首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diabetes-prone (BBDP) BB rats develop spontaneous autoimmune diabetes mellitus. They are lymphopenic and severely deficient in ART2+ T-cells. Diabetes-resistant BB (BBDR) rats do not develop spontaneous diabetes and have normal numbers of ART2+ T-cells. T-cell lymphopenia in BBDP rats results from hematopoietic stem cell defects leading to abnormal intrathymic T-cell maturation. To study this process, we established rat fetal thymic organ cultures (FTOC). Like mouse FTOC, cultures of BBDR rat thymi yielded approximately 10(5) cells per lobe. The majority of cells were CD8+ART2+ T-cells. In contrast, BBDP rat FTOC yielded 60% fewer cells (approximately 0.3 x 10(5)/lobe), a smaller percentage of CD8+ and TcRalphabeta+ T-cells, and almost no detectable ART2+ T-cells. ART2 mRNA was detectable in BBDR but not BBDP FTOC. In contrast, expression of mRNAs encoding bcl-2 and a panel of cytokines was comparable in BBDP and BBDR FTOC. Addition of anti-ICAM-1 (CD54) antibody reduced T-cell number in BBDR rat FTOC by approximately 70%, but addition of IL-7 or IL-1beta had no effect. The data demonstrate that BBDP thymocytes fail to generate mature ART2+ T-cells in rat FTOC, a system that can now be used to study the mechanism of this process.  相似文献   

2.
Regulatory T cells (Tregs) have been implicated as key players in immune tolerance as well as suppression of antitumor responses. The chemotherapeutic alkylating agent cyclophosphamide (CY) is widely used in the treatment of tumors and some autoimmune conditions. Although previous data has demonstrated that Tregs may be preferentially affected by CY, its relevance in promoting autoimmune conditions has not been addressed. The nonobese diabetic mouse spontaneously develops type-1 diabetes (T1D). We demonstrate in this study that CY targets CD4+CD25+Foxp3+ Tregs in vivo. CD4+CD25+ T cells isolated from CY-treated mice display reduced suppressive activity in vitro and increased expression of apoptotic markers. Although Treg numbers rapidly recovered to pretreatment levels in the peripheral lymphoid tissues, Tregs failed to recover proportionally within pancreatic infiltrates. T1D progression was effectively prevented by adoptive transfer of a small number of islet Ag-specific CD4+CD25+ Tregs to CY-treated recipients. Prevention of T1D was associated with reduced T cell activation and higher Treg proportions in the pancreas. We conclude that acceleration of T1D by CY is associated with a reduction in CD4+CD25+Foxp3+ Tregs and can be prevented by transfer of CD4+CD25+ Tregs.  相似文献   

3.
Invariant NK T (iNKT) cells regulate immune responses, express NK cell markers and an invariant TCR, and recognize lipid Ags in a CD1d-restricted manner. Previously, we reported that activation of iNKT cells by alpha-galactosylceramide (alpha-GalCer) protects against type 1 diabetes (T1D) in NOD mice via an IL-4-dependent mechanism. To further investigate how iNKT cells protect from T1D, we analyzed whether iNKT cells require the presence of another subset(s) of regulatory T cells (Treg), such as CD4+ CD25+ Treg, for this protection. We found that CD4+ CD25+ T cells from NOD.CD1d(-/-) mice deficient in iNKT cell function similarly in vitro to CD4+ CD25+ T cells from wild-type NOD mice and suppress the proliferation of NOD T responder cells upon alpha-GalCer stimulation. Cotransfer of NOD diabetogenic T cells with CD4+ CD25+ Tregs from NOD mice pretreated with alpha-GalCer demonstrated that activated iNKT cells do not influence the ability of T(regs) to inhibit the transfer of T1D. In contrast, protection from T1D mediated by transfer of activated iNKT cells requires the activity of CD4+ CD25+ T cells, because splenocytes pretreated with alpha-GalCer and then inactivated by anti-CD25 of CD25+ cells did not protect from T1D. Similarly, mice inactivated of CD4+ CD25+ T cells before alpha-GalCer treatment were also not protected from T1D. Our data suggest that CD4+ CD25+ T cells retain their function during iNKT cell activation, and that the activity of CD4+ CD25+ Tregs is required for iNKT cells to transfer protection from T1D.  相似文献   

