首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Deciphering the function of the essential yeast Sec14p protein has revealed a regulatory interface between cargo secretion from Golgi and lipid homeostasis. Abrogation of the CDP-choline (CDP-Cho) pathway for phosphatidylcholine (PC) synthesis allows for life in the absence of the otherwise essential Sec14p. Nte1p, the product of open reading frame YML059c, is an integral membrane phospholipase against CDP-Cho-derived PC producing intracellular glycerophosphocholine (GPCho) and free fatty acids. We monitored Nte1p activity through in vivo PC turnover measurements and observed that intracellular GPCho accumulation is decreased in a sec14(ts) strain shifted to 37 degrees C in 10 mm choline (Cho)-containing medium compared with a Sec14p-proficient strain. Overexpression of two Sec14p homologs Sfh2p and Sfh4p in sec14(ts) cells restored secretion and growth at the restrictive temperature but did not restore GPCho accumulation. Instead, newly synthesized PC was degraded by phospholipase D (Spo14p). Similar analysis performed in a sec14Delta background confirmed these observations. These results imply that the ability of Sfh2p and Sfh4p to restore secretion and growth is not through a shared function with Sec14p in the regulation of PC turnover via Nte1p. Furthermore, our analyses revealed a profound alteration of PC metabolism triggered by the absence of Sec14p: Nte1p unresponsiveness, Spo14p activation, and deregulation of Pct1p. Sfh2p- and Sfh4p-overexpressing cells coped with the absence of Sec14p by controlling the rate of phosphocholine formation, limiting the amount of Cho available for this reaction, and actively excreting Cho from the cell. Increased Sfh4p also significantly reduced the uptake of exogenous Cho. Beyond the new PC metabolic control features we ascribe to Sfh2p and Sfh4p we also describe a second role for Sec14p in mediating PC homeostasis. Sec14p acts as a positive regulator of Nte1p-mediated PC deacylation with the functional consequence of increased Nte1p activity increasing the permissive temperature for the growth of sec14(ts) cells.  相似文献   

2.
The regulation of phosphatidylcholine degradation as a function of the route of phosphatidylcholine (PC) synthesis and changing environmental conditions has been investigated in the yeast Saccharomyces cerevisiae. In the wild-type strains studied, deacylation of phosphatidylcholine to glycerophosphocholine is induced when choline is supplied to the culture medium and, also, when the culture temperature is raised from 30 to 37 degrees C. In strains bearing mutations in any of the genes encoding enzymes of the CDP-choline pathway for phosphatidylcholine biosynthesis (CKI1, choline kinase; CPT1, 1, 2-diacylglycerol choline phosphotransferase; PCT1, CTP:phosphocholine cytidylyltransferase), no induction of phosphatidylcholine turnover and glycerophosphocholine production is seen in response to choline availability or elevated temperature. In contrast, the induction of phosphatidylcholine deacylation does occur in a strain bearing mutations in genes encoding enzymes of the methylation pathway for phosphatidylcholine biosynthesis (i.e. CHO2/PEM1 and OPI3/PEM2). Whereas the synthesis of PC via CDP-choline is accelerated when shifted from 30 to 37 degrees C, synthesis of PC via the methylation pathway is largely unaffected by the temperature shift. These results suggest that the deacylation of PC to GroPC requires an active CDP-choline pathway for PC biosynthesis but not an active methylation pathway. Furthermore, the data indicate that the synthesis and turnover of CDP-choline-derived PC, but not methylation pathway-derived PC, are accelerated by the stress of elevated temperature.  相似文献   

