首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
This paper presents a generalization of Maynard Smith's concept of an evolutionarily stable strategy (ESS) to cover the cases of a finite population and a variable contest size. Both equilibrium and stability conditions are analysed. The standard Maynard Smith ESS with an infinite population and a contest size of two (pairwise contests) is shown to be a special case of this generalized ESS. An important implication of the generalized ESS is that in finite populations the behaviour of an ESS player is "spiteful", in the sense that an ESS player acts not only to increase his payoff but also to decrease the payoffs of his competitors. The degree of this "spiteful" behaviour is shown to increase with a decrease in the population size, and so is most likely to be observed in small populations. The paper concludes with an extended example: a symmetric two-pure-strategies two-player game for a finite population. It is shown that a mixed strategy ESS is globally stable against invasion by any one type of mutant strategist. The condition for the start of simultaneous invasion by two types of mutant is also given.  相似文献   

2.
This paper studies the evolution of a proto-language in a finite population under the frequency-dependent Moran process. A proto-language can be seen as a collection of concept-to-sign mappings. An efficient proto-language is a bijective mapping from objects of communication to used signs and vice versa. Based on the comparison of fixation probabilities, a method for deriving conditions of evolutionary stability in a finite population [Nowak et al., 2004. Emergence of cooperation and evolutionary stability in finite populations. Nature 428, 246-650], it is shown that efficient proto-languages are the only strategies that are protected by selection, which means that no mutant strategy can have a fixation probability that is greater than the inverse population size. In passing, the paper provides interesting results about the comparison of fixation probabilities as well as Maynard Smith's notion of evolutionary stability for finite populations [Maynard Smith, 1988. Can a mixed strategy be stable in a finite population? J. Theor. Biol. 130, 247-251] that are generally true for games with a symmetric payoff function.  相似文献   

3.
The War of Attrition model of John Maynard Smith predicts a single, mixed evolutionarily stable strategy (ESS) for animal contests which are settled by conventional displays with no assessment of the opponent's fighting ability. We test the predictions of the model by simulating the evolution of strategies in a finite population of animals under various assumptions on how possible strategies are coded and mutated. While our simulations for the most part confirm the predictions of the model, we also discovered some significant deviations from the theoretically predicted ESS. Specifically, we found that if inheritance of strategies is somewhat imprecise, then a population can evolve that achieves on average a higher payoff than a population at the theoretically predicted ESS. Moreover, if the ESS is realized as a polymorphism of fixed persistence times, then for small populations, sufficiently stringent statistical tests will reject the hypothesis that these times are distributed as theoretically predicted.  相似文献   

4.
We present an evolutionary game theory. This theory differs in several respects from current theories related to Maynard Smith's pioneering work on evolutionary stable strategies (ESS). Most current work deals with two person matrix games. For these games the strategy set is finite. We consider evolutionary games which are defined over a continuous strategy set and which permit any number of players. Matrix games are included as a bilinear continuous game. However, under our definition, such games will not posses an ESS on the interior of the strategy set. We extend previous work on continuous games by developing an ESS definition which permits the ESS to be composed of a coalition of several strategies. This definition requires that the coalition must not only be stable with respect to perturbations in strategy frequencies which comprise the coalition, but the coalition must also satisfy the requirement that no mutant strategies can invade. Ecological processes are included in the model by explicitly considering population size and density dependent selection.  相似文献   

5.
A stochastic evolutionary dynamics of two strategies given by 2x 2 matrix games is studied in finite populations. We focus on stochastic properties of fixation: how a strategy represented by a single individual wins over the entire population. The process is discussed in the framework of a random walk with site dependent hopping rates. The time of fixation is found to be identical for both strategies in any particular game. The asymptotic behavior of the fixation time and fixation probabilities in the large population size limit is also discussed. We show that fixation is fast when there is at least one pure evolutionary stable strategy (ESS) in the infinite population size limit, while fixation is slow when the ESS is the coexistence of the two strategies.  相似文献   

6.
In developing the concept of an evolutionarily stable strategy, Maynard Smith proposed formal conditions for stability. These conditions have since been shown to be neither necessary nor sufficient for evolutionary stability in finite populations. This paper provides a strong stability condition which is sensitive to the population size. It is then demonstrated that in the war of attrition with uncertain rewards there is a unique “strong evolutionary equilibrium” strategy. As the population becomes large this is shown to approach the solution strategy proposed by Bishop, Cannings and Maynard Smith.The analysis is then extended to wars of attrition between different populations. It is concluded that for such contests there is a whole family of potential strong evolutionary equilibria.  相似文献   

