首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
T cell clonal anergy induction in lymphopenic nu/nu mice was found to be ineffective. Exposure to a tolerizing peptide Ag regimen instead induced aggressive CD4(+) cell cycle progression and increased Ag responsiveness (priming). Reconstitution of T cell-deficient mice by an adoptive transfer of mature peripheral lymphocytes was accompanied by the development of a CD25(+)Foxp3(+)CTLA-4(+)CD4(+) regulatory T cell population that acted to dampen Ag-driven cell cycle progression and facilitate the induction of clonal anergy in nearby responder CD25(-)CD4(+) T cells. Thus, an early recovery of CD25(+) regulatory T cells following a lymphopenic event can prevent exuberant Ag-stimulated CD4(+) cell cycle progression and promote the development of clonal anergy.  相似文献   

4.
A function for IL-7R for CD4+CD25+Foxp3+ T regulatory cells   总被引:1,自引:0,他引:1  
The IL-2/IL-2R interaction is important for development and peripheral homeostasis of T regulatory (Treg) cells. IL-2- and IL-2R-deficient mice are not completely devoid of Foxp3+ cells, but rather lack population of mature CD4+CD25+Foxp3high Treg cells and contain few immature CD4+CD25-Foxp3low T cells. Interestingly, common gamma chain (gammac) knockout mice have been shown to have a near complete absence of Foxp3+ Treg cells, including the immature CD25-Foxp3low subset. Therefore, other gammac-cytokine(s) must be critically important during thymic development of CD4+CD25+Foxp3+ Treg cells apart from the IL-2. The present study was undertaken to determine whether the gammac-cytokines IL-7 or IL-15 normally contribute to expression of Foxp3 and Treg cell production. These studies revealed that mice double deficient in IL-2Rbeta and IL-7Ralpha contained a striking lack in the CD4+Foxp3+ population and the Treg cell defect recapitulated the gammac knockout mice. In the absence of IL-7R signaling, IL-15/IL-15R interaction is dispensable for the production of CD4+CD25+Foxp3+ Treg cells, indicating that normal thymic Treg cell production likely depends on signaling through both IL-2 and IL-7 receptors. Selective thymic reconstitution of IL-2Rbeta in mice double deficient in IL-2Rbeta and IL-7Ralpha established that IL-2Rbeta is dominant and sufficient to restore production of Treg cells. Furthermore, the survival of peripheral CD4+Foxp3low cells in IL-2Rbeta-/- mice appears to depend upon IL-7R signaling. Collectively, these data indicate that IL-7R signaling contributes to Treg cell development and peripheral homeostasis.  相似文献   

5.
6.
CD25- T cells generate CD25+Foxp3+ regulatory T cells by peripheral expansion   总被引:20,自引:0,他引:20  
Naturally occurring CD4(+) regulatory T cells are generally identified through their expression of CD25. However, in several experimental systems considerable T(reg) activity has been observed in the CD4(+)CD25(-) fraction. Upon adoptive transfer, the expression of CD25 in donor-derived cells is not stable, with CD4(+)CD25(+) cells appearing in CD4(+)CD25(-) T cell-injected animals and vice versa. We show in this study that CD25(+) cells arising from donor CD25(-) cells upon homeostatic proliferation in recipient mice express markers of freshly isolated T(reg) cells, display an anergic state, and suppress the proliferation of other cells in vitro. The maintenance of CD25 expression by CD4(+)CD25(+) cells depends on IL-2 secreted by cotransferred CD4(+)CD25(-) or by Ag-stimulated T cells in peripheral lymphoid organs.  相似文献   

