首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gliding bacterium Myxococcus xanthus aggregates to form spore-filled fruiting bodies when nutrients are limiting. Defective fruiting-body formation and sporulation result from mutations in the sasA locus, which encodes the wzm wzt wbgA (formerly rfbABC ) lipopolysaccharide (LPS) O-antigen biosynthesis genes. Mutants carrying these same sasA mutations are defective in social motility and form small glossy colonies. We report here that the developmental and motility phenotypes of four mutants each containing different Tn 5 insertions in LPS O-antigen biosynthesis genes are similar to those of the original sasA locus mutants. All of the LPS O-antigen mutants tested exhibited defective developmental aggregation and sporulated at only 0.02–15% of the wild-type level. In addition, all of the LPS O-antigen mutants were determined by genetic analyses to be wild type for adventurous motility and defective in social motility, indicating that the LPS O-antigen is necessary for normal development and social motility. The two previously identified cell-surface components required for social motility, type IV pili and the protein-associated polysaccharide material termed fibrils, were detected on the surfaces of all of the LPS O-antigen mutants. This indicates that LPS O-antigen is a third cell-surface component required for social motility.  相似文献   

2.
Myxococcus xanthus is a gram-negative soil bacterium that initiates a complex developmental program in response to starvation. A transposon insertion (Tn5-lac omega109) mutant with developmental deficiencies was isolated and characterized in this study. A strain containing this insertion mutation in an otherwise wild-type background showed delayed developmental aggregation for about 12 h and sporulated at 1-2% of the wild-type level. Tn5-lac omega109 was found to have disrupted the M. xanthus wbgB gene, which is located 2.1 kb downstream of the M. xanthus lipopolysacharide (LPS) O-antigen biosynthesis genes wzm wzt wbgA. The deduced polypeptide sequence of WbgB shares significant similarity with bacterial glycosyltransferases including M. xanthus WbgA. The wbgB::Tn5-lac omega109 mutant was found to be defective in LPS O-antigen synthesis by immunochemical analysis. Further mutational analysis indicated that the defects of the wbgB::Tn5-lac omega109 mutant were not the result of polar effects on downstream genes. Various motility assays demonstrated that the Tn5-lac omega109 mutation affected both social (S) and adventurous (A) gliding motility of M. xanthus cells. The pleiotrophic effects of wbgB mutations indicate the importance of LPS O-antigen biosynthesis for various cellular functions in M. xanthus.  相似文献   

3.
L Plamann  Y Li  B Cantwell    J Mayor 《Journal of bacteriology》1995,177(8):2014-2020
The Myxococcus xanthus asgA gene is one of three known genes necessary for the production of extracellular A-signal, a cell density signal required early in fruiting body development. We determined the DNA sequence of asgA. The deduced 385-amino-acid sequence of AsgA was found to contain two domains: one homologous to the receiver domain of response regulators and the other homologous to the transmitter domain of histidine protein kinases. A kanamycin resistance (Kmr) gene was inserted at various positions within or near the asgA gene to determine the null phenotype. Those strains with the Kmr gene inserted upstream or downstream of asgA are able to form fruiting bodies, while strains containing the Kmr gene inserted within asgA fail to develop. The nature and location of the asgA476 mutation were determined. This mutation causes a leucine-to-proline substitution within a conserved stretch of hydrophobic residues in the N-terminal receiver domain. Cells containing the insertion within asgA and cells containing the asgA476 substitution have similar phenotypes with respect to development, colony color, and expression of an asg-dependent gene. An analysis of expression of a translational asgA-lacZ fusion confirms that asgA is expressed during growth and early development. Finally, we propose that AsgA functions within a signal transduction pathway that is required to sense starvation and to respond with the production of extracellular A-signal.  相似文献   

4.
Abstract Progression through early Myxococcus xanthus multicellular fruiting body development requires the generation of and response to extracellular A signal. Extracellular A signal is a specific set of amino acids at an extracellular concentration greater than 10 μM. It functions as a cell density signal during starvation that allows the cells to sense that a minimal cell density has been reached and development can proceed. The generation of extracellular A signal requires the products of three asg genes. They have recently been identified as AsgA, a fused two-component histidine protein kinase and response regulator; AsgB, a putative DNA-binding protein; and AsgC, the M. xanthus major sigma factor. Other elements of the A signaling pathway map to the sasB locus and appear to be A signal transducers. These elements are regulators of the earliest A signal-dependent gene, whose promoter is a member of the sigma-54 family. Continued study of the A signaling pathway is expected to identify additional components of this network required for the complex behavioural response of fruiting body formation.  相似文献   

