首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The structure of the plant inflorescence and flower is an important agronomic and ornamental trait studied for its potential economic applications. In particular, the capacity to modify flower size has always been a breeder’s goal. Genetic and molecular studies have shown that the Zea mays gene Ramosa1 (Ra1) is involved in inflorescence branching regulation. In fact the ra1 loss of function mutation causes extra branching of the inflorescence. In this work we suggest a possible utilization of the Ramosa1 maize gene as a tool to modify inflorescence architecture and flower size in transgenic plants. In fact overexpression of this gene in Arabidopsis plants promotes an increase in reproductive organ size. Pollen, seeds, cotyledons, leaves and roots are also larger than those of the wild type. Analysis of organs from transformants showed that cell expansion was increased without apparently affecting cell division. These results suggest that the RA1 protein is able to up-regulate cell expansion in all organs of Arabidopsis plants.  相似文献   

4.
Ma YP  Fang XH  Chen F  Dai SL 《Plant cell reports》2008,27(4):647-654
FLO/LFY homologue genes were initially characterized as floral meristem identity genes and play a key role in flower development among diverse species. The inflorescence organization of chrysanthemum differs from typical dicotyledons such as Arabidopsis and Antirrhinum as clear sepals are absent, and instead, a pappus, a rudimentary sepal, is formed. To understand the mechanism of reproduction of chrysanthemum at the molecular level, DFL, a FLORICAULA/LEAFY homologous gene, was cloned from Dendranthema lavandulifolium, which is one of the original species of chrysanthemum. The DFL gene consists of a 1,236-bp open reading frame and encodes a putative protein of 412 amino acids, which is 63% identical to LFY and 70% to FLO. The expression patterns of DFL during the flower development were analyzed, and RT-PCR results showed that DFL was strongly expressed in the flower bud. In situ hybridization experiments showed that it is strongly expressed in the inflorescence bract, petal and stamen primordial tissues throughout the inflorescence development. Its expression signals were also detected in stems, leaf primordial tissues and developing inflorescence bracts.  相似文献   

5.
In order to find out if the inflorescences number variation has influences on the gender modification in plant species, we investigated the gender modification in a cultivated population of the monoecious species Sagittaria potamogetifolia. We also designed two nutrient levels to explore the impact of nutrient on gender modification in S. potamogetifolia. We found that the female and male flowers did not change with increasing plant size for each inflorescence at a low nutrient level. At a high nutrient level, the female flower numbers on each inflorescence did not increase with plant size; however, the male flower numbers had some positive correlation with the plant size. At the ramet level, the total male and female flower numbers increased with the plant size at both nutrient levels. The sex ratio (female to male flower ratio) decreased with the inflorescence numbers and the plant size (Midvein length). Although the nutrient variation had impact on the flower number production, it did not change the gender modification pattern. The high plasticity of inflorescence numbers, which caused the gender variation in S. potamogetifolia, and low plasticity of female and male flowers on a single inflorescence, indicates that the limited modification on gender in a single inflorescence may be compensated by inflorescence number variation at the ramet level.  相似文献   

6.
The correlation between pollen-ovule (P/O) ratio and breeding system has generally been analysed with respect either to pollination efficiency, or in terms of sex allocation theory. Pollen/ovule ratios were measured in nine species of Araceae belonging to two genera with bisexual flowers (Anaphyllopsis, Monstera) and three genera with unisexual flowers (Dieffenbachia, Philodendron, Montrichardia). The family Araceae with its unique inflorescence morphology allows the analysis of variations of the P/O ratio with respect to two basal morpho-functional pollination units: the flower or the inflorescence. We found a relationship between the value of the P/O ratio and the breeding system that is partially different from Cruden's results (1977). Some facultative xenogamous species have a higher P/O than the obligatory xenogamous species. A link was found between the P/O and the type of inflorescence, the floral cycle, and the mode of growth.  相似文献   

