首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Blockade of NMDA receptors by intracortical infusion of 3-( R )-2-carboxypiperazin-4-propyl-1-phosphonic acid (CPP) increases glutamate (GLU) and serotonin (5-HT) release in the medial prefrontal cortex and impairs attentional performance in the 5-choice serial reaction time task. These effects are prevented by the 5-HT2A receptor antagonist, ( R )-(+)-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenyl)ethyl]-4-piperidine methanol (M100907). We explored the roles of endogenous 5-HT and 5-HT1A and 5-HT2C receptors in the mechanisms by which M100907 suppresses CPP-induced release of cortical GLU and 5-HT using in vivo microdialysis. CPP raised extracellular GLU and 5-HT by about 250% and 170% respectively. The 5-HT synthesis inhibitor, p -chlorophenylalanine (300 mg/kg), prevented M100907 suppressing CPP-induced GLU release. The effect of M100907 on these rises of GLU and 5-HT and attentional performance deficit was mimicked by the 5-HT2C receptor agonist, ( S )-2-(6-chloro-5-fluoroindol-1-yl)-1-methylethylamine fumarate, (Ro60-0175, 30 μg/kg) while intra-mPFC (SB242084, 6-chloro-5-methyl-1-[[2-[(2-methyl-3-pyridyl)oxy]-5-pyridyl]carbamoyl]-indoline, 0.1 μM), a 5-HT2C receptor antagonist, prevented the effect of M100907 on extracellular GLU. The 5-HT1A receptor antagonist, N -[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]- N -(2-pyridinyl)cyclohexane carboxenide trihydrochloride (100 μM) abolished the effect of M100907 on the CPP-induced 5-HT release. The data show that blockade of 5-HT2A receptors is not sufficient to suppress the CPP-induced rise of extracellular GLU and 5-HT and suggest that M100907 suppresses GLU release induced by CPP by enhancing the action of endogenous 5-HT on 5-HT2C receptors.  相似文献   

2.
Interaction between brain endocannabinoid (EC) and serotonin (5-HT) systems was investigated by examining 5-HT-dependent behavioral and biochemical responses in CB1 receptor knockout mice. CB1 knockout animals exhibited a significant reduction in the induction of head twitches and paw tremor by the 5-HT2A/C receptor selective agonist (±) DOI, as well as a reduced hypothermic response following administration of the 5-HT1A receptor agonist (±)-8-OH-DPAT. Additionally, exposure to the tail suspension test induced enhanced despair responses in CB1 knockout mice. However, the tricyclic antidepressant imipramine and the 5-HT selective reuptake inhibitor fluoxetine induced similar decreases in the time of immobility in the tail suspension test in CB1 receptor knockout and wild-type mice. No differences were found between both genotypes with regard to 5-HT2A receptor and 5-HT1A receptors levels, measured by autoradiography in different brain areas. However, a significant decrease in the ability of both, the 5-HT1A receptor agonist (±)-8-OH-DPAT and the 5-HT2A/C receptor agonist (−)DOI, to stimulate [35S]GTPγS binding was detected in the hippocampal CA1 area and fronto-parietal cortex of CB1 receptor knockout mice, respectively. This study provides evidence that CB1 receptors are involved in the regulation of serotonergic responses mediated by 5-HT2A/C and 5-HT1A receptors, and suggests that a reduced coupling of 5-HT1A and 5-HT2A receptors to G proteins might be involved in these effects.  相似文献   

3.
Abstract : Single treatment with the serotonin (5-hydroxytryptamine) 5-HT1A receptor agonists 8-hydroxy-2-(di- n -propylamino)tetralin (8-OH-DPAT) and alnespirone (S-20499) reduces the extracellular 5-HT concentration (5-HText) in the rat midbrain and forebrain. Given the therapeutic potential of selective 5-HT1A agonists in the treatment of affective disorders, we have examined the changes in 5-HT1A receptors induced by 2-week minipump administration of alnespirone (0.3 and 3 mg/kg/day) and 8-OH-DPAT (0.1 and 0.3 mg/kg/day). The treatment with alnespirone did not modify baseline 5-HText but significantly attenuated the ability of 0.3 mg/kg s.c. alnespirone to reduce 5-HText in the dorsal raphe nucleus (DRN) and frontal cortex. In contrast, the ability of 8-OH-DPAT (0.025 and 0.1 mg/kg s.c.) to reduce 5-HText in both areas was unchanged by 8-OH-DPAT pretreatment. Autoradiographic analysis revealed a significant reduction of [3H]8-OH-DPAT and [3H]WAY-100635 {3H-labeled N -[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]- N -(2-pyridyl)cyclohexanecarboxamide · 3HCl} binding to somatodendritic 5-HT1A receptors (but not to postsynaptic 5-HT1A receptors) of rats pretreated with alnespirone but not with 8-OH-DPAT. In situ hybridization analysis revealed no change of the density of the mRNA encoding the 5-HT1A receptors in the DRN after either treatment. These data indicate that continuous treatment for 2 weeks with alnespirone, but not with 8-OH-DPAT, causes a functional desensitization of somatodendritic 5-HT1A receptors controlling 5-HT release in the DRN and frontal cortex.  相似文献   