3.
4.
5.
Prior studies demonstrated that 1,2-diacylglycerols stimulated degradation of the choline-containing phospholipids, phosphatidylcholine and sphingomyelin, in GH3 pituitary cells by a phospholipase A2 and a sphingomyelinase, respectively (Kolesnick, R. N. (1987) J. Biol. Chem. 262, 16759-16762). The present studies demonstrate that the phenothiazine trifluoperazine also stimulates degradation of these phospholipids. Trifluoperazine (25 microM) reduced phosphatidylcholine and sphingomyelin levels to 81 and 58% of control, respectively, after 30 min in cells labeled for 48 h with [3H] choline. Choline-containing metabolites were released specifically into the cytosolic fraction. The level of cytosolic phosphocholine, but not choline or CDP-choline, increased to 150% of control. These events were not mediated by inhibition of phosphatidylcholine synthesis. The level of 1,2-diacylglycerols, but not lysophosphatidylcholine or glycerol-3-phosphocholine, also increased. These data are most consistent with phosphatidylcholine degradation via a phospholipase C. Trifluoperazine-stimulated sphingomyelin degradation was accompanied by quantitative generation of ceramides consistent with activation of a sphingomyelinase. In contrast to trifluoperazine, choline-containing metabolites were released into the medium during stimulation by the 1,2-diacylglycerol 1,2-dioctanoyl-glycerol. Although both trifluoperazine and 1,2-dioctanoylglycerol increased ceramide levels, only 1,2-dioctanoylglycerol increased the sphingoid base level from 24 to 43 pmol/10(6) cells. Hence, trifluoperazine appears to deplete an intracellular pool of phosphatidylcholine and sphingomyelin by a different mechanism than 1,2-diacylglycerols. This is the first report of phenothiazine-induced degradation of choline-containing phospholipids.  相似文献   

6.
7.
The initial step of phospholipid biosynthesis in yeast is carried out through the acylation of glycerol 3-phosphate (G-3-P) and dihydroxyacetone phosphate by stereospecific sn-1 acyltransferases. Here we report the identification of two key fatty acyltransferases of the glycerolipid biosynthesis pathway in Saccharomyces cerevisiae. Disruption of the open reading frame YBL011w, corresponding to a gene previously identified as a choline transporter suppressor (SCT1), resulted in a substantial decrease of total cellular G-3-P acyltransferase activity. A yeast strain disrupted at the open reading frame YKR067w, which encodes a protein closely related to Sct1p, also exhibited a dramatic reduction in G-3-P acyltransferase activity. Molecular characterizations of the genes revealed that a missense mutation in YKR067w accounted for a defect in the activities of the G-3-P acyltransferase in the yeast mutant strain TTA1. Heterologous expression of YKR067w in Escherichia coli further confirmed its enzyme activity. These results indicate that YKR067w and YBL011w, designated herein as GAT1 and GAT2(SCT1), respectively, are yeast G-3-P acyltransferase genes. Furthermore, biochemical results are presented to show that both Gat1p and Gat2p(Sct1p) are G-3-P/dihydroxyacetone phosphate dual substrate-specific sn-1 acyltransferases. The fatty acyl specificity of Gat1p is similar to that of the mammalian microsomal G-3-P acyltransferase, as it can effectively utilize a broad range of fatty acids as acyl donors. In contrast, Gat2p(Sct1p) displayed preference toward 16-carbon fatty acids. The most notable of the altered phospholipid compositions of the gat1Delta and gat2(sct1)Delta strains are a decreased phosphatidic acid pool and an increased phosphatidylserine/phosphatidylinositol ratio. This did not appear to affect the mutants as no growth defect was found. However, null mutations of both GAT1 and GAT2(SCT1) are synthetically lethal to yeast.  相似文献   