5.
Type IV pilus genes have been shown to be required for social gliding motility in Myxococcus xanthus . We report the discovery of four additional pil genes: pilD , a homologue of type IV prepilin leader peptidases; and pilG , pilH and pilI , which have no known homologues in other type IV pilus systems. pilH encodes an ATP-binding cassette (ABC) transporter homologue, the first such homologue to be required for the biogenesis of any bacterial pilus type. pilG and pilI are co-transcribed with pilH and appear to be functionally related to pilH . Null mutants of pilG , pilH and pilI all lack social motility, are deficient in pilus production, have elevated sporulation efficiencies and display similar developmental abnormalities. In addition, all three mutations reduced the amount of PilA found in the supernatant after cells were sedimented from liquid culture. We suggest that the products of these three genes form a single ABC exporter complex, in which pilI is an integral membrane protein with membrane-spanning domains, and pilG is an accessory factor. The complex may participate in pilus assembly and/or the export of PilA pilin.  相似文献   

6.
Social (S)-motility in Myxococcus xanthus is a flagellum-independent gliding motility system that allows bacteria to move in groups on solid surfaces. S-motility has been shown to require type IV pili (TFP), exopolysaccharide (EPS; a component of fibrils) and lipopolysaccharide (LPS). Previously, information concerning EPS biogenesis in M. xanthus was lacking. In this study, we screened 5000 randomly mutagenized colonies for defects in S-motility and EPS and identified two genetic regions essential for EPS biogenesis: the EPS synthesis (eps) region and the EPS-associated (eas) region. Mutants with insertions in the eps and eas regions were defective in S-motility and fruiting body formation. These mutants failed to bind the dye calcofluor white, indicating that they lacked EPS; however, they retained normal TFP and LPS. Analysis of the eps locus showed several open reading frames (ORFs) that encode homologues to glycosyltransferases, glucanases and EPS transporters as well as regulatory proteins; the eas locus contains two ORFs: one exhibits homology to hypothetical proteins with a conserved domain of unknown function and the other displays no apparent homology to other proteins in the database. Further genetic mutagenesis analysis indicates that the whole eps region is involved in the biosynthesis of fibrils and fibril EPS. The operon at the proximal end of the eps region was analysed by generating in-frame deletion mutations. These mutants showed varying degrees of defects in the bacterium's ability to produce EPS or perform EPS-related functions, confirming the involvement of these genes in M. xanthus EPS biogenesis.  相似文献   

7.
A gene, mokA, encoding a protein with similarities to histidine kinase-response regulator hybrid sensor, was cloned from a Myxococcus xanthus genomic library. The predicted mokA gene product was found to contain three domains: an amino-terminal input domain, a central transmitter domain, and a carboxy-terminal receiver domain. mokA mutants placed under starvation conditions exhibited reduced sporulation. Mutation of mokA also caused marked growth retardation at high osmolarity. These results indicated that M. xanthus MokA is likely a transmembrane sensor that is required for development and osmotic tolerance. The putative function of MokA is similar to that of the hybrid histidine kinase, DokA, of the eukaryotic slime mold Dictyostelium discoideum.  相似文献   

8.
COMATOSE (CTS) encodes a peroxisomal ATP-binding cassette transporter required not only for beta-oxidation of storage lipids during germination and establishment, but also for biosynthesis of jasmonic acid and conversion of indole butyric acid to indole acetic acid. cts mutants exhibited reduced fertilization, which was rescued by genetic complementation, but not by exogenous application of jasmonic acid or indole acetic acid. Reduced fertilization was also observed in thiolase (kat2-1) and peroxisomal acyl-Coenzyme A synthetase mutants (lacs6-1,lacs7-1), indicating a general role for beta-oxidation in fertility. Genetic analysis revealed reduced male transmission of cts alleles and both cts pollen germination and tube growth in vitro were impaired in the absence of an exogenous carbon source. Aniline blue staining of pollinated pistils demonstrated that pollen tube growth was affected only when both parents bore the cts mutation, indicating that expression of CTS in either male or female tissues was sufficient to support pollen tube growth in vivo. Accordingly, abundant peroxisomes were detected in a range of maternal tissues. Although gamma-aminobutyric acid levels were reduced in flowers of cts mutants, they were unchanged in kat2-1, suggesting that alterations in gamma-aminobutyric acid catabolism do not contribute to the reduced fertility phenotype through altered pollen tube targeting. Taken together, our data support an important role for beta-oxidation in fertility in Arabidopsis (Arabidopsis thaliana) and suggest that this pathway could play a role in the mobilization of lipids in both pollen and female tissues.  相似文献   

9.
10.
An insertion in the rasA gene entirely blocked developmental aggregation and sporulation in Myxococcus xanthus while also reducing swarm expansion on a 0.3% agar surface. Data presented here demonstrate that rasA is required for extracellular fibril formation and social gliding motility.  相似文献   