4.
Abstract: Serotonergic neurons of the dorsal and median raphe nuclei are morphologically dissimilar. Recent results challenge previous evidence indicating a greater inhibition of dorsal raphe neurons after 5-hydroxytryptamine1A (5-HT1A) autoreceptor activation. As both nuclei innervate different forebrain territories, this issue is critical to understanding the changes in brain function induced by anxiolytic and antidepressant drugs. Using microdialysis, we examined the modifications of 5-HT release induced by the selective 5-HT1A agonist ipsapirone in both neuronal pathways. Maximal and minimal basal 5-HT values (in the presence of 1 µ M citalopram) were 45.0 ± 4.8 fmol/fraction in the median raphe nucleus and 8.4 ± 0.4 fmol/fraction in the dorsal hippocampus. Ipsapirone (0.3, 3, and 10 mg/kg s.c.) reduced dose-dependently 5-HT in the two raphe nuclei and four forebrain areas. Maximal reductions (to ∼25% of predrug values) were observed in cortex and striatum and in median raphe nucleus. The effects were more moderate in dorsal and ventral hippocampus (to 66 and 50% of baseline, respectively). These results are consistent with a higher sensitivity of dorsal raphe neurons to 5-HT1A autoreceptor activation. Yet the differential reduction of 5-HT release in the median raphe nucleus and hippocampus suggests the presence of complex mechanisms of control of 5-HT release in these neurons.  相似文献   

5.
Abstract: Previous studies have shown that 5-hydroxytryptamine (5-HT) can potently inhibit glutamatergic transmission in rat cerebellum through the activation of multiple 5-HT receptors. The aim of this study was to subclassify the 5-HT2 receptor mediating inhibition of the cyclic GMP response elicited by N -methyl- d -aspartate in adult rat cerebellar slices. Seven receptor antagonists, endowed with relative selectivities for the 5-HT2A, 5-HT2B, and 5-HT2C subtypes, differentially affected the inhibition by (±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane of the cyclic GMP response, suggesting that the receptor involved belongs to the 5-HT2C subtype.  相似文献   

6.
Serotonin (5-HT) receptors are classified into seven groups (5-HT1–7), comprising at least 14 structurally and pharmacologically distinct receptor subtypes. Pharmacological antagonism of ionotropic 5-HT3 receptors has been shown to modulate both behavioral and neurochemical aspects of the induction of sensitization to cocaine. It is not known, however, if specific molecular subunits of the 5-HT3 receptor influence the development of cocaine sensitization. To address this question, we studied the effects of acute and chronic intermittent cocaine administration in mice with a targeted deletion of the gene for the 5-HT3A-receptor subunit (5-HT3A−/−). 5-HT3A (−/−) mice showed blunted induction of cocaine-induced locomotor sensitization as compared with wild-type littermate controls. 5-HT3A (−/−) mice did not differ from wild-type littermate controls on measures of basal motor activity or response to acute cocaine treatment. Enhanced locomotor response to saline injection following cocaine sensitization was observed equally in 5-HT3A (−/−) and wild-type mice suggesting similar conditioned effects associated with chronic cocaine treatment. These data show a role for the 5-HT3A-receptor subunit in the induction of behavioral sensitization to cocaine and suggest that the 5-HT3A molecular subunit modulates neurobehavioral adaptations to cocaine, which may underlie aspects of addiction.  相似文献   