4.
Viruses are believed to contribute to the pathogenesis of autoimmune type 1A diabetes in humans. This pathogenic process can be modeled in the BBDR rat, which develops pancreatic insulitis and type 1A-like diabetes after infection with Kilham's rat virus (RV). The mechanism is unknown, but does not involve infection of the pancreatic islets. We first documented that RV infection of BBDR rats induces diabetes, whereas infection with its close homologue H-1 does not. Both viruses induced similar humoral and cellular immune responses in the host, but only RV also caused a decrease in splenic CD4(+)CD25(+) T cells in both BBDR rats and normal WF rats. Surprisingly, RV infection increased CD4(+)CD25(+) T cells in pancreatic lymph nodes of BBDR but not WF rats. This increase appeared to be due to the accumulation of nonproliferating CD4(+)CD25(+) T cells. The results imply that the reduction in splenic CD4(+)CD25(+) cells observed in RV-infected animals is virus specific, whereas the increase in pancreatic lymph node CD4(+)CD25(+) cells is both virus and rat strain specific. The data suggest that RV but not H-1 infection alters T cell regulation in BBDR rats and permits the expression of autoimmune diabetes. More generally, the results suggest a mechanism that could link an underlying genetic predisposition to environmental perturbation and transform a "regulated predisposition" into autoimmune diabetes, namely, failure to maintain regulatory CD4(+)CD25(+) T cell function.  相似文献   

5.
Kilham rat virus (KRV) causes autoimmune diabetes in diabetes-resistant BioBreeding (DR-BB) rats; however, the mechanism by which KRV induces autoimmune diabetes without the direct infection of beta cells is not well understood. We first asked whether molecular mimicry, such as a common epitope between a KRV-specific peptide and a beta cell autoantigen, is involved in the initiation of KRV-induced autoimmune diabetes in DR-BB rats. We found that KRV peptide-specific T cells generated in DR-BB rats infected with recombinant vaccinia virus expressing KRV-specific structural and nonstructural proteins could not induce diabetes, indicating that molecular mimicry is not the mechanism by which KRV induces autoimmune diabetes. Alternatively, we asked whether KRV infection of DR-BB rats could disrupt the finely tuned immune balance and activate autoreactive T cells that are cytotoxic to beta cells, resulting in T cell-mediated autoimmune diabetes. We found that both Th1-like CD45RC+CD4+ and cytotoxic CD8+ T cells were up-regulated, whereas Th2-like CD45RC-CD4+ T cells were down-regulated, and that isolated and activated CD45RC+CD4+ and CD8+ T cells from KRV-infected DR-BB rats induced autoimmune diabetes in young diabetes-prone BioBreeding (DP-BB) rats. We conclude that KRV-induced autoimmune diabetes in DR-BB rats is not due to molecular mimicry, but is due to a breakdown of the finely tuned immune balance of Th1-like CD45RC+CD4+ and Th2-like CD45RC-CD4+ T cells, resulting in the selective activation of beta cell-cytotoxic effector T cells.  相似文献   

6.
Costimulation with the recombinant SA-4-1BBL agonist of 4-1BB receptor on conventional CD4+ T cells (Tconvs) overcomes the suppression mediated by naturally occurring CD4+CD25+FoxP3+ T regulatory cells (Tregs). The mechanistic basis of this observation has remained largely unknown. Herein we show that Tconvs, but not Tregs, are the direct target of SA-4-1BBL-mediated evasion of Treg suppression. IL-2 produced by Tconvs in response to 4-1BB signaling is both necessary and sufficient for overcoming Treg suppression. Supernatant from Tconvs stimulated with SA-4-1BBL contains high levels of IL-2 and overcomes Treg suppression in ex vivo Tconv:Treg cocultures. Removal of IL-2 from such supernatant restores Treg suppression and repletion of Tconv:Treg cocultures with exogenous recombinant IL-2 overcomes suppression. This study establishes 4-1BB signaling as a key circuit that regulates physical and functional equilibrium between Tregs and Tconvs with important implications for immunotherapy for indications where a fine balance between Tregs and Teffs plays a decisive role.  相似文献   

7.
CD4+CD25+ T regulatory (Treg) cells inhibit immunopathology and autoimmune disease in vivo. CD4+CD25+ Treg cells' capacity to inhibit conventional T cells in vitro is dependent upon cell-cell contact; however, the cell surface molecules mediating this cell:cell contact have not yet been identified. LFA-1 (CD11a/CD18) is an adhesion molecule that plays an established role in T cell-mediated cell contact and in T cell activation. Although expressed at high levels on murine CD4+CD25+ Treg cells, the role of LFA-1 in these cells has not been defined previously. We hypothesized that LFA-1 may play a role in murine CD4+CD25+ Treg function. To evaluate this, we analyzed LFA-1-deficient (CD18-/-) CD4+CD25+ T cells. We show that CD18-/- mice demonstrate a propensity to autoimmunity. Absence of CD18 led to diminished CD4+CD25+ T cell numbers and affected both thymic and peripheral development of these cells. LFA-1-deficient CD4+CD25+ T cells were deficient in mediating suppression in vitro and in mediating protection from colitis induced by the transfer of CD4+CD25- T cells into lymphopenic hosts. Therefore, we define a crucial role for CD18 in optimal CD4+CD25+ Treg development and function.  相似文献   