8.
9.
Sec9p and Spo20p are two SNAP25 family SNARE proteins specialized for different developmental stages in yeast. Sec9p interacts with Sso1/2p and Snc1/2p to mediate intracellular trafficking between post-Golgi vesicles and the plasma membrane during vegetative growth. Spo20p replaces Sec9p in the generation of prospore membranes during sporulation. The function of Spo20p requires enzymatically active Spo14p, which is a phosphatidylcholine (PC)-specific phospholipase D that hydrolyzes PC to generate phosphatidic acid (PA). Phosphatidic acid is required to localize Spo20p properly during sporulation; however, it seems to have additional roles that are not fully understood. Here we compared the fusion mediated by all combinations of the Sec9p or Spo20p C-terminal domains with Sso1p/Sso2p and Snc1p/Snc2p. Our results show that Spo20p forms a less efficient SNARE complex than Sec9p. The combination of Sso2p/Spo20c is the least fusogenic t-SNARE complex. Incorporation of PA in the lipid bilayer stimulates SNARE-mediated membrane fusion by all t-SNARE complexes, likely by decreasing the energetic barrier during membrane merger. This effect may allow the weak SNARE complex containing Spo20p to function during sporulation. In addition, PA can directly interact with the juxtamembrane region of Sso1p, which contributes to the stimulatory effects of PA on membrane fusion. Our results suggest that the fusion strength of SNAREs, the composition of organelle lipids and lipid-SNARE interactions may be coordinately regulated to control the rate and specificity of membrane fusion.  相似文献   

10.
Phosphatidylcholine (PtdCho) is the major phospholipid component of eukaryotic membranes and deciphering the molecular mechanisms regulating PtdCho homeostasis is necessary to fully understand many pathophysiological situations where PtdCho metabolism is altered. This concept is illustrated in this review by summarizing recent evidence on Nte1p, a yeast endoplasmic reticulum resident phospholipase B that deacylates PtdCho producing intracellular glycerophosphocholine. The mammalian and Drosophila homologues, neuropathy target esterase and swiss cheese, respectively, have been implicated in normal brain development with increased intracytoplasmic vesicularization and multilayered membrane stacks as cytological signatures of their absence. Consistent with a role in lipid and membrane homeostasis, Nte1p-mediated PtdCho deacylation is strongly affected by Sec14p, a component of the yeast secretory machinery characterized by its ability to interface between lipid metabolism and vesicular trafficking. The preference of Nte1p toward PtdCho produced through the CDP-choline pathway and the downstream production of choline by the Gde1p glycerophosphodiesterase for resynthesis of PtdCho by the CDP-choline pathway are also highlighted.  相似文献   

11.
Certain organophosphates react with the active site serine residue of neuropathy target esterase (NTE) and cause axonal degeneration and paralysis. Cloning of NTE revealed the presence of homologues in eukaryotes from yeast to man and that the protein has both a catalytic and a regulatory domain. The latter contains sequences similar to the regulatory subunit of protein kinase A, suggesting that NTE may bind cyclic AMP. NTE is tethered via an amino-terminal transmembrane segment to the cytoplasmic face of the endoplasmic reticulum. Unlike wild-type yeast, mutants lacking NTE activity cannot deacylate CDP-choline pathway-synthesized phosphatidylcholine (PtdCho) to glycerophosphocholine (GroPCho) and fatty acids. In cultured mammalian cells, GroPCho levels rise and fall, respectively, in response to experimental over-expression, and inhibition, of NTE. A complex of PtdCho and Sec14p, a yeast phospholipid-binding protein, both inhibits the rate-limiting step in PtdCho synthesis and enhances deacylation of PtdCho by NTE. While yeast can maintain PtdCho homeostasis in the absence of NTE, certain post-mitotic metazoan cells may not be able to, and some NTE-null animals have deleterious phenotypes. NTE is not required for cell division in the early mammalian embryo or in larval and pupal forms of Drosophila, but is essential for placenta formation and survival of neurons in the adult. In vertebrates, the relative importance of NTE and calcium-independent phospholipase A2 for homeostatic PtdCho deacylation in particular cell types, possible interactions of NTE with Sec14p homologues and cyclic AMP, and whether deranged phospholipid metabolism underlies organophosphate-induced neuropathy are areas which require further investigation.  相似文献   