7.
Abstract: The effects of systemic administration of the serotonin (5-hydroxytryptamine) 5-HT1A receptor agonists flesinoxan and 8-hydroxy-2-(di- n -propylamino)tetralin on extracellular 5-HT were measured using microdialysis probes in both median raphe nucleus and dorsal hippocampus. Both 5-HT1A agonists dose-dependently decreased dialysate 5-HT levels from both brain regions. The effects of flesinoxan in the median raphe (0.3 mg/kg) and dorsal hippocampus (1.0 mg/kg) could be blocked by the 5-HT1A receptor antagonist N -[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]- N -(2-pyridyl)cyclohexane carboxamide trihydrochloride (WAY 100,635) at a dose of 0.05 mg/kg s.c. The antagonist itself had no effect at this dosage. Local perfusion of flesinoxan for 30 min through the dialysis probe into the median raphe region at concentrations of 20, 100, and 1,000 n M resulted in a significant decrease in dialysate 5-HT content from both regions. The effect of 100 n M flesinoxan could be blocked by coperfusion of 1,000 n M WAY 100,635. The data indicate that flesinoxan is a potent 5-HT1A receptor agonist and also support the notion that somatodendritic 5-HT1A autoreceptors regulate both terminal and somatodendritic 5-HT release.  相似文献   

8.
Abstract: We have assessed the ability of the serotonergic antagonist mianserin to modulate the number and functional activity of human 5-hydroxytryptamine2A (5-HT2A) and 5-HT2C receptors stably expressed in the human neuroblastoma cell line SH-SY5Y. Incubation of cells expressing the 5-HT2A receptor with mianserin (100 n M ) for 24 h caused a significant decrease (48%) in the binding capacity of [3H]ketanserin. This receptor down-regulation was associated with a corresponding decrease in the maximal production of inositol phosphates induced by 5-HT but not by carbachol. Exposure of cells expressing the 5-HT2C receptor to mianserin (100 n M ) for 72 h but not for 24 h similarly resulted in a significant reduction (44%) in [3H]mesulergine binding. Corresponding analysis of inositol phosphate production by 5-HT at the 5-HT2C receptor after incubation with mianserin showed no change in maximal response after 24 h. No change in the binding capacity of either radioligand was seen after incubation with mianserin for 1 h. A decrease in the binding affinity of both radioligands was also observed after mianserin treatment, but this decrease was similar after 1 h of incubation to that seen after 24 or 72 h, and was probably due to the retention of mianserin within the tissue. We conclude that antagonist down-regulation is evident at human 5-HT2A and 5-HT2C receptors stably expressed in a human neuroblastoma cell line and is probably mediated by a direct action of mianserin at the receptor.  相似文献   

9.
10.
Abstract: We examined the effect of kindling on serotonergic neurotransmission in the hippocampus by measuring serotonin (5-HT) release and uptake in hippocampal synaptosomes and 5-HT1A and 5-HT4 receptor subtypes during and at different times after electrical kindling of the dentate gyrus. Using quantitative receptor autoradiography, we found that binding of 8-[3H]hydroxy-2-(di- n -propylamino)tetralin ([3H]8-OH-DPAT) to 5-HT1A receptors was selectively increased by 20% on average ( p < 0.05) in the dentate gyrus of the stimulated and contralateral hippocampus 2 days after stage 2 (stereotypes and occasional retraction of a forelimb) and by 100% on average ( p < 0.05) 1 week after stage 5 (tonic-clonic seizures) compared with sham-stimulated rats. A 20% increase ( p < 0.05) was observed 1 month after the last generalized seizure. No changes were found after a single afterdischarge. 5-HT4 receptors, which colocalize with 5-HT1A receptors on hippocampal neurons, were not modified in kindled tissue. [3H]5-HT uptake and its release as well as the 5-HT1B autoreceptor function did not differ from shams in hippocampal synaptosomes at stages 2 and 5. Systemic administration of 100 and 1,000 µg kg−1 8-OH-DPAT or 1,000 µg kg−1 WAY-100,635, 30 min before each electrical stimulation, did not significantly alter kindling progression or the occurrence of stage 5 seizures in fully kindled rats. The changes in 5-HT1A receptor density in the dentate gyrus are part of the plastic modifications occurring during kindling and may contribute to modulating tissue hyperexcitability.  相似文献   