7.
Hepworth SR  Klenz JE  Haughn GW 《Planta》2006,223(4):769-778
The UNUSUAL FLORAL ORGANS (UFO) gene of Arabidopsis encodes an F-box protein required for the determination of floral-organ and floral-meristem identity. Mutation of UFO leads to dramatic changes in floral-organ type which are well-characterized whereas inflorescence defects are more subtle and less understood. These defects include an increase in the number of secondary inflorescences, nodes that alternate between forming flowers and secondary inflorescences, and nodes in which a single flower is subtended by a bract. Here, we show how inflorescence defects correlate with the abnormal development of floral primordia and establish a temporal requirement for UFO in this process. At the inflorescence apex of ufo mutants, newly formed primordia are initially bract-like. Expression of the floral-meristem identity genes LFY and AP1 are confined to a relatively small adaxial region of these primordia with expression of the bract-identity marker FIL observed in cells that comprise the balance of the primordia. Proliferation of cells in the adaxial region of these early primordia is delayed by several nodes such that primordia appear “chimeric” at several nodes, having visible floral and bract components. However, by late stage 2 of floral development, growth of the bract generally ceases and is overtaken by development of the floral primordium. This abnormal pattern of floral meristem development is not rescued by expression of UFO from the AP1 promoter, indicating that UFO is required prior to AP1 activation for normal development of floral primordia. We propose that UFO and LFY are jointly required in the inflorescence meristem to both promote floral meristem development and inhibit, in a non-cell autonomous manner, growth of the bract.Shelley R. Hepworth and Jennifer E. Klenz contributed equally to this work.  相似文献   

8.
A mutation in theCENTRORADIALIS (CEN) gene ofAntirrhinum and in theTERMINAL FLOWER 1 (TFL1) gene ofArabidopsis causes their indeterminate inflorescence to determinate. We clonedCEN/TFL1 homologs fromNicotiana tabacum, the wild-type of which has a determinate inflorescence. TheCEN gene was expressed in the inflorescnece meristem and kept its inflorescence meristem identity, whereas the tobacco homolog (NCH) was expressed at a low level throughout the plant’s development. AlthoughCEN andNCH are highly homologous genes, they may have been recruited to different developmental functions during their evolution. TwoNCH genes are derived from amphidiploidN. tabacum, but both of them hybridized with its diploid parents,N. sylvestris andN. tomentosiformis. Southern blotting, and the genomic organization ofTFL1 inArabidopsis revealed that anotherCEN homolog exists in the genome ofArabidopsis. These results suggest that there are two copies of theCEN homolog per diploid plant. The extended abstract of a paper presented at the 13th International Symposium in Conjugation with Award of the International Prize for Biology “Frontier of Plant Biology” These two authors contributed to this work equally.  相似文献   

9.
The movement patterns of carpenter bees (Xylocopa micans) and bumblebees (Bombus pennsylvanicus) foraging for nectar on vertical inflorescences ofPontederia cordata were studied near Miami, Florida. The floral biology ofP. cordata is unique in several ways: (a) many short-lived flowers per inflorescence, (b) constant nectar production throughout the life span of each flower, and (c) abscence of vertical patterning of nectar and age of flowers. Inflorescences ranged between 3.5 and 15.8 cm long and had between 9 and 55 open flowers. Both carpenter bees and bumblebees arrived mostly on the bottom third of the inflorescence and left after visiting flowers on the top third of the inflorescence. The departure position from the inflorescence was higher up than observed in studies of other insect pollinators foraging on other speces of plants. This pattern of departure probably occurs in the absence of a vertical gradient of nectar or floral morphology.  相似文献   

10.
A study of the branching of the inflorescence and the vegetative shoot of the genusKummerowia, consisting ofK. stipulacea (Maxim.) Makino andK. striata (Thunb.) Schindler, has led to the following conclusions: (1) the inflorescences of both species are reduced compound cymes, (2) the branching system of the inflorescence ofKummerowia is not clearly different from that of the vegetative shoot and there are some transitional forms between both systems, and (3) the inflorescence ofKummerowia is different from the racemose inflorescences ofLespedeza andCampylotropis. Based on the differences found in the branching system of the inflorescence,Kummerowia is distinctly separated fromLespedeza andCampylotropis and is more correctly treated as a distinct genus from the latter two.  相似文献   

11.
Jones SE  Demeo JS  Davies NW  Noonan SE  Ross JJ 《Planta》2005,222(3):530-534
The pin1-1 mutant of Arabidopsis thaliana has been pivotal for studies on auxin transport and on the role of auxin in plant development. It was reported previously that when whole shoots were analysed, levels of the major auxin, indole-3-acetic acid (IAA) were dramatically reduced in the mutant, compared with the WT (Okada et al. 1991). The cloning of PIN1, however, provided evidence that this gene encodes a facilitator of auxin efflux, raising the question of how the pin1-1 mutation might reduce overall IAA levels as well as IAA transport. We therefore re-examined IAA levels in individual parts of pin1-1 and WT plants, focusing on inflorescence stems. Our data show that there is in fact no systemic IAA deficiency in the mutant. The previously reported difference between mutant and WT may have been due to the inclusion of reproductive structures in the WT harvest: we show here that the inflorescence itself contains high levels of IAA. We reconcile the normal IAA levels of pin1-1 inflorescence stems with their (previously-reported) reduced ability to transport IAA by presenting evidence that the auxin in mutant stems is not imported from their apical portion. Our data also indicate that levels of another auxin, indole-3-butyric acid (IBA), are very low in stems of the genotypes used in this study.  相似文献   

