首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prunus dulcis, the almond, is a predominantly self-incompatible (SI) species with a gametophytic self-incompatibility system mediated by S-RNases. The economically important allele S f , which results in self-compatibility in P. dulcis, is said to have arisen by introgression from Prunus webbii in the Italian region of Apulia. We investigated the range of self-(in)compatibility alleles in Apulian material of the two species. About 23 cultivars of P. dulcis (14 self-compatible (SC) and nine SI) and 33 accessions of P. webbii (16 SC, two SI and 15 initially of unknown status), all from Apulia, were analysed using PCR of genomic DNA to amplify S-RNase alleles and, in most cases, IEF and staining of stylar protein extracts to detect S-RNase activity. Some amplification products were cloned and sequenced. The allele S f was present in nearly all the SC cultivars of P. dulcis but, surprisingly, was absent from nearly all SC accessions of P. webbii. And of particular interest was the presence in many SI cultivars of P. dulcis of a new active allele, labelled S 30 , the sequence of which showed it to be the wild-type of S f so that S f can be regarded as a stylar part mutant S 30 °. These findings indicate S f may have arisen within P. dulcis, by mutation. One SC cultivar of P. dulcis, ‘Patalina’, had a new self-compatibility allele lacking RNase activity, S n5 , which could be useful in breeding programmes. In the accessions of P. webbii, some of which were known to be SC, three new alleles were found which lacked RNase activity but had normal DNA sequences.  相似文献   

2.
Sexual self-incompatibility in European pear (Pyrus communis L.) is controlled by a single locus (S-locus) encoding a polymorphic stylar ribonuclease (S-RNase) that is responsible for the female function in pollen–pistil recognition. In this study, genomic DNA sequences corresponding to five new S-RNase alleles (named S 20 , S 21 , S 22 , S 23 , and S 24 ) and to S m were characterized in European pear cultivars. Re-sequencing S q from ‘General Le Clerc’ showed this S-RNase to encode the same protein as S 12 . Based on these findings, a polymerase chain reaction (PCR)-based method was developed for the molecular typing of cultivars bearing 20 S-RNases (S 1 S 14 , S m , and S 20 S 24 ) using consensus and allele-specific primers. Genomic PCR with consensus primers amplified product sizes characteristic of the S-RNases S 1 , S 2 , S 4 , S 10 , S 13 , and S 20 . However, the allele groups S 3 /S 12 , S 6 /S 8 /S 11 /S 22 and S 5 /S 7 /S 9 /S 14 /S m /S 21 /S 23 /S 24 amplified PCR products of similar size. To discriminate between alleles within these groups, primers to specifically amplify each S-RNase were developed. Application of this approach in 19 cultivars with published S-alleles allowed re-evaluation of one of the alleles of ‘Passe Crassane,’ ‘Conference,’ and ‘Condo.’ Finally, this method was used to assign S-genotypes to 37 cultivars. Test crosses confirmed molecular results. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
Self-compatibility has become the primary objective of most almond (Prunus amygdalus Batsch) breeding programmes in order to avoid the problems related to the gametophytic self-incompatibility system present in almond. The progeny of the cross ‘Vivot’ (S 23 S fa) × ‘Blanquerna’ (S 8 S fi) was studied because both cultivars share the same S f allele but have a different phenotypic expression: active (S fa) in ‘Vivot’ and inactive (S fi) in ‘Blanquerna’. In addition, the microscopic observation of pollen tube growth after self-pollination over several years showed an unexpected self-incompatible behaviour in most seedlings of this cross. The genotypes of this progeny showed that the S fi pollen from ‘Blanquerna’ was not able to grow down the pistils of ‘Vivot’ harbouring the S fa allele, confirming the active function of this allele against the inactive form of the same allele, S fi. As self-compatibility was observed in some S 8 S 23 and S 8 S fa individuals of this progeny, the S f haplotype may not always be linked to the expression and transmission of self-compatibility in almond, suggesting that a modifier locus may be involved in the mechanism of self-incompatibility in plants.  相似文献   