11.
Abstract: The K+-evoked overflow of endogenous glutamate from cerebellar synaptosomes was inhibited by serotonin [5-hydroxytryptamine (5-HT); pD2 = 8.95], 8-hydroxy-2-(di- n -propylamino)tetralin (8-OH-DPAT; pD2 = 7.35), and sumatriptan (pD2 = 8.43). These inhibitions were prevented by the selective 5-HT1D receptor antagonist N -[4-methoxy-3-(4-methyl-1-piperazinyl)phenyl]-2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl)(1,1-biphenyl)-4-carboxamide (GR-127935). The three agonists tested also inhibited the cyclic GMP (cGMP) response provoked in slices by K+ depolarization; pD2 values were 9.37 (5-HT), 9.00 (8-OH-DPAT), and 8.39 (sumatriptan). When cGMP formation was elevated by directly activating glutamate receptors with NMDA or α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA), the inhibition of the cGMP responses displayed the following pattern: 5-HT (pD2 values of 8.68 and 8.72 against NMDA and AMPA, respectively); 8-OH-DPAT (respective pD2 values of 9.15 and 9.00); sumatriptan (0.1 µ M ) was ineffective. The 5-HT1A receptor antagonist ( S )-(+) N-tert -butyl-3-[4-(2-methoxyphenyl)piperazin-1-yl]-2-phenylpropionamide dihydrochloride [(+)-WAY 100135] did not prevent the inhibition of glutamate release by 5-HT but blocked the inhibition by 8-OH-DPAT of the NMDA/AMPA-evoked cGMP responses. It is suggested that presynaptic 5-HT1D receptors mediate inhibition directly of glutamate release and indirectly of the cGMP responses to the released glutamate; on the other hand, activation of (postsynaptic) 5-HT1A receptors causes inhibition of the cGMP responses linked to stimulation of NMDA/AMPA receptors.  相似文献   

12.
13.
The 5-hydroxytryptamine (5-HT4) receptor may be implicated in depression and is a new potential target for antidepressant treatment. We have investigated the brain 5-HT4 receptor [3H]SB207145 binding in the Flinders Sensitive Line rat depression model by quantitative receptor autoradiography, and related this to 5-HT transporter ( S )-[ N -methyl-3H]citalopram binding. We also determined the regulation of 5-HT4 receptor binding by 1, 14, and 21 days of paroxetine administration and subchronic 5-HT depletion, and compared this with changes in 5-HT2A receptor [3H]MDL100907 binding. In the Flinders Sensitive Line, the 5-HT4 receptor and 5-HT transporter binding were decreased in the dorsal and ventral hippocampus, and the changes in binding were directly correlated within the dorsal hippocampus. Chronic but not acute paroxetine administration caused a 16–47% down-regulation of 5-HT4 receptor binding in all regions evaluated including the basal ganglia and hippocampus, while 5-HT depletion increased the 5-HT4 receptor binding in the dorsal hippocampus, hypothalamus, and lateral globus pallidus. In comparison, the 5-HT2A receptor binding was decreased in the frontal and cingulate cortices after chronic paroxetine administration, and markedly reduced in several regions after 5-HT depletion. Thus, the 5-HT4 receptor binding was decreased in the Flinders Sensitive Line depression model and in response to chronic paroxetine administration.  相似文献   

14.
Abstract: The regulation of 5-HT2A receptor expression by an antisense oligodeoxynucleotide, complementary to the coding region of rat 5-HT2A receptor mRNA, was examined in a cortically derived cell line and in rat brain. Treatment of A1A1 variant cells, which express the 5-HT2A receptor coupled to the stimulation of phosphatidylinositol (PI) hydrolysis, with antisense oligodeoxynucleotide decreased the maximal stimulation of PI hydrolysis by the partial agonist quipazine and the number of 5-HT2A receptor sites as measured by the binding of 2-[125I]-iodolysergic acid diethylamide. Treatment of cells with random, sense, or mismatch oligodeoxynucleotide did not alter the stimulation of PI hydrolysis by quipazine or 5-HT2A receptor number. Intracerebroventricular infusion of antisense, but not mismatch, oligodeoxynucleotide for 8 days resulted in a significant increase in cortical 5-HT2A receptor density and an increase in headshake behavior induced by the 5-HT2 receptor agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane. The density of cortical 5-HT2A receptors was not altered by administration of antisense oligodeoxynucleotide for 1, 2, or 4 days. We hypothesize that in brain this antisense oligodeoxynucleotide relieved some form of translational suppression, resulting in an increase in 5-HT2A receptor expression.  相似文献   