12.
Structure of inflorescence and its variation were organographically and ontogenetically studied inLespedeza cuneata (Dum.-Cours.) G. Don. An axillary inflorescence of the species forms a compound inflorescence which is composed of three or four component inflorescences. Each component inflorescence bears four (rarely six), three, two, or one flowers. Based on the arrangement of inflorescence phyllomes, the component inflorescence with four flowers is interpreted as a pseudoraceme bearing two shortened lateral shoots (partial inflorescences) each of which has two flowers. The component inflorescence with one flower appears to be terminated by the flower and to compose the cyme. Organographic observations revealed that the terminally located flower is not truly terminal, but axillary in origin. Ontogenetic observations showed that the apices of component inflorescence and partial inflorescence exist in early developmental stages in spite of variation in the form of component inflorescence. The terminally located flower in the cyme-like inflorescence was thus demonstrated to be laterally borne on the partial inflorescence axis. The component inflorescence composing the cyme-like one inL. cuneata is a reduced form in the number of partial inflorescences and of flowers from the pseudoraceme. The cyme-like inflorescence inL. cuneata resembles the inflorescence ofKummerowia.  相似文献   

13.
Those mutants were studied whose defects resulted in the morphological changes of inflorescences inArabidopsis thaliana. We characterized newly isolatedcorymbosa mutants andacaulis5 mutants. Thecorymbosa1-1 mutation was caused by the defects in the elongation of pedicels and the previously identifiederecta mutation belonged to this class. Thecorymbosa2-1 mutation was caused mainly by the increase of the number of the floral buds in the inflorescence. The expression of theERECTA gene whose defect resulted to the corymbose inflorescence was analyzed. TheERECTA gene was expressed in subsets of cells in both the peripheral zone and central zone and was thought to have important role for the development of inflorescences. The phenotypes of theacaulis5 mutation was pronounced just after the transition from the vegetative to reproductive growth phase. We found that the expressions of the genes for EXGT-A1 and γ-TIP were drastically reduced in theacaulis5 mutants. The extended abstract of a paper presented at the 13th International Symposium in Conjugation with Award of the International Prize for Biology “Frontier of Plant Biology”  相似文献   

14.
A key is provided for the 14Erodium species of the Egyptian flora. The important differential chracters of leaf, inflorescence, flower, and fruit are discussed and illustrated.Systematic Revision ofGeraniaceae in Egypt, I.  相似文献   

15.
A broad comparative analysis reveals that the inflorescences of coreMalvales, familiesSterculiaceae, Tiliaceae, Bombacaceae andMalvaceae, include characteristic repeating units. The basic repeating unit is called bicolor unit (afterTheobroma bicolor, where it was first observed). It is determinate and bears three bracts, one of which is invariably sterile, whereas the others subtend lateral cymes or single flowers. Through the demonstration of intermediate steps in closely related taxa the triad of bracts within a bicolor unit and the trimerous malvalean epicalyx are shown to be homologous. Various possibilities for an origin of the bicolor unit are discussed. Bicolor units are variously arranged to form complete inflorescences. In many taxa they are terminal on modules that comprise two (or fewer) prophylls. These modules may be arranged in elongated anthocladia or condensed sympodia, which in turn may constitute components of higher order inflorescence structures. The presence of the bicolor unit or its derivatives linksSterculiaceae, Tiliaceae, Bombacaceae andMalvaceae. It is absent from all other families included in a broader defined orderMalvales and represents one of the rare morphological synapomorphies of coreMalvales. Furthermore, inflorescence morphology provides characters of systematic significance for various taxa within coreMalvales.  相似文献   

16.
为了揭示植物花的空间布局与开花动态的调节机制以及避免同株异花传粉的生态学策略,该研究对铁破锣[Beesia calthifolia (Maxim.) Ulbr.]花序形态结构、开花动态和传粉生物学进行了观察分析。结果表明:(1)铁破锣花序结构设计巧妙,由3朵花组成一个聚伞花序单元并依次排列在主花序轴上,且花序轴上聚伞花序之间距离较远。(2)铁破锣通过单个聚伞花序顶花先开,通常只有6~8朵聚伞花序的顶花同时开放,而且总状花序从基部到顶部逐次开放,从而使得大量聚集单花的花序达到尽量少开花。(3)铁破锣花白色,花粉是访花昆虫的仅有诱物,纤细巴蚜蝇(Baccha maculata)是铁破锣的主要传粉昆虫,这种昆虫能够以花丝为着力点取食花粉,通常在一个花序上取食一朵单花后很快飞向另外一个花序的花。研究认为,铁破锣花序的空间设计和开花的时间序列动态减少了昆虫访问同株异花的可能性。  相似文献   

