首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Patterns of Effective Permeability of Leaf Cuticles to Acids   总被引:1,自引:1,他引:0       下载免费PDF全文
Plants in the field are frequently exposed to anthropogenic acid precipitation with pH values of 4 and below. For the acid to directly affect leaf tissues, it must pass through the leaf cuticle, but little is known about the permeability of cuticles to protons, or about the effect of different anions on this permeability. We investigated the movement of protons through isolated astomatous leaf cuticles of grapefruit (Citrus X paradisi Macfady.), rough lemon (Citrus limon [L.] Burm. fils cv Ponderosa), and pear (Pyrus communis L.) using hydrochloric, sulfuric, and nitric acids. Cuticles were enzymically isolated from leaves and placed in a diffusion apparatus with pH 4 acid on the morphological outer surface of the cuticle and degassed distilled water on the inner surface. Changes in pH of the solution on the inner surface were used to determine rates of effective permeability of the cuticles to the protons of these acids. Most cuticles exhibited an initial low permeability, lasting hours to days, then after a short transition displayed a significantly higher permeability, which persisted until equilibrium was approached. The change in effective permeability appears to be reversible. Effective permeabilities were higher for sulfuric acid than for the others. A model of the movement of protons through the cuticle is presented, proposing that dissociated acid groups in channels within the cutin are first protonated by the acid, accounting for the low initial effective permeability; then protons pass freely through the channels, resulting in a higher effective permeability.  相似文献   

2.
It is shown that water permeabilities and organic solute mobilities in plant cuticles have a lognormal distribution. Seven-hundred and fifty values for rate constants of desorption (~mobility) of 2,4-D from isolated Citrus aurantium L. cuticles from a population of leaves were pooled and analysed. A histogram of the rate constants of individual cuticles showed a skew distribution with a strong tail to higher values. Cuticular membranes with high values did not differ from others in visual appearance and were not leaky. After log-transformation of original data an almost perfect normal distribution was obtained. Statistical tests showed that a normal distribution of original values is not acceptable. Inspection of older data for water permeability in the same species and experiments using large samples of cuticles from leaves of Pyrus communis L. and Stephanotis floribunda Brongn. and from fruits of Capsicum annuum L. showed a similar distribution, as did inspection of data for experiments with organic solutes. A lognormal distribution was found for cuticles of plants from growth chambers, glasshouses and outdoors as well as for water permeability of intact leaves of Hedera helix L. For small samples the overestimation from using the arithmetic mean of original data can be high, but use of the geometric mean or the median leads to smaller deviations. Removing cuticular waxes from cuticles produced normally distributed samples. A normal distribution was also obtained when organic compounds which increase solute mobility were sorbed into cuticles.  相似文献   

3.
Many plants are exposed to prolonged episodes of anthropogenic acid precipitation with pH values of 4 or less, but there is little evidence of widespread direct damage to the plant cells. Acids appear to permeate leaf cuticle via charged pores, which act as a fixed buffer that delays but does not stop acid movement. We investigated the effect of cations on the movement of protons through astomatous isolated leaf cuticles of pear (Pyrus communis L.) and rough lemon (Citrus limon [L.] Burm. fils cv Ponderosa). Chloride salt solutions of Na, K, Ca, Cd, Mg, Gd, or Y in a diffusion apparatus were applied to the morphological inner surface of the cuticle, while the outer surface faced a large volume of pH 3 or 4 sulfuric acid. Effective permeability was calculated from the change in the pH of the inner solution as measured with a pH microelectrode. Monovalent cations caused either no change (pear) or promotion (rough lemon) of proton movement. Divalent cations reduced proton movement in a concentration-dependent manner (both species), whereas trivalent cations (rough lemon only) caused the effective permeability to decrease to near zero. Inhibition by 10 mM CaCl2 was reversed with water. The effects of these cations on the permeability of cuticles to protons was used to elucidate mechanisms by which cations can protect leaves from acid precipitation in nature.  相似文献   