4.
The S 3 allele of the S gene has been cloned from Papaver rhoeas cv. Shirley. The sequence predicts a hydrophilic protein of 14.0 kDa, showing 55.8% identity with the previously cloned S 1 allele, preceded by an 18 amino acid signal sequence. Expression of the S 3 coding region in Escherichia coli produced a form of the protein, denoted S3e, which specifically inhibited S3 pollen in an in vitro bioassay. The recombinant protein was ca. 0.8 kDa larger than the native stigmatic form, indicating post-translational modifications in planta, as was previously suggested for the S1 protein. In contrast to other S proteins identified to date, S3 protein does not appear to be glycosylated. Of particular significance is the finding that despite exhibiting a high degree of sequence polymorphism, secondary structure predictions indicate that the S1 and S3 proteins may adopt a virtually identical conformation. Sequence analysis also indicates that the P. rhoeas S alleles share some limited homology with the SLG and SRK genes from Brassica oleracea. Previously, cross-classification of different populations of P. rhoeas had revealed a number of functionally identical alleles. Probing of western blots of stigma proteins from plants derived from a wild Spanish population which contained an allele functionally identical to the Shirley S 3 allele with antiserum raised to S3e, revealed a protein (S 3 s) which was indistinguishable in pI and M r from that in the Shirley population. A cDNA encoding S 3 s was isolated, nucleotide sequencing revealing a coding region with 99.4% homology with the Shirley-derived clone at the DNA level, and 100% homology at the amino acid level.  相似文献   

5.
Summary In order to identify the genotypic constitutions of incompatibility in the diploid species, Ipomoea leucantha Jacq. (K221), which is most closely related to the sweet potato, the progenies derived from the reciprocal crosses, backcrosses and testcrosses were analysed. All the plants examined were self-incompatible, and pollen germination was inhibited on the stigma after incompatible pollinations. No reciprocal differences were found in the incompatibility reactions. In the progenies three incompatibility groups were observed which showed the rather simple segregation ratios. The homozygous plants for incompatibility alleles were obtained in the progenies. The experimental results demonstrated a sporophytic type of incompatibility controlled by a single locus with multiple S-alleles exhibiting a dominance relationship in both the pollen and the stigma. The plants obtained in the progenies had the following genotypes: S 1 S 2, S 1 S 3, S 2 S 2, S 2 S 3 and S 3 S 3.  相似文献   

6.
Apple exhibits gametophytic self-incompatibility (GSI) that is controlled by the multiallelic S-locus. This S-locus encodes polymorphicS ribonuclease (S-RNase) for the pistil-part 5 determinant. Information aboutS-genotypes is important when selecting pollen donors for fruit production and breeding of new cultivars. We determined the 5-genotypes of ‘Charden’ (S2S3S4), ‘Winesap’ (S1S28), ‘York Imperial’ (S2S31), ‘Stark Earliblaze’ (S1S28), and ‘Burgundy’ (S20S32), byS-RNase sequencing and S-allele-specific PCR analysis. Two newS-RNases, S31 and S32, were also identified from ‘York Imperial’ and ‘Burgundy’, respectively. These newS-alleles contained the conserved eight cysteine residues and two histidine residues essential for RNase activity. Whereas S31 showed high similarity to S20 (94%), S32 exhibited 58% (to S24) to 76% (to S25) similarity in the exon regions. We designed newS-allele-specific primers for amplifying S31- and S32-RNasc-specific fragments; these can serve as specific gene markers. We also rearranged the apple S-allele numbers containing those newS-RNases. They should be useful, along with anS-RNase-based PCR system, in determining S-genotypes and analyzing new alleles from apple cultivars.  相似文献   