7.
Every person harbors a population of potentially self-reactive lymphocytes controlled by tightly balanced tolerance mechanisms. Failures in this balance evoke immune activation and autoimmunity. In this study, we investigated the contribution of self-reactive CD8(+) T lymphocytes to chronic pulmonary inflammation and a possible role for naturally occurring CD4(+)CD25(+)Foxp3(+) regulatory T cells (nTregs) in counterbalancing this process. Using a transgenic murine model for autoimmune-mediated lung disease, we demonstrated that despite pulmonary inflammation, lung-specific CD8(+) T cells can reside quiescently in close proximity to self-antigen. Whereas self-reactive CD8(+) T cells in the inflamed lung and lung-draining lymph nodes downregulated the expression of effector molecules, those located in the spleen appeared to be partly Ag-experienced and displayed a memory-like phenotype. Because ex vivo-reisolated self-reactive CD8(+) T cells were very well capable of responding to the Ag in vitro, we investigated a possible contribution of nTregs to the immune control over autoaggressive CD8(+) T cells in the lung. Notably, CD8(+) T cell tolerance established in the lung depends only partially on the function of nTregs, because self-reactive CD8(+) T cells underwent only biased activation and did not acquire effector function after nTreg depletion. However, although transient ablation of nTregs did not expand the population of self-reactive CD8(+) T cells or exacerbate the disease, it provoked rapid accumulation of activated CD103(+)CD62L(lo) Tregs in bronchial lymph nodes, a finding suggesting an adaptive phenotypic switch in the nTreg population that acts in concert with other yet-undefined mechanisms to prevent the detrimental activation of self-reactive CD8(+) T cells.  相似文献   

8.
9.
CTLA-4 is a critical negative regulator of T cell response and is instrumental in maintaining immunological tolerance. In this article, we report that enhanced selective engagement of CTLA-4 on T cells by Ag-presenting dendritic cells resulted in the induction of Ag-specific CD4(+)CD25(+)Foxp3(+) and CD4(+)CD25(-)TGF-beta1(+) adaptive Tregs. These cells were CD62L(low) and hyporesponsive to stimulation with cognate Ag but demonstrated a superior ability to suppress Ag-specific effector T cell response compared with their CD62L(high) counterparts. Importantly, treatment of mice with autoimmune thyroiditis using mouse thyroglobulin (mTg)-pulsed anti-CTLA-4 agonistic Ab-coated DCs, which results in a dominant engagement of CTLA-4 upon self-Ag presentation, not only suppressed thyroiditis but also prevented reemergence of the disease upon rechallenge with mTg. Further, the disease suppression was associated with significantly reduced mTg-specific T cell and Ab responses. Collectively, our results showed an important role for selective CTLA-4 signaling in the induction of adaptive Tregs and suggested that approaches that allow dominant CTLA-4 engagement concomitant with Ag-specific TCR ligation can be used for targeted therapy.  相似文献   

10.
Regulatory T cells (Tregs) have been implicated as key players in immune tolerance as well as suppression of antitumor responses. The chemotherapeutic alkylating agent cyclophosphamide (CY) is widely used in the treatment of tumors and some autoimmune conditions. Although previous data has demonstrated that Tregs may be preferentially affected by CY, its relevance in promoting autoimmune conditions has not been addressed. The nonobese diabetic mouse spontaneously develops type-1 diabetes (T1D). We demonstrate in this study that CY targets CD4+CD25+Foxp3+ Tregs in vivo. CD4+CD25+ T cells isolated from CY-treated mice display reduced suppressive activity in vitro and increased expression of apoptotic markers. Although Treg numbers rapidly recovered to pretreatment levels in the peripheral lymphoid tissues, Tregs failed to recover proportionally within pancreatic infiltrates. T1D progression was effectively prevented by adoptive transfer of a small number of islet Ag-specific CD4+CD25+ Tregs to CY-treated recipients. Prevention of T1D was associated with reduced T cell activation and higher Treg proportions in the pancreas. We conclude that acceleration of T1D by CY is associated with a reduction in CD4+CD25+Foxp3+ Tregs and can be prevented by transfer of CD4+CD25+ Tregs.  相似文献   