4.
Bacteria were either isolated from leaf surfaces of Hedera helix or obtained from a culture collection in order to analyse their effect on barrier properties of isolated Hedera and Prunus laurocerasus cuticles. On the basis of the 16S rDNA sequences the genera of the six bacterial isolates from Hedera were identified as Pseudomonas sp., Stenotrophomonas sp. and Achromobacter. Water permeability of cuticles isolated from H. helix was measured before and after inoculation with the six bacterial strains. In addition water permeability of cuticles isolated from P. laurocerasus was measured before and after inoculation with the three bacterial strains Pseudomonas aeruginosa, Xanthomonas campestris and Corynebacterium fascians. Rates of water diffusing across isolated cuticles of both species significantly increased by up to 50% after inoculation with all bacterial strains. Obtained results show that epiphytic bacteria have the ability of increasing water permeability of Hedera and Prunus cuticles, which in turn should increase the availability of water and dissolved compounds in the phyllopshere. Consequently, living conditions in the habitat phyllosphere are improved. It can be concluded that the ability to change leaf surface properties will improve epiphytic fitness of leaf surface bacteria.  相似文献   

5.
植物角质层生物学特性及水分渗透性研究进展   总被引:1,自引:0,他引:1  
植物角质层作为植物体与外界环境的第一道保护屏障, 其最主要的功能是防止植物体过度失水。揭示植物角质层的生物学功能及其原理将为现代农业的发展以及仿生材料的开发应用提供科学指导。该文综述了植物角质层的生物学特性及其与水分渗透性关系的研究进展, 并展望了角质层水分渗透研究的应用前景。  相似文献   

6.
Plant cuticles are broadly composed of two major components: polymeric cutin and a mixture of waxes, which infiltrate the cutin matrix and also accumulate on the surface, forming an epicuticular layer. Although cuticles are thought to play a number of important physiological roles, with the most important being to restrict water loss from aerial plant organs, the relative contributions of cutin and waxes to cuticle function are still not well understood. Tomato ( Solanum lycopersicum ) fruits provide an attractive experimental system to address this question as, unlike other model plants such as Arabidopsis, they have a relatively thick astomatous cuticle, providing a poreless uniform material that is easy to isolate and handle. We identified three tomato mutants, cutin deficient 1 ( cd1 ), cd2 and cd3 , the fruit cuticles of which have a dramatic (95–98%) reduction in cutin content and substantially altered, but distinctly different, architectures. This cutin deficiency resulted in an increase in cuticle surface stiffness, and in the proportions of both hydrophilic and multiply bonded polymeric constituents. Furthermore, our data suggested that there is no correlation between the amount of cutin and the permeability of the cuticle to water, but that cutin plays an important role in protecting tissues from microbial infection. The three cd mutations were mapped to different loci, and the cloning of CD2 revealed it to encode a homeodomain protein, which we propose acts as a key regulator of cutin biosynthesis in tomato fruit.  相似文献   

7.
The abdominal cuticles of the adult female ticks Argas (Persicargas) robertsi and Boophilus microplus, sp der Badumna insignis, tsetse fly Glossina morsitans morsitans, sheep ked Melophagus ovinus and locust Locusta migratoria migratorioides and of the fifth-instar larva of the bug Rhodnius prolixus stretch greatly, some of them quite rapidly, when they are feeding, laying eggs or carrying a developing larva or egg mass. During this expansion the epicuticle, which is convoluted, unfolds and the underlying endocuticle stretches. There is an increase in the volume of each of the cuticles on expansion. The fine structures of those cuticles which go through cycles of expansion and contraction do not become disrupted. Cuticles with acidic proteins have much higher chitin contents than those with basic proteins. Plasticization, i.e. breaking of intermolecular non-covalent bonds, precedes rapid expansion of cuticles but is unnecessary for slow expansion. The compositions of the cuticles and the properties of the proteins are discussed in relation to the expansions which take place in the cuticles.  相似文献   