7.
This paper studies the correspondence between Nash equilibrium and evolutionary stability in large- and finite-population "playing the field" models. Whenever the fitness function is sufficiently continuous, any large-population ESS corresponds to a symmetric Nash equilibrium in the game that describes the simultaneous interaction of the individuals in the population, and any strict, symmetric Nash equilibrium in that game corresponds to a large-population ESS. This correspondence continues to hold, approximately, in finite populations; and it holds exactly for strict pure-strategy equilibria in sufficiently large finite populations. By contrast, a sequence of (mixed-strategy) finite-population ESSs can converge, as the population grows, to a limit that is not a large-population ESS, and a large-population ESS need not be the limit of any sequence of finite-population ESSs.  相似文献   

8.
Stochastic evolutionary game dynamics for finite populations has recently been widely explored in the study of evolutionary game theory. It is known from the work of Traulsen et al. [2005. Phys. Rev. Lett. 95, 238701] that the stochastic evolutionary dynamics approaches the deterministic replicator dynamics in the limit of large population size. However, sometimes the limiting behavior predicted by the stochastic evolutionary dynamics is not quite in agreement with the steady-state behavior of the replicator dynamics. This paradox inspired us to give reasonable explanations of the traditional concept of evolutionarily stable strategy (ESS) in the context of finite populations. A quasi-stationary analysis of the stochastic evolutionary game dynamics is put forward in this study and we present a new concept of quasi-stationary strategy (QSS) for large but finite populations. It is shown that the consistency between the QSS and the ESS implies that the long-term behavior of the replicator dynamics can be predicted by the quasi-stationary behavior of the stochastic dynamics. We relate the paradox to the time scales and find that the contradiction occurs only when the fixation time scale is much longer than the quasi-stationary time scale. Our work may shed light on understanding the relationship between the deterministic and stochastic methods of modeling evolutionary game dynamics.  相似文献   

9.
Li J  Deng HW 《Heredity》2005,95(1):59-68
Under several assumptions such as infinite population size with unlinked loci at linkage equilibrium (LD) under mutation-selection (M-S) balance, the rate (U), and the average effects (dominance and selection coefficients h and s) of deleterious genomic mutations (DGM) can be estimated by the Deng-Lynch method in some natural populations. However, all natural populations are finite in size and many of them are not large enough to be considered as approximately infinite. In the absence of an analytical estimation approach to characterize DGM in finite populations, we test the robustness and applicability of the Deng-Lynch method in finite populations with computer simulations. The results indicate that the estimation obtained by the Deng-Lynch method in finite populations with LD is generally robust when population size is greater than 400. With constant mutation effects, in outcrossing populations, the estimates U and ? are unbiased or only slightly upwardly biased, and ? is unbiased for most cases. In highly selfing populations, U and ? are upwardly biased, U is no more than 1.5U and ? is less than 1.1 h, and ? is either unbiased or slightly downwardly biased. With variable mutation effects, U ranges from 0.56 to 0.72U, and s ranges from 1.4 to 1.8s. Generally speaking, with the same finite population size, the estimation in outcrossing populations is better than in highly selfing populations. Given that even the order of the magnitude of the parameters of DMG (U in particular) is controversial, our investigation here may provide a basis for using the Deng-Lynch method to characterize DGM in finite populations of size greater than 400 in the presence of LD.  相似文献   

10.
The ESS (Evolutionary Stable Strategy) concept of Maynard Smith can be applied in its weak form to ensembles of competing PD ("Prisoner's Dilemma") strategies memorizing two to three of one's own and one's opponent's moves. The format of our study is: (1) games have very long duration; (2) Taylor-Jonker dynamics applies; (3) Effects of finite population size can be ignored. It is shown that in the case R greater than (T + S)/2 a set of strategies can be singled out which do not lose against any other strategy while co-operating with themselves. Such a set is uninvadable by other PD strategies if it constitutes more than half of the total population.  相似文献   