17.
Floral development and inflorescence structure within Streptocarpus and Saintpaulia were investigated using Scanning Electron Microscopy (SEM). We discuss the structure and development of the pair-flowered cyme and the floral ontogeny found in the Gesneriaceae in a phylogenetic context with particular reference to an East African clade of Streptocarpus and Saintpaulia. Current phylogenetic hypotheses divide the caulescent East African Streptocarpus species into two distinct clades, in relation to which the position of Saintpaulia is not yet clear. Variation in the branching of the inflorescence showed phylogenetic significance and included dichasial, monochasial and unbranched patterns. In four of the East African Streptocarpus species sampled a single lateral bracteole was present on the first to third axes, after which the inflorescence was ebracteolate. Our results indicate that there may be some link between bracteole suppression and an alteration in the order of sepal initiation. The loss or suppression of lateral bracteoles also appears to result in the precocious development of the lateral cyme meristem.  相似文献   

18.
The Arabidopsis thaliana homeodomain leucine-zipper gene ATHB7, which is active specifically under water deficit conditions, is proposed to act as a negative regulator of growth (Söderman et al., 1996, Plant J. 10: 375 381; Hjellström et al., 2003, Plant Cell Environ 26: 1127 1136). In this report we demonstrate that the paralogous gene, ATHB12, has a similar expression pattern and function. ATHB12,like ATHB7,was up-regulated during water deficit conditions, the up-regulation being dependent on abscisic acid (ABA) and on the activity of the Ser/Thr phosphatases ABI1 and ABI2. Plants that are mutant for ATHB12, as a result of T-DNA insertions in the ATHB12 gene, showed a reduced sensitivity to ABA in root elongation assays, whereas transgenic Arabidopsis plants expressing ATHB12 and/orATHB7 as driven by the CaMV 35S promoter were hypersensitive in this response compared to wild-type. High-level expression of either gene also resulted in a delay in inflorescence stem elongation growth and caused plants to develop rosette leaves with a more rounded shape, shorter petioles, and increased branching of the inflorescence stem. Transgenic Arabidopsisplants expressing the reporter geneuidA under the control of the ATHB12promoter showed marker gene activity in axillary shoot primordia, lateral root primordia, inflorescence stems and in flower organs. Treatment of plants with ABA or water deficit conditions caused the activity of ATHB12to increase in the inflorescence stem, the flower organs and the leaves, and to expand into the vasculature of roots and the differentiation/elongation zone of root tips. Taken together, these results indicate that ATHB12 and ATHB7 act to mediate a growth response to water deficit by similar mechanisms.  相似文献   

19.
Studies of inflorescences of the mutants bractea and terminal flower1 and double mutant bra tfl1 of Arabidopsis thaliana (L.) Heynh. have shown that the presence of a developed leaf in the node preceding the terminal flower is a necessary condition for the formation of the terminal flower perianth. This means that perianth cannot develop in an abracteose inflorescence of terminal flower. The second necessary condition for the terminal flower formation is a sufficient level of expression of the genes responsible for floral morphogenesis. Combination of these two conditions suffices for the development of a terminal flower with perianth. Since the general principles of organization are common for the majority of Angiosperms, it can be stated that if the abracteose inflorescence is terminated by a flower with perianth, this is a consequence of displacement of the lateral flower into the terminal position.__________Translated from Ontogenez, Vol. 36, No. 2, 2005, pp. 90–95.Original Russian Text Copyright © 2005 by Penin, Choob, Ezhova.  相似文献   

20.
The phenology and flowering of two sympatric understory palms from western Ecuador, until recently regarded as conspecific, is described.Geonoma irena Borchs. flowers throughout the year. Anthesis lasts 11–14 weeks per inflorescence, with overlapping male and female phases. Flowers open in the midmorning, and are visited mainly by meliponid and halictid bees.Geonoma cuneata var.sodiroi (Burret)Skov flowers from December to April, with a distinct peak in Feburary. Anthesis lasts 6–8 days per inflorescence, with non-overlapping male and female phases. Flowers open at dawn, and are visited mainly by drosophilid and sphaerocerid flies. The flowering pattern of the two species match different specific behavioural features of their insect visitors. The study provides an example of how differences in reproductive biology may act as an important barrier to gene flow between related, co-occurring taxa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号