8.
Klaus J. Lendzian 《Planta》1982,155(4):310-315
Cuticles from the adaxial surface of Citrus aurantium L. leaves and from the pericarp of Lycopersicon esculentum L. and Capsicum annuum L. were isolated enzymatically and their oxygen permeability was determined. Isolated cuticles were mounted between a gaseous and an aqueous compartment with the physiological outer side of the membrane facing the gaseous compartment. Permeability for oxygen was characterized by permeability (P) and diffusion (D) coefficients. P and D were independent of the driving force (gradient of oxygen concentration) across the cuticle, thus, Henry's law was obeyed. P values for the diffusion of oxygen varied between 3·10-7 (Citrus), 1.4·10-6 (Capsicum), and 1.1·10-6 (Lycopersicon) m·s-1. Extraction of soluble lipids from the cuticles increased the permeability. By treating the cutin matrix and the soluble lipids as resistances in series, it could be demonstrated that the soluble lipids were the main resistance for oxygen permeability in Citrus cuticles. However, in Lycopersicon and Capsicum, both the cutin matrix and the soluble lipids determined the total resistance. P values were not affected by either the proton concentration (pH 3–9) or the cations (Na+, Ca2+) present at the morphological inner side of the cuticles. It is concluded that the water content of cuticles does not affect the permeability properties for oxygen. Partition coefficients indicated a high solubility of oxygen in the cuticle of Citrus. The data suggest a solubility process in the cuticle of Citrus with respect to oxygen permeation.Abbreviations CM cuticular membrane - MX cutin polymer matrix - SCL soluble cuticular lipids  相似文献   

9.
Plant cuticles sorb lipophilic compounds during enzymatic isolation   总被引:20,自引:7,他引:13  
Abstract Plant cuticles sorb large amounts of hexadecanoic acid, octadecanoic acid and other lipophilic compounds (not identified) when incubated in cell slurries obtained by enzymatically digesting leaves or fruits. These extraneous substances cannot be removed completely and selectively after cuticle isolation, nor is it possible to prevent sorption by optimizing isolation procedures. It is, therefore, impossible to estimate amounts and composition of intracuticular soluble lipids using enzymatically isolated cuticles, as has been done in the past. Extraneous substances sorbed during isolation do not affect water permeability of the cuticles.  相似文献   

10.
The cuticle is the major barrier against uncontrolled water loss from leaves, fruits and other primary parts of higher plants. More than 100 mean values for water permeabilities determined with isolated leaf and fruit cuticles from 61 plant species are compiled and discussed in relation to plant organ, natural habitat and morphology. The maximum barrier properties of plant cuticles exceed that of synthetic polymeric films of equal thickness. Cuticular water permeability is not correlated to the thickness of the cuticle or to wax coverage. Relationships between cuticular permeability, wax composition and physical properties of the cuticle are evaluated. Cuticular permeability to water increases on the average by a factor of 2 when leaf surface temperature is raised from 15 degrees C to 35 degrees C. Organic compounds of anthropogenic and biogenic origin may enhance cuticular permeability. The pathway taken by water across the cuticular transport barrier is reviewed. The conclusion from this discussion is that the bulk of water diffuses as single molecules across a lipophilic barrier while a minor fraction travels along polar pores. Open questions concerning the mechanistic understanding of the plant cuticular transport barrier and the role the plant cuticle plays in ensuring the survival and reproductive success of an individual plant are indicated.  相似文献   

11.
The water permeability of cuticles isolated from the leaves of 14 plant species was measured at temperatures from 10 degrees C to 55 degrees C at 5 K intervals. Permeances increased slightly with temperatures < or =35 degrees C and drastically in the higher temperature range. The data were analysed according to the Arrhenius formalism which led to distinct plots for the lower and higher temperature range, respectively. Activation energies of permeation for the lower temperature range were estimated to amount to 15.2-52.5 kJ mol(-1), at higher temperature activation energies ranged from 52.2-117.3 kJ mol(-1). This thermodynamics approach is used for further elucidating the pathway taken by water across the plant cuticle. Based on the results of this study it is hypothesized that the diffusion of water occurs along polysaccharide strands crossing the cuticle and that the transport properties of these polar pathways change with temperature.  相似文献   