8.
CD4+CD25+Foxp3+ regulatory T cells (Tregs) contribute to the maintenance of peripheral tolerance by inhibiting the expansion and function of conventional T cells. Treg development and homeostasis are regulated by the Ag receptor, costimulatory receptors such as CD28 and CTLA-4, and cytokines such as IL-2, IL-10, and TGF-beta. Here we show that the proportions of Tregs in the spleen and lymph nodes of mice with inactive p110delta PI3K (p110deltaD910A/D910A) are reduced despite enhanced Treg selection in the thymus. p110deltaD910A/D910A CD4+CD25+Foxp3+ Tregs showed attenuated suppressor function in vitro and failed to secrete IL-10. In adoptive transfer experiments, p110deltaD910A/D910A T cells failed to protect against experimental colitis. The identification of p110delta as an intracellular signaling protein that regulates the activity of CD4+CD25+Foxp3+ Tregs may facilitate the further elucidation of the molecular mechanisms responsible for Treg-mediated suppression.  相似文献   

9.
Regulatory T cells (Tregs), including natural CD4+CD25+ Tregs and inducible IL-10 producing T regulatory type 1 (T(R)1) cells, maintain tolerance and inhibit autoimmunity. Recently, increased percentages of Tregs have been observed in the blood of septic patients, and ex vivo-activated Tregs were shown to prevent polymicrobial sepsis mortality. Whether endogenous Tregs contribute to sepsis outcome remains unclear. Polymicrobial sepsis, induced by cecal ligation and puncture, caused an increased number of splenic Tregs compared with sham-treated mice. Splenic CD4+CD25+ T cells from septic mice expressed higher levels of Foxp3 mRNA and were more efficient suppressors of CD4+CD25- T effector cell proliferation. Isolated CD4+ T cells from septic mice displayed increased intracellular IL-10 staining following stimulation, indicating that T(R)1 cells may also be elevated in sepsis. Surprisingly, Ab depletion of total CD4+ or CD4+CD25+ populations did not affect mortality. Furthermore, no difference in survival outcome was found between CD25 or IL-10 null mice and wild-type littermates, indicating that Treg or T(R)1-generated IL-10 are not required for survival. These results demonstrate that, although sepsis causes a relative increase in Treg number and increases their suppressive function, their presence does not contribute significantly to overall survival in this model.  相似文献   

10.
11.
Viruses in type 1 diabetes: brief review   总被引:5,自引:0,他引:5  
Type 1 diabetes results from the progressive destruction of insulin-producing pancreatic beta cells. Although the etiology of type 1 diabetes is believed to have a major genetic component, studies on the risk of developing type 1 diabetes suggest that environmental factors, such as viruses, may be important etiological determinants. Among the viruses, the most clear and unequivocal evidence that a virus induces type 1 diabetes in animals comes from studies on the D variant of encephalomyocarditis (EMC-D) virus in mice and Kilham rat virus (KRV) in rats. A high titer of EMC-D viral infection results in the development of diabetes within 3 days, primarily due to the rapid destruction of beta cells by viral replication within the cells. A low titer of EMC-D viral infection results in the recruitment of macrophages to the islets. Soluble mediators produced by the activated macrophages such as interleukin-1Beta, tumor necrosis factor-alpha, and nitric oxide play a critical role in the destruction of residual beta cells. KRV causes autoimmune type 1 diabetes in diabetes resistant-BioBreeding rats by breakdown of immune balance, including the preferential activation of effector T cells, such as Th1-like CD45RC+CD4+ T cells and CD8+ T cells, and down-regulation of Th2-like CD45RC-CD4+ and CD4+CD25+ T cells, rather than by direct infection of pancreatic beta cells.  相似文献   