11.
Classical replicator dynamics assumes that individuals play their games and adopt new strategies on a global level: Each player interacts with a representative sample of the population and if a strategy yields a payoff above the average, then it is expected to spread. In this article, we connect evolutionary models for infinite and finite populations: While the population itself is infinite, interactions and reproduction occurs in random groups of size N. Surprisingly, the resulting dynamics simplifies to the traditional replicator system with a slightly modified payoff matrix. The qualitative results, however, mirror the findings for finite populations, in which strategies are selected according to a probabilistic Moran process. In particular, we derive a one-third law that holds for any population size. In this way, we show that the deterministic replicator equation in an infinite population can be used to study the Moran process in a finite population and vice versa. We apply the results to three examples to shed light on the evolution of cooperation in the iterated prisoner’s dilemma, on risk aversion in coordination games and on the maintenance of dominated strategies.  相似文献   

12.
We reexamine the influential parental investment hypothesis proposed by Trivers for the causal relationship between anisogamy and widespread female-biased parental care. We build self-consistent versions of Maynard Smith's simple evolutionary game between males and females over parental care, and incorporate consequences of anisogamy for gamete production and its trade-off with parental care, and for patterns of mate limitation. As male mating opportunities are limited by females, frequency-dependent selection acts on male strategies. Assuming synchrony of matings in the population, our analytical models find either symmetric sex roles or male-biased care as an evolutionarily stable strategy (ESS), in contrast to Trivers' hypothesis. We simulate evolution in asynchronously mating populations and find that diverse parental roles, including female care, can be ESS depending on the parameters. When caring males can also remate, or when females can increase the clutch size by deserting, there is stronger selection for male-biased care. Hence, we argue that the mating-caring trade-off for males is neither a necessary consequence of anisogamy nor sufficient to select for female-biased care. Instead, the factors excluded from our models—costly competitive traits, sexual selection, and partial parentage—may be necessary for the parental investment hypothesis to work.  相似文献   

13.
LMC (local mate competition) was first introduced by W. D. Hamilton to explain extraordinary female-biased sex ratios observed in a variety of insects and mites. In the original model, the population is subdivided into an infinite number of colonies founded by a fixed number of inseminated females producing the same very large number of offspring. The male offspring compete within the colonies to inseminate the female offspring and then these disperse at random to found new colonies. An unbeatable sex ratio strategy is found to be female-biased. In this paper, the effects of having colonies of random size and foundresses producing a random finite number of offspring are considered. The exact evolutionarily stable strategy (ESS) sex ratio is deduced and comparisons with previous approximate or numerical results are made. As the mean or the variance of brood size increases, the ESS sex ratio becomes more female-biased. An increase in the variance of colony size increases the ESS proportion of males when the mean brood size and colony size are both small, but decreases this proportion when the mean brood size or the mean colony size is large.  相似文献   

14.
The occurrence of thresholds for error propagation in asexually replicating populations is investigated by means of a simple birth and death model as well as by numerical simulation. Previous results derived for infinite population sizes are extended to finite populations. Here, replication has to be more accurate than in infinitely large populations because the master sequence can be lost not only by accumulation of errors--similar to the loss of wildtype through the operation of Muller's ratchet--but also by natural fluctuations. An analytical expression is given which allows straight computation of highly accurate values of error thresholds. The error threshold can be expanded in a power series of the reciprocal square root of the population size and thus increases with 1 square root of N in sufficiently large populations.  相似文献   

15.
Fogel GB  Fogel DB 《Bio Systems》2011,104(1):57-62
The behaviors of individuals and species are often explained in terms of evolutionary stable strategies (ESSs). The analysis of ESSs determines which, if any, combinations of behaviors cannot be invaded by alternative strategies. Two assumptions required to generate an ESS (i.e., an infinite population and payoffs described only on the average) do not hold under natural conditions. Previous experiments indicated that under more realistic conditions of finite populations and stochastic payoffs, populations may evolve in trajectories that are unrelated to an ESS, even in very simple games. The simulations offered here extend earlier research by employing truncation selection with random parental selection in a hawk-dove game. Payoffs are determined in pairwise contests using either the expected outcome, or the result of a random variable. In each case, however, the mean fraction of hawks over many generations and across many independent trials does not conform to the expected ESS. Implications of these results and philosophical underpinnings of ESS theory are offered.  相似文献   