12.
The main features of the ion permeability of gramicidin channels are summarized. The significance of maximums in the single channel conductance-concentration curves, of concentration-dependent permeability ratios, and or current-voltage curves with concentration-dependent form, as well as of other features, is discussed in terms of the mechanism of the ion transfer processes. The observations are then shown to be accounted for by rate theory expressions derived for a model pore consisting of two sites in series and in which ions are not permitted to pass each other. The status of other models is briefly reviewed.  相似文献   

13.
Proteins were extracted from the cuticle of mid-instar nymphs of locusts, Locusta migratoria, and cockroaches, Blaberus craniifer. Seven proteins were purified from the locust extract and five from the cockroach extract, and their amino acid sequences were determined. Polyacrylamide gel electrophoresis indicates that the proteins are present only in the post-ecdysially deposited layer of the nymphal cuticles. One of the locust and one of the cockroach nymphal proteins contain a 68-residue motif, the RR-2 sequence, which has been reported for several proteins from the solid cuticles of other insect species. Two of the cockroach proteins contain a 75-residue motif, which is also present in a protein from the larval/pupal cuticle of a beetle, Tenebrio molitor, and in proteins from the exoskeletons of a lobster, Homarus americanus, and a spider, Araneus diadematus. The motif contains a variant of the Rebers-Riddiford consensus sequence, and is called the RR-3 motif. One of the locust and three of the cockroach post-ecdysial proteins contain one or more copies of an 18-residue motif, previously reported in a protein from Bombyx mori pupal cuticle. The nymphal post-ecdysial proteins from both species have features in common with pre-ecdysial proteins (pharate proteins) in cuticles destined to be sclerotised; they show little similarity to the post-ecdysial cuticular proteins from adult locusts or to proteins from soft, pliable cuticles. Possible roles for post-ecdysial cuticular proteins are discussed in relation to the reported structures.  相似文献   

14.
Vasopressin affects a variety of cell systems. This review is focused on permeability changes induced by vasopressin in tight epithelia such as the collecting duct of the mammalian kidney and the skin and the bladder of anurans. These vasopressin effects are discussed with reference to current concepts and models of the microstructure of the plasma membrane. The transport of three major chemical species--Na, urea and water--is analyzed. In each instance, the hormone appears to activate selective membrane pathways situated at the rat-limiting barrier of the epithelium, i.e., the apical membrane. Available data suggest that two intra-cellular messengers -- cAMP and calcium -- plan a key role in the coupling between stimulus (receptor occupancy) and biological effect (permeability change). The enhancement of Na transport (natriferic effect) depends on the opening and/or the insertion of Na channels, the biophysical and biochemical characteristics of which have been investigated by fluctuation analysis and by means of several chemical blockers of Na transport, particularly the amiloride molecule and its congeners. Likewise, the finding of inhibitors and activators of urea transport, which do not cause any appreciable change in Na or water permeability, led to the notion of selective urea channels or pores. Finally, the enhancement of water transport (hydrosmotic effect) possibly results from the insertion in the apical membrane of water channels already present in vesicular cytoplasmic structures. The restructuring of the apical membrane underlying the transition from a low to a higher state of water permeability is very likely related to the appearance of intramembrane particle aggregates detectable with the freeze-fracture technique in epithelia exposed to vasopressin. The putative water channels (or pores) appear to be so narrow that trans-apical water movement is constrained to single-file diffusion. Recent data also suggest that, in addition to cAMP, microtubules and microfilaments, the calmodulin-Ca complex is a major element in the hydrosmotic effect of vasopressin.  相似文献   