15.
Abstract: 5-HT1A autoreceptor antagonists enhance the effects of antidepressants by preventing a negative feedback of serotonin (5-HT) at somatodendritic level. The maximal elevations of extracellular concentration of 5-HT (5-HText) induced by the 5-HT uptake inhibitor paroxetine in forebrain were potentiated by the 5-HT1A antagonist WAY-100635 (1 mg/kg s.c.) in a regionally dependent manner (striatum > frontal cortex > dorsal hippocampus). Paroxetine (3 mg/kg s.c.) decreased forebrain 5-HText during local blockade of uptake. This reduction was greater in striatum and frontal cortex than in dorsal hippocampus and was counteracted by the local and systemic administration of WAY-100635. The perfusion of 50 µmol/L citalopram in the dorsal or median raphe nucleus reduced 5-HText in frontal cortex or dorsal hippocampus to 40 and 65% of baseline, respectively. The reduction of cortical 5-HText induced by perfusion of citalopram in midbrain raphe was fully reversed by WAY-100635 (1 mg/kg s.c.). Together, these data suggest that dorsal raphe neurons projecting to striatum and frontal cortex are more sensitive to self-inhibition mediated by 5-HT1A autoreceptors than median raphe neurons projecting to the hippocampus. Therefore, potentiation by 5-HT1A antagonists occurs preferentially in forebrain areas innervated by serotonergic neurons of the dorsal raphe nucleus.  相似文献   

16.
Abstract: The effect of (±)-8-hydroxy-2-(di- n -propylamino)tetralin (8-OH-DPAT), a selective serotonin 5-HT1A agonist, on levels of extracellular norepinephrine (NE), dopamine (DA), and 5-HT (measured simultaneously) was investigated by microdialysis in the ventral tegmental area (VTA) of freely moving rats, and their behavioral activity was monitored. At 50 µg/kg s.c., 8-OH-DPAT reduced 5-HT levels but enhanced NE and DA levels in VTA dialysate. These effects were not altered by pretreatment with systemic idazoxan (5 mg/kg i.p.), a selective α2 antagonist, or local sulpiride (10 µ M ), a selective D2/D3 antagonist. At 500 µg/kg s.c., 8-OH-DPAT further enhanced or more persistently reduced dialysate NE or 5-HT content but had little effect on dialysate DA content. Its DA level-increasing effect could be seen dramatically with local infusion of cocaine (30 µ M ) and, to a lesser extent, sulpiride (10 µ M ). Depletion of endogenous 5-HT with p -chlorophenylalanine attenuated both the 5-HT level-reducing and DA level-enhancing effects of 8-OH-DPAT without affecting its maximal NE effect and the locomotor-stimulatory effect. Partial depletion of endogenous NE with N -(2-chloroethyl)- N -ethyl-2-bromobenzylamine failed to change the monoamine response but diminished the locomotion induced by 8-OH-DPAT. These results suggested that (a) the low dose of 8-OH-DPAT may act at presynaptic 5-HT1A receptors to modulate 5-HT and DA release, while acting at postsynaptic 5-HT1A receptors to modulate NE release; (b) the high dose of 8-OH-DPAT may activate D2 receptors to offset its DA level-increasing effect; and (c) the locomotor-stimulatory effect of 8-OH-DPAT might be mediated primarily by postsynaptic 5-HT1A receptors and the NE system.  相似文献   

17.
Hibernation is a unique physiological state characterized by profound reversible sleep-like state, depression in body temperature and metabolism. The serotonin 5-hydroxytryptamine1A (5-HT1A) receptor gene sequence in typical seasonal hibernator, ground squirrel ( Spermophilus undulatus ), was specified. It was found that the fragment encoding the fifth transmembrane domain showed 93.6% of homology with the analogous fragment of the mouse and rat genes and displayed 88.5% homology with the human 5-HT1A receptor gene. Using primers designed on the basis of obtained sequence, the expression of 5-HT1A receptor gene in the brain regions in active, entering into hibernation, hibernating and coming out of hibernation ground squirrels was investigated. Significant structure-specific changes were revealed in the 5-HT1A messenger RNA (mRNA) level in entry into hibernation and in arousal. An increase in the 5-HT1A gene expression was found in the hippocampus during the prehibernation period and in ground squirrels coming out of hibernation, thus confirming the idea of the hippocampus trigger role in the hibernation. Significant decrease in 5-HT1A receptor mRNA level in the midbrain was found in animals coming out of hibernation. There was no considerable changes in 5-HT1A receptor mRNA level in different stages of sleep–wake cycle in the frontal cortex. Despite drastically decreased body temperature in hibernating animals (about 37°C in active and 4–5°C in hibernation), 5-HT1A receptor mRNA level in all examined brain regions remained relatively high, suggesting the essential role of this 5-HT receptor subtype in the regulation of hibernation and associated hypothermia.  相似文献   

