytochrome P-450 reductase and the 3-methylcholanthrene-induced form of cytochrome P-450. Using antibodies against cytochrome P-448, the role of cytochrome P-448 in the overall reaction of benzopyrene hydroxylation induced in the microsomal membrane by a set of molecular forms of cytochrome P-450 was investigated. The effect of NADPH-cytochrome P-450 reductase and cytochrome P-448 incorporation into reconstituted microsomal membranes on benzpyrene metabolism suggests that in intact microsomal membranes benzopyrene metabolism induced by different forms of cytochrome P-450, with the exception of P-448, is limited by reductase is not the limiting component; however, cytochrome P-448 reveals its maximum activity at the cytochrome to reductase optimal molar ratio of 5:1; above this level, the catalytic activity of cytochrome P-448 is lowered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号