7.
Summary Four zones of enzymatic activity for glutamate oxaloacetate transaminase (GOT) were found in apple tissue. A dimeric gene, GOT-1, determining the fastest migrating zone, was identified. Six alleles were found, including a near null allelle which produced detectable heterodimeric bands but not homodimeric bands. A marked deficit or absence of certain geno-types in all backcrosses and in some crosses between unrelated varieties was attributed to the close linkage (r=0.02±0.005) of GOT-1 with the incompatibility S locus. GOT-1 was also closely linked with the isocitrate dehydrogenase locus IDH-1 (0.03±0.01). Proposed incompatibility genotypes for four cultivars, and the linked GOT-1 alleles are Cox: S 1 b/S 2 d, Idared: S 3 a/S 4 c, Fiesta: S 3 a/S 2 d and Kent: S 3 a/S 1 b.The results reported in this paper are part of a PhD Thesis by the first author  相似文献   

8.
‘SI1300’ is a self-incompatible Brassica napus line generated by introgressing an S haplotype from B. rapa ‘Xishuibai’ into a rapeseed cultivar ‘Huayou No. 1’. Five S-locus specific primer pairs were employed to develop cleaved amplified polymorphic sequences (CAPS) markers linked the S haplotype of ‘SI1300’. Two segregating populations (F2 and BC1) from the cross between ‘SI1300’ and self-compatible European spring cultivar ‘Defender’, were generated to verify the molecular markers. CAPS analysis revealed no desirable polymorphism between self-incompatible and self-compatible plants. Twenty primer pairs were designed based on the homology-based candidate gene method, and six dominant sequence characterized amplified region (SCAR) markers linked with the S-locus were developed. Of the six markers, three were derived from the SRK and SP11 alleles of class II B. rapa S haplotypes and linked with S haplotype of ‘SI1300’. The other three markers were designed from the SLG-A10 and co-segregated with S haplotype of ‘Defender’. We successfully combined two pairs of them and characterized two multiplex PCR markers which could discriminate the homozygous and heterozygous genotypes. These markers were further validated in 24 F3 and 22 BC1F2 lines of ‘SI1300 × Defender’ and another two segregating populations from the cross ‘SI1300 × Yu No. 9’. Nucleotide sequences of fragments linked with S-locus of ‘SI1300’ showed 99% identity to B. rapa class II S-60 haplotype, and fragments from ‘Defender’ were 97% and 94% identical to SLG and SRK of B. rapa class I S-47 haplotype, respectively. ‘SI1300’ was considered to carry two class II S haplotypes and the S haplotype on the A-genome derived from B. rapa ‘Xishuibai’ determines the SI phenotype, while ‘Defender’ carry a class I S haplotype derived from B. rapa and a class II S haplotype from B. oleracea. SCAR markers developed in this study will be helpful for improving SI lines and accelerating marker-assisted selection process in rapeseed SI hybrid breeding program.  相似文献   

9.
The S incompatibility system of apple was confirmed through the application of the gene Got-1 for glutamate oxaloacetate transaminase as a marker for the S locus. The 11S alleles proposed by Kobel et al. (1939) were confirmed through anomalous segregations for Got-1 observed in 14 semi-compatible crosses and regular segregations observed in 2 fully compatible crosses. The S allele genotypes of Idared (S 3 S 7), Cox (S 5 S 9) and Fiesta (S 3 S 5) were determined and found to fall within the original series. By associating parental incompatibility genotypes with the segregation of Got-1 alleles, we were able to deduce the coupling of S and Got-1 alleles in 9 varieties.  相似文献   