11.
One of the BB rat diabetes (diabetes mellitus (DM)) susceptibility genes is an Ian5 mutation resulting in premature apoptosis of naive T cells. Impaired differentiation of regulatory T cells has been suggested as one possible mechanism through which this mutation contributes to antipancreatic autoimmunity. Using Ian5 congenic inbred rats (wild-type (non-lyp BB) and mutated (BB)), we assessed the development of BB regulatory CD8(-)4(+)25(+)T cells and their role in the pathogenesis of DM. BB rats have normal numbers of functional CD8(-)4(+)25(+)Foxp3(+) thymocytes. The proportion of CD25(+) cells among CD8(-)4(+) recent thymic emigrants is also normal while it is increased among more mature CD8(-)4(+) T cells. However, BB CD8(-)4(+)25(+)Foxp3(+) thymocytes fail to undergo homeostatic expansion and survive upon transfer to nude BB rats while Foxp3 expression is reduced in mature CD8(-)4(+)25(+) T cells suggesting that these cells are mostly activated cells. Consistent with this interpretation, peripheral BB CD8(-)4(+)25(+) T cells do not suppress anti-TCR-mediated activation of non-lyp BB CD8(-)4(+)25(-) T cells but rather stimulate it. Furthermore, adoptive transfer of unfractionated T cells from diabetic BB donors induces DM in 71% of the recipients while no DM occurred when donor T cells are depleted of CD8(-)4(+)25(+) cells. Adoptive transfer of 10(6) regulatory non-lyp BB CD8(-)4(+)25(+) T cells to young BB rats protects the recipients from DM. Taken together, these results demonstrate that the BB rat Ian5 mutation alters the survival and function of regulatory CD8(-)4(+)25(+) T cells at the post-thymic level, resulting in clonal expansion of diabetogenic T cells among peripheral CD8(-)4(+)25(+) cells.  相似文献   

12.
A mutant strain with defective thymic selection of the Long-Evans Cinnamon (LEC) rat was found to spontaneously develop inflammatory bowel disease (IBD)-like colitis. The secretion of Th1-type cytokines including IFN-gamma and IL-2 from T cells of mesenteric lymph node cells (MLNs) and lamina propria mononuclear cells, but not spleen cells, in LEC rats was significantly increased more than that of the control Long-Evans Agouti rats through up-regulated expression of T-bet and phosphorylation of STAT-1 leading to NF-kappaB activation. In addition, the number of CD4(+)CD25(+)Foxp3(+) regulatory T (Treg) cells of the thymus, MLNs, and lamina propria mononuclear cells from LEC rats was significantly reduced, comparing with that of the control rats. Moreover, bone marrow cell transfer from LEC rats into irradiated control rats revealed significantly reduced CD25(+)Foxp3(+) Treg cells in thymus, spleen, and MLNs compared with those from control rats. Indeed, adoptive transfer with T cells of MLNs, not spleen cells, from LEC rats into SCID mice resulted in the development of inflammatory lesions resembling the IBD-like lesions observed in LEC rats. These results indicate that the dysfunction of the regulatory system controlled by Treg cells may play a crucial role in the development of IBD-like lesions through up-regulated T-bet, STAT-1, and NF-kappaB activation of peripheral T cells in LEC rats.  相似文献   

13.
A major challenge in transplantation medicine is controlling the very strong immune responses to foreign antigens that are responsible for graft rejection. Although immunosuppressive drugs efficiently inhibit acute graft rejection, a substantial proportion of patients suffer chronic rejection that ultimately leads to functional loss of the graft. Induction of immunological tolerance to transplants would avoid rejection and the need for lifelong treatment with immunosuppressive drugs. Tolerance to self-antigens is ensured naturally by several mechanisms; one major mechanism depends on the activity of regulatory T lymphocytes. Here we show that in mice treated with clinically acceptable levels of irradiation, regulatory CD4+CD25+Foxp3+ T cells stimulated in vitro with alloantigens induced long-term tolerance to bone marrow and subsequent skin and cardiac allografts. Regulatory T cells specific for directly presented donor antigens prevented only acute rejection, despite hematopoietic chimerism. By contrast, regulatory T cells specific for both directly and indirectly presented alloantigens prevented both acute and chronic rejection. Our findings demonstrate the potential of appropriately stimulated regulatory T cells for future cell-based therapeutic approaches to induce lifelong immunological tolerance to allogeneic transplants.  相似文献   

14.
The thymus-derived CD4(+)CD25(+) T cells belong to a subset of regulatory T cells potentially capable of suppressing the proliferation of pathogenic effector T cells. Intriguingly, these suppressor cells are themselves anergic, proliferating poorly to mitogenic stimulation in culture. In this study, we find that the 4-1BB costimulator receptor, best known for promoting the proliferation and survival of CD8(+) T cells, also induces the proliferation of the CD4(+)CD25(+) regulatory T cells both in culture and in vivo. The proliferating CD4(+)CD25(+) T cells produce no detectable IL-2, suggesting that 4-1BB costimulation of these cells does not involve IL-2 production. The 4-1BB-expanded CD4(+)CD25(+) T cells are functional, as they remain suppressive to other T cells in coculture. These results support the notion that the peripheral expansion of the CD4(+)CD25(+) T cells is controlled in part by costimulation.  相似文献   