12.
1. Lysosomes from rat liver contain two enzymic systems for hydrolysing phosphatidyl-inositol: a deacylation via lysophosphatidylinositol producing glycerophosphoinositol and non-esterified fatty acid, and a phospholipase C-like cleavage into inositol 1-phosphate and diaclygycerol. 2. The separate enzyme systems involved can be distinguished by gel filtration, differential temperature-stability and the inhibitory action of detergents. 3. The enzyme systems both have pH optima at 4.8 and their attack on a pure phosphatidylinositol substrate is inhibited by many bivalent metals including Ca2+ and Mg2+, and cationic drugs. 4. Whereas the deacylation system will attack other glycerophospholipids, the phospholipase C shows a marked specificity towards phosphatidylinositol, although it will also slowly attach phosphatidylcholine with the liberation of phosphocholine. 5. Gel filtration and temperature-stability distinguish the phospholipase C from lysosomal phosphatidic acid phosphatase, but not from sphingomyelinase. 6. Evidence is presented that an EDTA-insensitive phospholipase C degrading phosphatidylinositol is present in rat brain.  相似文献   

13.
The yeast phosphatidylinositol transfer protein (Sec14p) is required for biogenesis of Golgi-derived transport vesicles and cell viability, and this essential Sec14p requirement is abrogated by inactivation of the CDP-choline pathway for phosphatidylcholine biosynthesis. These findings indicate that Sec14p functions to alleviate a CDP-choline pathway-mediated toxicity to yeast Golgi secretory function. We now report that this toxicity is manifested through the action of yeast Kes1p, a polypeptide that shares homology with the ligand-binding domain of human oxysterol binding protein (OSBP). Identification of Kes1p as a negative effector for Golgi function provides the first direct insight into the biological role of any member of the OSBP family, and describes a novel pathway for the regulation of Golgi-derived transport vesicle biogenesis.  相似文献   

14.
The function of GLN3, a GATA factor encoding gene, in nitrogen metabolism of Candida albicans was examined. GLN3 null mutants had reduced growth rates on multiple nitrogen sources. More severe growth defects were observed in mutants lacking both GLN3 and GAT1, a second GATA factor gene. GLN3 was an activator of two genes involved in ammonium assimilation, GDH3, encoding NADP-dependent glutamate dehydrogenase, and MEP2, which encodes an ammonium permease. GAT1 contributed to MEP2 expression, but not that of GDH3. A putative general amino acid permease gene, GAP2, was also activated by both GLN3 and GAT1, but activation by GLN3 was nitrogen source dependent. GLN3 was constitutively expressed, but GAT1 expression varied with nitrogen source and was reduced 2- to 3-fold in gln3 mutants. Both gln3 and gat1 mutants exhibited reduced sensitivity to rapamycin, suggesting they function downstream of TOR kinase. Hyphae formation by gln3 and gat1 mutants differed in relation to nitrogen source. The gln3 mutants formed hyphae on several nitrogen sources, but not ammonium or urea, suggesting a defect in ammonium assimilation. Virulence of gln3 mutants was reduced in a murine model of disseminated disease. We conclude that GLN3 has a broad role in nitrogen metabolism, partially overlapping, but distinct from that of GAT1, and that its function is important for the ability of C. albicans to survive within the host environment.  相似文献   

15.
The function of GLN3, a GATA factor encoding gene, in nitrogen metabolism of Candida albicans was examined. GLN3 null mutants had reduced growth rates on multiple nitrogen sources. More severe growth defects were observed in mutants lacking both GLN3 and GAT1, a second GATA factor gene. GLN3 was an activator of two genes involved in ammonium assimilation, GDH3, encoding NADP-dependent glutamate dehydrogenase, and MEP2, which encodes an ammonium permease. GAT1 contributed to MEP2 expression, but not that of GDH3. A putative general amino acid permease gene, GAP2, was also activated by both GLN3 and GAT1, but activation by GLN3 was nitrogen source dependent. GLN3 was constitutively expressed, but GAT1 expression varied with nitrogen source and was reduced 2- to 3-fold in gln3 mutants. Both gln3 and gat1 mutants exhibited reduced sensitivity to rapamycin, suggesting they function downstream of TOR kinase. Hyphae formation by gln3 and gat1 mutants differed in relation to nitrogen source. The gln3 mutants formed hyphae on several nitrogen sources, but not ammonium or urea, suggesting a defect in ammonium assimilation. Virulence of gln3 mutants was reduced in a murine model of disseminated disease. We conclude that GLN3 has a broad role in nitrogen metabolism, partially overlapping, but distinct from that of GAT1, and that its function is important for the ability of C. albicans to survive within the host environment.  相似文献   