18.
Abstract: Biochemical alterations of serotoninergic parameters have been demonstrated in experimental thiamine deficiency. In addition, hypophagia and hypothermia, two physiological processes associated with changes in the serotonin [5-hydroxytryptamine (5-HT)] system, are manifest early during the progression of thiamine deficiency. The binding of selected 5-HT radioligands was therefore investigated in discrete brain regions of pyrithiamine-induced thiamine-deficient rats. Using quantitative receptor autoradiography, the binding of 8-hydroxy-2-(di- n -[3H]propylamino)tetralin, a ligand used to label the somatodendritic 5-HT1A autoreceptor of the dorsal raphe nucleus, was found to be unaffected in this region, suggesting that the structural integrity of the 5-HT cell bodies is maintained throughout the course of pyrithiamine treatment. Increased binding of [3H]-ketanserin was observed in regions considered vulnerable as well as in some considered to be nonvulnerable during the course of thiamine deficiency. These binding changes, which appear to represent changes in the density of the postsynaptic 5-HT2A receptor population rather than the "tetrabenazine-sensitive" vesicular monoamine transporter, are evident before the appearance of histopathologic lesions and coincide with altered tissue concentrations of 5-HT. These data suggest that 5-HT neurons, although structurally intact, are functionally affected early during the progression of thiamine deficiency. These alterations, which are likely a part of adaptive neuronal change consequent to thiamine dysfunction, may be important in the physiological manifestations and the learning deficits commonly encountered in experimental thiamine deficiency.  相似文献   

19.
Abstract: The serotonin 5-HT1A and 5-HT1B receptors are two structurally related but pharmacologically distinguishable 5-HT receptor types. In brain, the 5-HT1A receptor is localized on the soma and dendrites of neurons, whereas the 5-HT1B receptor is targeted to the axon terminals. We previously showed that these two receptors are targeted in different membrane compartments when stably expressed in the epithelial LLC-PK1 cell line. Further investigations on the mechanisms responsible for their differential targeting were done by constructing chimeras of 5-HT1A and 5-HT1B receptors still able to bind specifically [3H]lysergic acid diethylamide and selective agonists and antagonists. Their cellular localization examined by confocal microscopy suggests that the third intracellular domain of the 5-HT1B receptor was responsible for its Golgi-like localization in transfected LLC-PK1 cells. In contrast, the third intracellular domain of the 5-HT1A receptor apparently allowed the sorting of the chimeras to the plasma membrane. Further inclusion of the C-terminal domain of the 5-HT1A receptor in their sequence led to a basolateral localization, whereas that of the 5-HT1B receptor allowed an apical targeting, suggesting the existence of a targeting signal in this portion of the receptor(s).  相似文献   

20.
Abstract: In this study, we examined the influence of blockade of serotonin (5-HT)1A and/or 5-HT1B autoreceptors on the fluoxetine-induced increase in dialysate levels of 5-HT as compared with dopamine (DA) and noradrenaline (NAD) in single samples of the frontal cortex (FCx) of freely moving rats. Fluoxetine (10.0 mg/kg, s.c.) elicited a twofold increase in dialysate levels of 5-HT relative to baseline values. The selective 5-HT1A antagonist WAY 100,635 (0.16 mg/kg, s.c.) did not influence 5-HT release alone but doubled the influence of fluoxetine on basal levels. Similarly, the selective 5-HT1B/1D antagonist GR 127,935 (2.5 mg/kg, s.c.) did not alter basal 5-HT levels alone and doubled the fluoxetine-induced increase in 5-HT levels. Combined administration of WAY 100,635 and GR 127,935 elicited an (at least) additive rise in the fluoxetine-induced increase in 5-HT levels to eightfold basal values, without modifying resting 5-HT levels. These changes were selective for 5-HT inasmuch as the parallel (twofold) increase in DA and NAD levels provoked by fluoxetine was not potentiated. The present data demonstrate that combined blockade of 5-HT1A and 5-HT1B autoreceptors markedly and selectively potentiates the fluoxetine-induced increase in dialysate levels of 5-HT versus DA and NAD in the FCx of freely moving rats. These observations suggest that 5-HT1A/1B antagonism may represent a novel strategy for the improvement in the therapeutic profile of 5-HT reuptake inhibitor antidepressant agents and that 5-HT may be primarily involved in such interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号