15.
CD4(+)CD25(+) regulatory T cells (Tregs) are essential for maintaining self-tolerance and immune homeostasis. Here we characterize a novel subset of CD4(+)CD25(+) Tregs that express latency-associated peptide (LAP) on their cell surface (CD4(+)CD25(+)LAP(+) cells). CD4(+)CD25(+)LAP(+) cells express elevated levels of Foxp3 and Treg-associated molecules (CTLA4, glucocorticoid-induced TNFR-related gene), secrete TGFbeta, and express both cell surface TGFbeta and surface receptors for TGFbeta. In vitro, the suppressive function of CD4(+)CD25(+)LAP(+) cells is both cell contact and soluble factor dependent; this contrasts with CD4(+)CD25(+)LAP(-) cells, which are mainly cell contact dependent. In a model of experimental autoimmune encephalomyelitis, CD4(+)CD25(+)LAP(+) cells exhibit more potent suppressive activity than CD4(+)CD25(+)LAP(-) cells, and the suppression is TGFbeta dependent. We further show that CD4(+)CD25(+)LAP(+) cells suppress myelin oligodendrocyte glycoprotein-specific immune responses by inducing Foxp3 and by inhibiting IL-17 production. Our findings demonstrate that CD4(+)CD25(+) Tregs are a heterogeneous population and that the CD4(+)CD25(+) subset that expresses LAP functions in a TGFbeta-dependent manner and has greater in vivo suppressive properties. Our work helps elucidate the ambiguity concerning the role of TGFbeta in CD4(+)CD25(+) Treg-mediated suppression and indicates that LAP is an authentic marker able to identify a TGFbeta-expressing CD4(+)CD25(+) Treg subset.  相似文献   

16.
Non-obese diabetic (NOD) mice develop spontaneous T-cell responses against pancreatic beta-cells, leading to islet cell destruction and diabetes. Despite high genetic similarity, non-obese resistant (NOR) mice do not develop diabetes. We show here that spleen cells of both NOD and NOR mice respond to the islet cell antigen glutamic acid decarboxylase-65 in IFN-gamma-ELISPOT assays. Moreover, NOR-T cells induce periinsulitis in NOD SCID recipient mice. Thus, a potentially pathogenic islet cell-specific T-cell response arises in NOR and NOD mice alike; the mechanism that prevents the autoimmune progression of self-reactive T cells in NOR mice presumably acts at the level of effector function. Consistent with this hypothesis, CD4+CD25+ cell-depleted spleen cells from NOR mice mediated islet cell destruction and overt diabetes in NOD SCID mice. Therefore, islet cell-specific effector cells in NOR mice appear to be under the control of CD4+CD25+ regulatory T cells, confirming the importance of regulatory cells in the control of autoimmune diabetes.  相似文献   

17.
IL-2 contributes to the production, function, and homeostasis of CD4+CD25+ T(reg) cells. However, it remains uncertain whether IL-2 is essential for the development of T(reg) cells in the thymus, their homeostasis in the periphery, or both. The present study was undertaken to investigate the contribution of IL-2 during thymic T(reg) cell development and its maintenance in peripheral immune tissue. Relying on genetic mouse models where IL-2R signaling was either completely blocked or selectively inhibited in peripheral CD4+CD25+ T(reg) cells, we show that the IL-2/IL-2R interaction is active in the thymus at the earliest stage of the development of T(reg) cells to promote their expansion and to up-regulate Foxp3 and CD25 to normal levels. Furthermore, CD4+CD25+Foxp3+ T(reg) cells with impaired IL-2-induced signaling persist in the periphery and control autoimmunity without constant thymic output. These peripheral T(reg) cells with poor responsiveness to IL-2 exhibited slower growth and extended survival in vivo, somewhat lower suppressive activity, and poor IL-2-dependent survival in vitro. Mixed thymic and bone marrow chimeric mice showed that wild-type-derived T(reg) cells were substantially more effective in populating peripheral immune tissue than T(reg) cells with impaired IL-2 signaling. Collectively, these data support the notion that normally IL-2 is a dominant mechanism controlling the number of thymic and peripheral T(reg) cells.  相似文献   