16.
Induction of apoptosis in HL-60 cells, using a variety of cytotoxic drugs, resulted, in all cases, in inhibition of CDP-choline:1, 2-diacylglycerol choline phosphotransferase, leading to an accumulation of its substrate, CDP-choline, and inhibition of phosphatidylcholine biosynthesis. Incubation of the cells with phosphatidylcholine reduced the number displaying an apoptotic morphology following drug treatment, and this was inversely related to the degree to which the drugs inhibited phosphatidylcholine biosynthesis. Inhibition of choline phosphotransferase by two of the drugs, farnesol and chelerythrine, was shown to be due to direct inhibition of the enzyme, while inhibition by the other drugs, etoposide and camptothecin, could be explained by the intracellular acidification that followed induction of apoptosis.  相似文献   

17.
18.
Biochemical studies in the human malaria parasite, Plasmodium falciparum, indicated that in addition to the pathway for synthesis of phosphatidylcholine from choline (CDP-choline pathway), the parasite synthesizes this major membrane phospholipid via an alternative pathway named the serine-decarboxylase-phosphoethanolamine-methyltransferase (SDPM) pathway using host serine and ethanolamine as precursors. However, the role the transmethylation of phosphatidylethanolamine plays in the biosynthesis of phosphatidylcholine and the importance of the SDPM pathway in the parasite's growth and survival remain unknown. Here, we provide genetic evidence that knock-out of the PfPMT gene encoding the phosphoethanolamine methyltransferase enzyme completely abrogates the biosynthesis of phosphatidylcholine via the SDPM pathway. Lipid analysis in knock-out parasites revealed that unlike in mammalian and yeast cells, methylation of phosphatidylethanolamine to phosphatidylcholine does not occur in P. falciparum, thus making the SDPM and CDP-choline pathways the only routes for phosphatidylcholine biosynthesis in this organism. Interestingly, loss of PfPMT resulted in significant defects in parasite growth, multiplication, and viability, suggesting that this gene plays an important role in the pathogenesis of intraerythrocytic Plasmodium parasites.  相似文献   

19.
20.
During yeast sporulation, internal membrane synthesis ensures that each haploid nucleus is packaged into a spore. Prospore membrane formation requires Spo14p, a phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2]-stimulated phospholipase D (PLD), which hydrolyzes phosphatidylcholine (PtdCho) to phosphatidic acid (PtdOH) and choline. We found that both meiosis and spore formation also require the phosphatidylinositol (PtdIns)/PtdCho transport protein Sec14p. Specific ablation of the PtdIns transport activity of Sec14p was sufficient to impair spore formation but not meiosis. Overexpression of Pik1p, a PtdIns 4-kinase, suppressed the sec14-1 meiosis and spore formation defects; conversely, pik1-ts diploids failed to undergo meiosis and spore formation. The PtdIns(4)P 5-kinase, Mss4p, also is essential for spore formation. Use of phosphoinositide-specific GFP-PH domain reporters confirmed that PtdIns(4,5)P2 is enriched in prospore membranes. sec14, pik1, and mss4 mutants displayed decreased Spo14p PLD activity, whereas absence of Spo14p did not affect phosphoinositide levels in vivo, suggesting that formation of PtdIns(4,5)P2 is important for Spo14p activity. Spo14p-generated PtdOH appears to have an essential role in sporulation, because treatment of cells with 1-butanol, which supports Spo14p-catalyzed PtdCho breakdown but leads to production of Cho and Ptd-butanol, blocks spore formation at concentrations where the inert isomer, 2-butanol, has little effect. Thus, rather than a role for PtdOH in stimulating PtdIns(4,5)P2 formation, our findings indicate that during sporulation, Spo14p-mediated PtdOH production functions downstream of Sec14p-, Pik1p-, and Mss4p-dependent PtdIns(4,5)P2 synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号