10.
PCR-based identification of all 13 known self-incompatibility (S) alleles of sweet cherry is reported. Two pairs of consensus primers were designed from our previously published cDNA sequences of S1 to S6 S-RNases, the stylar components of self-incompatibility, to reveal length variation of the first and the second introns. With the exception of the first intron of S13, these also amplified S7 to S14 and an allele previously referred to as Sx, which we now label S16. The genomic PCR products were cloned and sequenced. The partial sequence of S11 matched that of S7 and the alleles were shown to have the same functional specificity. Allele-specific primers were designed for S7 to S16, so that allele-specific primers are now available for all 13 S alleles of cherry (S8, S11 and S15 are duplicates). These can be used to distinguish between S alleles with introns of similar size and to confirm genotypes determined with consensus primers. The reliability of the PCR with allele-specific primers was improved by the inclusion of an internal control. The use of the consensus and allele-specific primers was demonstrated by resolving conflicting genotypes that have been published recently and by determining genotypes of 18 new cherry cultivars. Two new groups are proposed, Group XXIII (S3S16), comprising 'Rodmersham Seedling' and 'Strawberry Heart', and Group XXIV (S6S12), comprising 'Aida' and 'Flamentiner'. Four new self-compatibility genotypes, S3S3, S4S6, S4S9 and S4S13, were found. The potential use of the consensus primers to reveal incompatibility alleles in other cherry species is also demonstrated.Communicated by H.F. Linskens  相似文献   

11.
Summary Allelic complexity is a key feature of self-incompatibility (S) loci in gametophytic plants. We describe in this report the allelic diversity and gene structure of the S locus in Solanum tuberosum revealed by the isolation and characterization of genomic and cDNA clones encoding S-associated major pistil proteins from three alleles (S 1, S r1, S 2). Genomic clones encoding the S1 and S2 proteins provide evidence for a simple gene structure: Two exons are separated by a small intron of 113 (S 1) and 117 by (S 2). Protein sequences deduced from cDNA clones encoding S1 and Sr1 proteins show 95% homology. 15 of the 25 residues that differ between these S 1and S r1alleles are clustered in a short hypervariable protein segment (amino acid positions 44–68), which corresponds in the genomic clones to DNA sequences flanking the single intron. In contrast, these alleles are only 66% homologous to the S 2allele, with the residues that differ between the alleles being scattered throughout the sequence. DNA crosshybridization experiments identify a minimum of three classes of potato S alleles: one class contains the alleles S 1, S r1and S 3, the second class S 2and an allele of the cultivar Roxy, and the third class contains at present only S 4. It is proposed that these classes reflect the origin of the S alleles from a few ancestral S sequence types.  相似文献   

12.
Summary In a study of partial self-compatibility in Brassica oleracea, flower number, seeded siliqua and seed production were recorded on self and cross-pollinated inflorescences of 32 progenies obtained by inter-crossing and selfing 8 plants homozygous for the incompatibility alleles S2, S5, S15 and S45.Progeny differences for both self-and out-cross seed production could be largely attributed to G.C.A. effects which were essentially uncorrelated. For cross-pollinated inflorescences heterosis was also important. Significant differences were found for selfed seed set and its two components, the proportion of flowers producing seeded siliquae and the numbers of seed per seeded siliqua, between parents with the same S-allele which could not be attributed to S-genotype alone. No evidence of increased self-compatibility in particular S-allele heterozygotes (mutual weakening) could be found.Outcross seed production depended primarily on the numbers of seeds set per seeded siliqua while self seed production was largely determined by the proportion of flowers which produced seeded siliqua. It is suggested that this is a key character for the production of inbred lines with reduced partial self-compatibility.  相似文献   