12.
Peripheral tolerance is maintained in part by thymically derived CD25+CD4+ T cells (regulatory T cells (Tregs)). Their mechanism of action has not been well characterized. Therefore, to get a better understanding of Treg action, we investigated the kinetics of murine Treg activity in vitro. Tregs were suppressive within a surprisingly narrow kinetic window: necessary and sufficient only in the first 6-10 h of culture. Visualization of this time frame, using a sensitive single-cell assay for IL-2, revealed the early elaboration of target cell IL-2 producers in the first 6 h despite the presence of CD25+CD4+ Tregs. However, after 6 h, a rapid rise in the number of IL-2 producers in the absence of Tregs was dramatically abrogated by the presence of Tregs. Importantly, the timing of suppression was dictated by the kinetics of target T cell activation suggesting that early target T cell signals may alter susceptibility to suppression. Modulating target T cell activation signals with provision of CD28, IL-2, or high Ag dose all abrogated suppression of proliferation late in culture. However, only CD28 signals enabled target T cells to resist the early Treg-induced down-regulation of IL-2. Therefore the quality of early target T cell activation signals, in particular engagement of CD28, represents an important control point in the balance between vulnerability and resistance to Treg suppression.  相似文献   

13.
Previously we have shown that autoimmune diabetes, induced in rats by a protocol of adult thymectomy and split-dose gamma irradiation, can be prevented by the transfer of a subset of CD4+ T cells with a memory phenotype (CD45RC-), as well as by CD4+CD8- thymocytes, from syngeneic donors. Further studies now reveal that in the thymus the regulatory cells are observed in the CD25+ subset of CD4+CD8- cells, whereas transfer of the corresponding CD25- thymocyte subset leads to acceleration of disease onset in prediabetic recipients. However, in the periphery, not all regulatory T cells were found to be CD25+. In thoracic duct lymph, cells that could prevent diabetes were found in both CD25- and CD25+ subsets of CD4+CD45RC- cells. Further, CD25- regulatory T cells were also present within the CD4+CD45RC- cell subset from spleen and lymph nodes, but were effective in preventing diabetes only after the removal of CD25- recent thymic emigrants. Phenotypic analysis of human thymocytes showed the presence of CD25+ cells in the same proportions as in rat thymus. The possible developmental relationship between CD25+ and CD25- regulatory T cells is discussed.  相似文献   

14.
We have recently reported that NY-ESO-1-specific naive CD4+ T cell precursors exist in most individuals but are suppressed by CD4+CD25+ regulatory T cells (Tregs), while memory CD4+ T cell effectors against NY-ESO-1 are found only in cancer patients with spontaneous Ab responses to NY-ESO-1. In this study, we have analyzed mechanisms of CD4+ T cell induction following peptide vaccination in relation to susceptibility to Tregs. Specific HLA-DP4-restricted CD4+ T cell responses were elicited after vaccination with NY-ESO-1(157-170) peptide (emulsified in IFA) in patients with NY-ESO-1-expressing epithelial ovarian cancer. These vaccine-induced CD4+ T cells were detectable from effector/memory populations without requirement for in vitro CD4+CD25+ T cell depletion. However, they were only able to recognize NY-ESO-1(157-170) peptide but not naturally processed NY-ESO-1 protein and had much lower avidity compared with NY-ESO-1-specific pre-existing naive CD4+CD25- T cell precursors or spontaneously induced CD4+ T cell effectors of cancer patients with NY-ESO-1 Ab. We propose that vaccination with NY-ESO-1(157-170) peptide recruits low-avidity T cells with low sensitivity to Tregs and fails to modulate the suppressive effect of Tregs on high-avidity NY-ESO-1-specific T cell precursors.  相似文献   

15.
Naturally occurring CD4(+)CD25(+)FoxP3(+) T regulatory (Treg) cells require three distinct signals transduced via TCR, CD28, and IL-2R for their development and maintenance. These requirements served as the basis for several recently developed ex vivo expansion protocols that relied on the use of solid support-bound Abs to CD3 and CD28 in the presence of high dose IL-2. We report in this study that Treg cells up-regulate the expression of inducible costimulatory receptor 4-1BB in response to IL-2, and stimulation using this receptor via a novel form of 4-1BB ligand (4-1BBL) fused to a modified form of core streptavidin (SA-4-1BBL) was effective in expanding these cells up to 110-fold within 3 wk. Expanded cells up-regulated CD25, 4-1BB, and membranous TGF-beta, suppressed T cell proliferation, and prevented the rejection of allogeneic islets upon adoptive transfer into graft recipients. Importantly, SA-4-1BBL rendered CD4(+)CD25(-) T effector cells refractive to suppression by Treg cells. This dual function of signaling via 4-1BB, vis-à-vis Treg cell expansion and licensing T effector cells resistant to Treg cell suppression, as well as the up-regulation of 4-1BB by IL-2 may serve as important regulatory mechanisms for immune homeostasis following antigenic challenge. Stimulation using a soluble form of SA-4-1BBL represents a novel approach to expand Treg cells with potential therapeutic applications in autoimmunity and transplantation.  相似文献   