15.
Summary The water sorption by isolated cuticles from needles of Abies alba was measured between 4% and 80% relative humidity using a magnetic suspension microbalance. The sorption isotherms were not linear and sorption increased more rapidly at the lowest and highest values of relative humidity. The mean values, calculated for 1- to 5-year-old adaxial cuticles developed from 1984 to 1988, increased from 2.9% to 17.1% of the dehydrated weight, and from 4% to 80% relative humidity. Results did not depend on the age of needles and the comparison between healthy and declining trees revealed no major difference in water sorption by cuticles isolated from these two types of trees. Data are discussed in relation to cuticular permeability and one determinant of water permeability, the partition coefficient relating the equilibrium water concentration of the cuticle to that of the surrounding atmosphere, was calculated.  相似文献   

16.
17.
The passive ionic membrane conductances (gj) and permeabilities (Pj) of K, Na, and Cl of crayfish (Procambarus clarkii) medial giant axons were determined in the potassium-depolarized axon and compared with that of the resting axon. Passive ionic conductances and permeabilities were found to be potassium dependent with a major conductance transition occurring around an external K concentration of 12-15 mM (Vm = -60 to -65 mV). The results showed that K, Na, and Cl conductances increased by 6.2, 6.9, and 27-fold, respectively, when external K was elevated from 5.4 to 40 mM. Permeability measurements indicated that K changed minimally with K depolarization while Na and Cl underwent an order increase in permeability. In the resting axon (K0 = 5.4 mM, pH = 7.0) PK = 1.33 X 10(-5), PCl = 1.99 X 10(-6), PNa = 1.92 X 10(-8) while in elevated potassium (K0 = 40 mM, pH 7.0), PK = 1.9 X 10(-5), PCl = 1.2 X 10(-5), and PNa = 2.7 X 10(-7) cm/s. When membrane potential is reduced to 40 mV by changes in internal ions, the conductance changes are initially small. This suggests that resting channel conductances depend also on ion environments seen by each membrane surface in addition to membrane potential. In elevated potassium, K, Na, and Cl conductances and permeabilities were measured from pH 3.8 to 11 in 0.2 pH increments. Here a cooperative transition in membrane conductance or permeability occurs when pH is altered through the imidazole pK (approximately pH 6.3) region. This cooperative conductance transition involves changes in Na and Cl but not K permeabilities. A Hill coefficient n of near 4 was found for the cooperative conductance transition of both the Na and Cl ionic channel which could be interpreted as resulting from 4 protein molecules forming each of the Na and Cl ionic channels. Tetrodotoxin reduces the Hill coefficient n to near 2 for the Na channel but does not affect the Cl channel. In the resting or depolarized axon, crosslinking membrane amino groups with DIDS reduces Cl and Na permeability. Following potassium depolarization, buried amino groups appear to be uncovered. The data here suggest that potassium depolarization produces a membrane conformation change in these ionic permeability regulatory components. A model is proposed where membrane protein, which forms the membrane ionic channels, is oriented with an accessible amino terminal group on the axon exterior. In this model the ionizable groups on protein and phospholipid have varied associations with the different ionic channel access sites for K, Na, and Cl, and these groups exert considerable control over ion permeation through their surface potentials.  相似文献   