13.
A class of ribonucleases termed S-RNases, which control the pistil expression of self-incompatibility, represents the only known functional products encoded by the S locus in species from the Solanaceae, Scrophulariaceae and Rosaceae. Previously, we identified a pollen-specific F-box gene, AhSLF (S locus F-box)-S2, very similar to S2-RNase in Antirrhinum, a member of the Scrophulariaceae. In addition, AhSLF-S2 also detected the presence of its homologous DNA fragments. To identify these fragments, we constructed two genomic DNA libraries from Antirrhinum self-incompatible lines carrying alleles S1S5 and S2S4, respectively, using a transformation-competent artificial chromosome (TAC) vector. With AhSLF-S2-specific primers, TAC clones containing both AhSLF-S2 and its homologs were subsequently identified (S2TAC, S5TACa, S4TAC, and S1TACa). DNA blot hybridization, sequencing and segregation analyses revealed that they are organized as single allelic copies (AhSLF-S2, -S1, -S4 and -S5) tightly linked to the S-RNases. Furthermore, clusters of F-box genes similar to AhSLF-S2 were identified. In total, three F-box genes (AhSLF-S2, -S2A and -S2C) in S2TAC (51 kb), three (AhSLF-S4, -S4A and -S4D) in S4TAC (75 kb), two (AhSLF-S5 and -S5A) in S5TACa (55 kb), and two (AhSLF-S1 and -S1E) in S1TACa (71 kb), respectively, were identified. Paralogous copies of these genes show 38–54% identity, with allelic copies sharing 90% amino acid identity. Among these genes, three (AhSLF-S2C, -S4D and -S1E) were specifically expressed in pollen, similar to AhSLF-S2, implying that they likely play important roles in pollen, whereas three AhSLF-SA alleles showed no detectable expression. In addition, several types of retroelements and transposons were identified in the sequenced regions, revealing some detailed information on the structural diversity of the S locus region. Taken together, these results indicate that both single allelic and tandemly duplicated genes are associated with the S locus in Antirrhinum. The implications of these findings in evolution and possible roles of allelic AhSLF-S genes in the self-incompatible reaction are discussed in species like Antirrhinum.Sequence data from this article have been deposited with the EMBL/GenBank databases under accession numbers AJ300474, AJ515534, AJ515536 and AJ515535  相似文献   

14.
Synopsis The routine swimming speed (S) of three groups of 4, 9 and 32 cm total length (LT) juvenile cod (Gadus morhua) was quantified in the laboratory at 6 – 10 different temperatures (T) between 3.2 and 16.7°C. At temperatures between 5 and 15°C, mean group S increased exponentially with increasing T (S=a ebT) and the effect of temperature (b = 0.082, Q10 = 2.27) was not significantly different among the groups (over the 8-fold difference in fish sizes of early- and post-settlement juveniles). Differences in mean S among individuals within each group were quite large (coefficient of variation = 40 – 80%). Swimming data for juveniles and those collected for groups of 0.4, 0.7 and 0.9 cm standard length (LS) larvae were combined to assess the effect of body size on S. At 8°C, S (mm s−1) increased with LS (mm) according to: S = 0.26LSΦ−5.28LS−1, where Φ = 1.55LS−0.08. Relative S (body lengths s−1) was related to LS by a dome-shaped relationship having a maximum value (0.49 body lengths s−1) at 18.5 – 19 mm LS corresponding to the sizes of fish at the end of larval-juvenile metamorphosis. Previous larval cod IBM’s using a cruise-predator mode likely overestimated rates of foraging (prey searching and encounters) by a factor of ~2, whereas foraging rates in pause-travel models are closer to estimates of swimming velocities obtained in this and other laboratory studies.  相似文献   

15.
We previously identified both self-incompatible and self-compatible plants in a natural population of self-incompatible Petunia axillaris subsp. axillaris, and found that all the self-compatible plants studied carried either SC1- or SC2-haplotype. Genetic crosses showed that SC2 was identical to S17 identified from another natural population of P. axillaris, except that its pollen function was defective, and that the pollen-part mutation in SC2 was tightly linked to the S-locus. Recent identification of the S-locus F-box gene (SLF) as the gene that controls pollen specificity in S-RNase-based self-incompatibility has prompted us to examine the molecular basis of this pollen-part mutation. We cloned and sequenced the S17-allele of SLF of P.axillaris, named PaSLF17, and found that SC2 SC2 plants contained extra restriction fragments that hybridized to PaSLF17 in addition to all of those observed in S17 S17 plants. Moreover, these additional fragments co-segregated with SC2. We used the SC2-specific restriction fragments as templates to clone an allele of PaSLF by PCR. To determine the identity of this allele, named PaSLFx, primers based on its sequence were used to amplify PaSLFalleles from genomic DNA of 40 S-homozygotes of P. axillaris, S1 S1 through S40 S40. Sequence comparison revealed that PaSLFx was completely identical with PaSLF19 obtained from S19 S19. We conclude that the S-locus of SC2 contained both S17-allele and the duplicated S19-allele of PaSLF. SC2 is the first naturally occurring pollen-part mutation of a solanaceous species that was shown to be associated with duplication of the pollen S. This finding lends support to the proposal, based on studies of irradiation-generated pollen-part mutants of solanaceous species, that duplication, but not deletion, of the pollen S, causes breakdown of pollen function.  相似文献   