16.
Su-Chan Park  Joachim Krug 《Genetics》2013,195(3):941-955
The adaptation of large asexual populations is hampered by the competition between independently arising beneficial mutations in different individuals, which is known as clonal interference. In classic work, Fisher and Muller proposed that recombination provides an evolutionary advantage in large populations by alleviating this competition. Based on recent progress in quantifying the speed of adaptation in asexual populations undergoing clonal interference, we present a detailed analysis of the Fisher–Muller mechanism for a model genome consisting of two loci with an infinite number of beneficial alleles each and multiplicative (nonepistatic) fitness effects. We solve the deterministic, infinite population dynamics exactly and show that, for a particular, natural mutation scheme, the speed of adaptation in sexuals is twice as large as in asexuals. This result is argued to hold for any nonzero value of the rate of recombination. Guided by the infinite population result and by previous work on asexual adaptation, we postulate an expression for the speed of adaptation in finite sexual populations that agrees with numerical simulations over a wide range of population sizes and recombination rates. The ratio of the sexual to asexual adaptation speed is a function of population size that increases in the clonal interference regime and approaches 2 for extremely large populations. The simulations also show that the imbalance between the numbers of accumulated mutations at the two loci is strongly suppressed even by a small amount of recombination. The generalization of the model to an arbitrary number L of loci is briefly discussed. If each offspring samples the alleles at each locus from the gene pool of the whole population rather than from two parents, the ratio of the sexual to asexual adaptation speed is approximately equal to L in large populations. A possible realization of this scenario is the reassortment of genetic material in RNA viruses with L genomic segments.  相似文献   

17.
We investigate the possibility of coexistence of pure, inherited strategies belonging to a large set of potential strategies. We prove that under biologically relevant conditions every model allowing for coexistence of infinitely many strategies is structurally unstable. In particular, this is the case when the "interaction operator" which determines how the growth rate of a strategy depends on the strategy distribution of the population is compact. The interaction operator is not assumed to be linear. We investigate a Lotka-Volterra competition model with a linear interaction operator of convolution type separately because the convolution operator is not compact. For this model, we exclude the possibility of robust coexistence supported on the whole real line, or even on a set containing a limit point. Moreover, we exclude coexistence of an infinite set of equidistant strategies when the total population size is finite. On the other hand, for infinite populations it is possible to have robust coexistence in this case. These results are in line with the ecological concept of "limiting similarity" of coexisting species. We conclude that the mathematical structure of the ecological coexistence problem itself dictates the discreteness of the species.  相似文献   

18.
We study stochastic game dynamics in finite populations. To this end we extend the classical Moran process to incorporate frequency-dependent selection and mutation. For 2 x 2 games, we give a complete analysis of the long-run behavior when mutation rates are small. For 3 x 3 coordination games, we provide a simple rule to determine which strategy will be selected in large populations. The expected motion in our model resembles the standard replicator dynamics when the population is large, but is qualitatively different when the population is small. Our analysis shows that even in large finite populations the behavior of a replicator-like system can be different from that of the standard replicator dynamics. As an application, we consider selective language dynamics. We determine which language will be spoken in finite large populations. The results have an intuitive interpretation but would not be expected from an analysis of the replicator dynamics.  相似文献   

19.
F(st) is a measure of genetic differentiation in a subdivided population. Sewall Wright observed that F(st)=1/1+2Nm in a haploid diallelic infinite island model, where N is the effective population size of each deme and m is the migration rate. In demonstrating this result, Wright relied on the infinite size of the population. Natural populations are not infinite and therefore they change over time due to genetic drift. In a finite population, F(st) becomes a random variable that evolves over time. In this work we ask, given an initial population state, what are the dynamics of the mean and variance of F(st) under the finite island model? In application both of these quantities are critical in the evaluation of F(st) data. We show that after a time of order N generations the mean of F(st) is slightly biased below 1/1+2Nm. Further we show that the variance of F(st) is of order 1/d where d is the number of demes in the population. We introduce several new mathematical techniques to analyze coalescent genealogies in a dynamic setting.  相似文献   

20.
In the animal world, performing a given task which is beneficial to an entire group requires the cooperation of several individuals of that group who often share the workload required to perform the task. The mathematical framework to study the dynamics of collective action is game theory. Here we study the evolutionary dynamics of cooperators and defectors in a population in which groups of individuals engage in N-person, non-excludable public goods games. We explore an N-person generalization of the well-known two-person snowdrift game. We discuss both the case of infinite and finite populations, taking explicitly into consideration the possible existence of a threshold above which collective action is materialized. Whereas in infinite populations, an N-person snowdrift game (NSG) leads to a stable coexistence between cooperators and defectors, the introduction of a threshold leads to the appearance of a new interior fixed point associated with a coordination threshold. The fingerprints of the stable and unstable interior fixed points still affect the evolutionary dynamics in finite populations, despite evolution leading the population inexorably to a monomorphic end-state. However, when the group size and population size become comparable, we find that spite sets in, rendering cooperation unfeasible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号