18.
Three dimensional models of NB-ARC domains in five different proteins were constructed based on the recently published crystal structure of the apoptotic protease activating factor 1, of which two are for tomato species, one each for flax, Arabidopsis, and nematode. Standard multiple sequence alignment was performed for chosen members of the NB-ARC domains, very divergent from each other in protein sequence, followed by homology model building and structure refinement. In this alignment, amino acid insertions and deletions between members generally fall in loop regions or at ends of alpha helices. Despite the presence of sequence divergence between the species, it is argued that the NB-ARC domains carry out the similar biological functions in the various species, highlighting the ATP binding and ATPase activity. By our comparative study of these models, it is predicted that NB-ARC domains should bind ADP/ATP rather than GDP/GTP. Both natural and induced mutants of Arabidopsis within the RPS2 locus and their phenotypes for disease reaction against Pseudomonas syringae are rationalized from the protein model. Apaf-1 Thr263 and Arg265 positions conserved totally within the NB-ARC domains are predicted to take active part in the catalytic activity of kinase-3 motif, the arginine known as the sensor I motif in AAA+ proteins. This was later verified for the Ced-4 crystal structure in complex with Ced-9. Our model of Ced-4 based on Apaf-1 was also compared with its crystal structure in the Ced-4-Ced-9 complex; the 3 layered alpha/beta domain superposes quite well, helical domain I is shifted by about 5 A but the winged helix domain is rotated away to a new position. Since Apaf-1 was crystallized with ADP and Ced-4-Ced9 with magnesium-ATP, this rotation signifies a change in structure of these NB-ARC domains between the two forms. Further, we hypothesize that certain mutants in the plant R proteins called 'constitutive gain-of-function' or 'autocatalytic' dispose their winged helix domains permanently like the magnesium-ATP form as observed for Ced-4, avoiding the closed ADP conformation. The models are also validated with mutagenesis data for a related tomato protein I-2, tomato prf and flax, including loss of function, wild type and autocatalytic phenotypes, and compared with similar data for potato and tobacco proteins, for which models were not built. These three dimensional models would help us to understand the spatial arrangement, function of R proteins and their conserved motifs.  相似文献   

19.
Size selectivity of aqueous pores in Vicia leaf cuticles was investigated by measuring the penetration of calcium salts into the abaxial surface of detached leaves. Molecular weights of salts ranged from 111 g mol–1 to 755 g mol–1. Penetration in light at 20°C and 100% humidity was a first order process and rate constants of penetration ranged from 0.39 h–1 (CaCl2) to 0.058 h–1 (Ca-lactobionate). Penetration was a first order process in the dark as well, but the rate constants were smaller by a factor of 1.82. Plotting logarithmatised rate constants versus anhydrous molecular weights resulted in straight lines both in light and in the dark. The slopes per hour were very similar and the average slope was –1.2×10–3 mol g–1. Hence, size selectivity was not affected by stomatal opening, and in light or darkness permeability of Vicia cuticles decreased by a factor of 2.9 when molecular weight increased from 100 g mol–1 to 500 g mol–1. Silver nitrate was preferentially precipitated as silver chloride in guard cells, glandular trichomes and at the base of trichomes. It was concluded that these precipitates mark the location of aqueous pores in Vicia leaf cuticles. The size selectivity of aqueous pores in Vicia leaf cuticles is small compared to that observed in poplar leaf cuticles, in which permeability decreased by a factor of 7–13 for the same range of molecular weights. It is also much smaller than size selectivity of the lipophilic pathway in cuticles. These findings suggest that active ingredients of pesticides, growth regulators and chemical inducers with high molecular weights penetrate leaves at higher rates when formulated as ions.  相似文献   

20.
J. Schönherr  K. Eckl  H. Gruler 《Planta》1979,147(1):21-26
The effect of temperature on water permeability of plant cuticles (astomatous Citrus leaf cuticles) has been investigated. The Arrhenius plot (logarithm of the permeability coefficient vs. 1/temperature) has two linear portions that intersect at 44° C. Evidence is presented to show that this intersection represents the solid/liquid phase transition of cuticular lipids. As the Arrhenius plot has only one phase transition in the temperature range of 5 to 80° C, it appears that all soluble cuticular lipids in the cuticle are present as a homogeneous mixture rather than as individual layers differing in composition. This view is supported by electron spin resonance evidence showing homogenous distribution of spin label fatty acids. The original distribution of soluble cuticular lipids is irreversibly altered by heating cuticular membranes above the transition temperature. This is accompanied by an irreversible increase in water peremeability, demonstrating the importance of the structure of cuticular lipids with regard to cuticular permeability.Abbreviations CM cuticular membranes - MX polymer matrix - SCL soluble cuticular lipids - MES morpholinoethane sulphonic acid - J flux - ESR electron spin resonance - THO tritiated water  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号