16.
Aplanospores ofHaematococcus pluvialis MUR 145 contained 0.7% carotenoids (dry wt. basis) consisting of β,β-carotene (5% of total carotenoid), echinenone (4%), canthaxanthin (4%), (3S,3′S)-astaxanthin diester (34%), (3S,3′S)-astaxanthin monoester (46%), (3S,3′S)-astaxanthin (1%) and (3R,3′R,6′R)-lutein (6%). The astaxanthin esters were examined by TLC and HPLC and VIS,1H NMR and mass spectra recorded. Their chirality was determined by the camphanate method (Vecchi & Müller, 1979) after anaerobic hydrolysis. The tough cell wall of the aplanospores required enzymatic treatment prior to pigment extraction. The potential use of this microalga as a feed ingredient in aquaculture is discussed briefly.  相似文献   

17.
The gene SFB encodes an F-box protein that has appropriate S-haplotype-specific variation to be the pollen determinant in the S-RNase-based gametophytic self-incompatibility (GSI) reaction in Prunus (Rosaceae). To further characterize Prunus SFB, we cloned and sequenced four additional alleles from sweet cherry (P. avium), SFB 1 , SFB 2 , SFB 4 , and SFB 5 . These four alleles showed haplotype-specific sequence diversity similar to the other nine SFB alleles that have been cloned. In an amino acid alignment of Prunus SFBs, including the four newly cloned alleles, 121 out of the 384 sites were conserved and an additional 65 sites had only conservative replacements. Amino acid identity among the SFBs ranged from 66.0% to 82.5%. Based on normed variability indices (NVI), 34 of the non-conserved sites were considered to be highly variable. Most of the variable sites were located at the C-terminal region. A window-averaged plot of NVI indicated that there were two variable and two hypervariable regions. These variable and hypervariable regions appeared to be hydrophilic or at least not strongly hydrophobic, which suggests that these regions may be exposed on the surface and function in the allele specificity of the GSI reaction. Evidence of positive selection was detected using maximum likelihood methods with sites under positive selection concentrated in the variable and hypervariable regions.K. Ikeda and B. Igic contributed equally to this paperNucleotide sequence data reported will appear in the EMBL, GenBank and DDBJ nucleotide sequence databases under the accession numbers AB111518, AB111519, AB111520, and AB111521, for SFB 1, SFB 2, SFB 5, and SFB 4, respectively  相似文献   

18.
Acinetobacter strain IVS-B aerobically grows on isovalerate as sole carbon and energy source. Isovalerate is metabolised via isovaleryl-CoA, an intermediate of the oxidative (S)-leucine degradation pathway. A 3-methylglutaconyl-CoA hydratase (EC 4.2.1.18) was purified 65-fold to apparent homogeneity from cell-free extracts of isovalerate-grown cells of Acinetobacter strain IVS-B. The enzyme was found to be a homotetramer (115.2 kDa) composed of four identical subunits of 28.8 kDa not containing any cofactors. The enzyme was shown to catalyse the hydration of (E)-glutaconyl-CoA (k cat=18 s−1, K m=40 μM) and the dehydration of (S)-3-hydroxyglutaryl-CoA (k cat=13 s−1, K m=52 μM), albeit with somewhat lower catalytic efficiencies as compared to the 3-methyl derivatives, 3-methylglutaconyl-CoA (k cat=138 s−1, K m=14 μM) and (S)-3-hydroxy-3-methylglutaryl-CoA (k cat=60 s−1, K m=36 μM). Thus, the mechanistically simple syn-addition of water to the (E)-isomer of 3-methylglutaconyl-CoA of the leucine degradative pathway leading to the common intermediate (S)-3-hydroxy-3-methylglutaryl-CoA was assigned as the major physiological role to this enzyme. The amino acid sequence of 3-methylglutaconyl-CoA hydratase from Acinetobacter sp. was found to be related to over 100 prokaryotic enoyl-CoA hydratases (up to 50% identity), possibly all being 3-methylglutaconyl-CoA hydratases.An erratum to this article can be found at  相似文献   