16.
17.
18.
CD4(+)CD25(+) regulatory T cells (Tregs) suppress immunity to infections and tumors as well as autoimmunity and graft-vs-host disease. Since Tregs constitutively express CTLA-4 and activated T cells express B7-1 and B7-2, it has been suggested that the interaction between CTLA-4 on Tregs and B7-1/2 on the effector T cells may be required for immune suppression. In this study, we report that autopathogenic T cells from B7-deficient mice cause multiorgan inflammation when adoptively transferred into syngeneic RAG-1-deficient hosts. More importantly, this inflammation is suppressed by adoptive transfer of purified wild-type (WT) CD4(+)CD25(+) T cells. WT Tregs also inhibited lymphoproliferation and acquisition of activation markers by the B7-deficient T cells. An in vitro suppressor assay revealed that WT and B7-deficient T cells are equally susceptible to WT Treg regulation. These results demonstrate that B7-deficient T cells are highly susceptible to immune suppression by WT Tregs and refute the hypothesis that B7-CTLA-4 interaction between effector T cells and Tregs plays an essential role in Treg function.  相似文献   

19.
In this study, we investigated whether CD4+CD25high regulatory T cells (Treg) are increased in the tumor tissue and peripheral blood of early-stage prostate cancer patients undergoing prostatectomy. We show that the prevalence of CD4+CD25high T cells inside the prostate was significantly higher in the tumor compared with benign tissue from the same prostate. Furthermore, the frequency of CD4+CD25high T cells in peripheral blood was significantly higher in prostate cancer patients compared with normal donors. A proportion of the CD4+CD25high T cells was also shown to be glucocorticoid-induced TNF receptor, ICOS, and FOXP3 positive. Moreover, CD4+CD25+ T cells from blood and supernatants from cultured prostate tumor tissue samples exhibited immunosuppressive function in vitro. Furthermore, supernatants from cultured prostate tissue samples and prostate cancer ascites fluid induced migration of CD4+CD25+ T cells and were shown to contain the regulatory T cell chemokine CCL22 by ELISA. Our findings indicate that Tregs are an important cellular component of early-stage prostate tumors, and thus new therapeutic strategies aimed at inhibition or depletion of Tregs may improve prostate cancer immunotherapy.  相似文献   

20.
One of the BB rat diabetes (diabetes mellitus (DM)) susceptibility genes is an Ian5 mutation resulting in premature apoptosis of naive T cells. Impaired differentiation of regulatory T cells has been suggested as one possible mechanism through which this mutation contributes to antipancreatic autoimmunity. Using Ian5 congenic inbred rats (wild-type (non-lyp BB) and mutated (BB)), we assessed the development of BB regulatory CD8(-)4(+)25(+)T cells and their role in the pathogenesis of DM. BB rats have normal numbers of functional CD8(-)4(+)25(+)Foxp3(+) thymocytes. The proportion of CD25(+) cells among CD8(-)4(+) recent thymic emigrants is also normal while it is increased among more mature CD8(-)4(+) T cells. However, BB CD8(-)4(+)25(+)Foxp3(+) thymocytes fail to undergo homeostatic expansion and survive upon transfer to nude BB rats while Foxp3 expression is reduced in mature CD8(-)4(+)25(+) T cells suggesting that these cells are mostly activated cells. Consistent with this interpretation, peripheral BB CD8(-)4(+)25(+) T cells do not suppress anti-TCR-mediated activation of non-lyp BB CD8(-)4(+)25(-) T cells but rather stimulate it. Furthermore, adoptive transfer of unfractionated T cells from diabetic BB donors induces DM in 71% of the recipients while no DM occurred when donor T cells are depleted of CD8(-)4(+)25(+) cells. Adoptive transfer of 10(6) regulatory non-lyp BB CD8(-)4(+)25(+) T cells to young BB rats protects the recipients from DM. Taken together, these results demonstrate that the BB rat Ian5 mutation alters the survival and function of regulatory CD8(-)4(+)25(+) T cells at the post-thymic level, resulting in clonal expansion of diabetogenic T cells among peripheral CD8(-)4(+)25(+) cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号