18.
Naturally occurring CD4(+)CD25(+) regulatory T (nTreg) cells are essential for maintaining T cell tolerance to self Ags. We show that discrimination of human Treg from effector CD4(+)CD25(+) non-nTreg cells and their selective survival and proliferation can now be achieved using rapamycin (sirolimus). Human purified CD4(+)CD25(high) T cell subsets stimulated via TCR and CD28 or by IL-2 survived and expanded up to 40-fold in the presence of 1 nM rapamycin, while CD4(+)CD25(low) or CD4(+)CD25(-) T cells did not. The expanding pure populations of CD4(+)CD25(high) T cells were resistant to rapamycin-accelerated apoptosis. In contrast, proliferation of CD4(+)CD25(-) T cells was blocked by rapamycin, which induced their apoptosis. The rapamycin-expanded CD4(+)CD25(high) T cell populations retained a broad TCR repertoire and, like CD4(+) CD25(+) T cells freshly obtained from the peripheral circulation, constitutively expressed CD25, Foxp3, CD62L, glucocorticoid-induced TNFR family related protein, CTLA-4, and CCR-7. The rapamycin-expanded T cells suppressed proliferation and effector functions of allogeneic or autologous CD4(+) and CD8(+) T cells in vitro. They equally suppressed Ag-specific and nonspecific responses. Our studies have defined ex vivo conditions for robust expansion of pure populations of human nTreg cells with potent suppressive activity. It is expected that the availability of this otherwise rare T cell subset for further studies will help define the molecular basis of Treg-mediated suppression in humans.  相似文献   

19.
Viruses are believed to contribute to the pathogenesis of autoimmune type 1A diabetes in humans. This pathogenic process can be modeled in the BBDR rat, which develops pancreatic insulitis and type 1A-like diabetes after infection with Kilham's rat virus (RV). The mechanism is unknown, but does not involve infection of the pancreatic islets. We first documented that RV infection of BBDR rats induces diabetes, whereas infection with its close homologue H-1 does not. Both viruses induced similar humoral and cellular immune responses in the host, but only RV also caused a decrease in splenic CD4(+)CD25(+) T cells in both BBDR rats and normal WF rats. Surprisingly, RV infection increased CD4(+)CD25(+) T cells in pancreatic lymph nodes of BBDR but not WF rats. This increase appeared to be due to the accumulation of nonproliferating CD4(+)CD25(+) T cells. The results imply that the reduction in splenic CD4(+)CD25(+) cells observed in RV-infected animals is virus specific, whereas the increase in pancreatic lymph node CD4(+)CD25(+) cells is both virus and rat strain specific. The data suggest that RV but not H-1 infection alters T cell regulation in BBDR rats and permits the expression of autoimmune diabetes. More generally, the results suggest a mechanism that could link an underlying genetic predisposition to environmental perturbation and transform a "regulated predisposition" into autoimmune diabetes, namely, failure to maintain regulatory CD4(+)CD25(+) T cell function.  相似文献   

20.
Regulatory T cells (Tregs), which are characterized by expression of CD4, CD25, and Foxp3, play a crucial role in the control of immune responses to both self and non-self Ags. To date, there are only limited data on their role in physiological and pathological hepatic immune responses. In this study, we examined the role of hepatic Tregs in immune-mediated liver injury by using the murine Con A-induced hepatitis model. Con A treatment was associated with an increased number of Foxp3(+) Tregs in liver but not in spleen. Moreover, the expression levels of Foxp3, CTLA-4, glucocorticoid-induced TNF receptor, as well as the frequency of CD103 of Tregs were increased after Con A injection, being significantly higher in liver than in spleen. Depleting CD25(+) cells aggravated liver injury, whereas adoptively transferring CD25(+) cells or Tregs reduced liver injury in Con A-treated recipients. Con A treatment induced elevated serum levels and hepatic mononuclear mRNA expressions of TGF-beta, which were reduced by Tregs depletion. In addition, anti-TGF-beta mAbs blocked the suppressive function of Tregs from Con A-treated mice in vitro. Finally, TGF-beta receptor II dominant-negative mice, whose T cells express a dominant negative form of TGFbetaRII and therefore cannot respond to TGF-beta, had a higher mortality rate and severer liver injury than normal mice injected with the same dose of Con A. These results indicate that CD4(+)CD25(+) Tregs play an important role in limiting the liver injury in Con A-induced hepatitis via a TGF-beta-dependent mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号