19.
Characterisation of novel S-alleles from cherry (Prunus avium L.)   总被引:1,自引:0,他引:1  
In plant populations exhibiting gametophytic self-incompatibility, individuals harbouring rare S alleles are likely to have a reproductive advantage over individuals having more common alleles. Consequently, determination of the self-incompatibility haplotype of individuals is essential for genetic studies and the development of informed management strategies. This study characterises six new S alleles identified in wild cherry (Prunus avium L.). Investigations to determine the S genotype of individuals in recently planted woodland through length polymorphisms of introns associated with the stylar S-RNase gene and the pollen SFB gene revealed six S intron profiles which did not correspond to those of known S alleles. These are now attributed to S 27 to S 32 . Consensus primers, annealing in the S-RNase sequence coding for the signal peptide and C5 regions, were used to isolate the S-RNase alleles associated with the novel S intron profiles. The proteins corresponding to the new alleles were separated by isoelectric focusing from stylar extracts and their pI values determined. Similarities between the deduced amino acid sequence for the new alleles isolated and other cherry S-RNase sequences available on the databases ranged from 40% to 86%. Amplification products for SFB introns ranged from 172 to 208bp. New sequence regions exposed to positive selection were identified and the significance of the PS3 region reinforced. A phylogenetic relationship between P. avium S-RNases for S 10 and S 13 and between corresponding SFB alleles may indicate co-evolution of allele specificities of these two genes. The nucleotide sequences reported in this paper have been submitted to the EMBL/GenBank database under the following accession numbers: S 27 (DQ266439), S 28 (DQ266440), S 29 (DQ266441), S 30 (DQ266442), S 31 (DQ266443), S 32 (DQ266444).  相似文献   

20.
The gametophytic self-incompatibility (GSI) system in Rosaceae has been proposed to be controlled by two genes located in the S-locusan S-RNase and a recently described pollen expressed S-haplotype specific F-box gene (SFB). However, in apricot (Prunus armeniaca L.) these genes had not been identified yet. We have sequenced 21kb in total of the S-locus region in 3 different apricot S-haplotypes. These fragments contain genes homologous to the S-RNase and F-box genes found in other Prunusspecies, preserving their basic gene structure features and defined amino acid domains. The physical distance between the F-boxand the S-RNase genes was determined exactly in the S 2-haplotype (2.9kb) and inferred approximately in the S 1-haplotype (< 49kb) confirming that these genes are linked. Sequence analysis of the 5 flanking regions indicates the presence of a conserved region upstream of the putative TATA box in the S-RNase gene. The three identified S-RNase alleles (S 1, S 2 and S 4) had a high allelic sequence diversity (75.3 amino acid identity), and the apricot F-box allelic variants (SFB1, SFB2 and SFB4) were also highly haplotype-specific (79.4 amino acid identity). Organ specific-expression was also studied, revealing that S 1- and S 2-RNases are expressed in style tissues, but not in pollen or leaves. In contrast, SFB 1 and SFB 2 are only expressed in pollen, but not in styles or leaves. Taken together, these results support these genes as candidates for the pistil and pollen S-determinants of GSI in apricot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号