11.
Initiation of Myxococcus xanthus multicellular development requires integration of information concerning the cells' nutrient status and density. A gain-of-function mutation, sasB7, that bypasses both the starvation and high cell density requirements for developmental expression of the 4521 reporter gene, maps to the sasS gene. The wild-type sasS gene was cloned and sequenced. This gene is predicted to encode a sensor histidine protein kinase that appears to be a key element in the transduction of starvation and cell density inputs. The sasS null mutants express 4521 at a basal level, form defective fruiting bodies, and exhibit reduced sporulation efficiencies. These data indicate that the wild-type sasS gene product functions as a positive regulator of 4521 expression and participates in M. xanthus development. The N terminus of SasS is predicted to contain two transmembrane domains that would locate the protein to the cytoplasmic membrane. The sasB7 mutation, an E139K missense mutation, maps to the predicted N-terminal periplasmic region. The C terminus of SasS contains all of the conserved residues typical of the sensor histidine protein kinases. SasS is predicted to be the sensor protein in a two-component system that integrates information required for M. xanthus developmental gene expression.  相似文献   

12.
The mlpA gene encoding a 236-residue polypeptide has been identified immediately downstream of the oar gene of Myxococcus xanthus (M. Martinez-Canamero, J. Munoz-Dorado, E. Farez-Vidal, M. Inouye, and S. Inouye, J. Bacteriol. 175:4756-4763, 1993). The amino-terminal 21 residues of MlpA encode a typical prokaryotic signal sequence with a putative lipoprotein cleavage site. When expressed in Escherichia coli in the presence of [2-3H]glycerol, 3H-labeled MlpA had a molecular mass of 33 kDa and was found to be associated with the membrane fraction. Globomycin, an inhibitor of signal peptidase II, caused a shift in the mobility of E. coli-expressed MlpA to 35 kDa. Subsequently, a mlpA disruption strain (oar+) was constructed and found to have delayed fruiting body formation (by approximately 36 h), with significantly larger fruiting bodies being produced compared with those of the wild-type strain. Nevertheless, spore yields for the two strains were identical after 120 h of development. These data indicate that MlpA, the lipoprotein identified in M. xanthus, is required for normal fruiting body formation.  相似文献   

13.
Y Kimura  R Sato  K Mimura    M Sato 《Journal of bacteriology》1997,179(22):7098-7102
A dcm-1 mutant, obtained by transposon mutagenesis of Myxococcus xanthus, could aggregate and form mounds but was unable to sporulate under nutrient starvation. A sequence analysis of the site of insertion of the transposon showed that the insertion lies within the 3' end of a 1,572-bp open reading frame (ORF) designated the M. xanthus pccB ORF. The wild-type form of the M. xanthus pccB gene, obtained from a lambdaEMBL library of M. xanthus, shows extensive similarity to a beta subunit of propionyl coenzyme A (CoA) carboxylase, an alpha subunit of methylmalonyl-CoA decarboxylase, and a 12S subunit of transcarboxylase. In enzyme assays, extracts of the dcm-1 mutant were deficient in propionyl-CoA carboxylase activity. This enzyme catalyzes the ATP-dependent carboxylation of propionyl-CoA to yield methylmalonyl-CoA. The methylmalonyl-CoA rescued the dcm-1 mutant fruiting body and spore development. During development, the dcm-1 mutant cells also had reduced levels of long-chain fatty acids (C16 to C18) compared to wild-type cells.  相似文献   

14.
15.
Myxococous xanthus cells can glide both as individual cells, dependent on A dventurous motility (A motility), and as groups of cells, dependent upon S ocial motility (S motility), Tn5-lac mutagenesis was used to generate 16 new A- and nine new S- mutations. In contrast with previous results, we find that subsets of A- mutants are defective in fruiting body morphogenesis and/or myxospore differentiation. All S- mutants are defective in fruiting body morphogenesis, consistent with previous results. Whereas some S- mutants produce a wild-type complement of spores, others are defective in the differentiation of myxospores. Therefore, a subset of the A genes and all of the S genes are critical for fruiting body morphogenesis. Subsets of both A and S genes are essential for sporulation. Three S::Tn5–lac insertions result in surprising phenotypes. Colonies of two S- mutants glide on ‘swim’ (0.35% agar) plates to form fractal patterns. These S- mutants are the first examples of a bacterium in which mutations result in fractal patterns of colonial spreading. An otherwise wild-type strain with one S- insertion resembles the frz- sglA1- mutants upon development, suggesting that this S- gene defines a new chemotaxis component in M. xanthus.  相似文献   

16.
In response to starvation, Myxococcus xanthus undergoes a multicellular developmental process that produces a dome-shaped fruiting body structure filled with differentiated cells called myxospores. Two insertion mutants that block the final stages of fruiting body morphogenesis and reduce sporulation efficiency were isolated and characterized. DNA sequence analysis revealed that the chromosomal insertions are located in open reading frames ORF2 and asgE, which are separated by 68 bp. The sporulation defect of cells carrying the asgE insertion can be rescued phenotypically when co-developed with wild-type cells, whereas the sporulation efficiency of cells carrying the ORF2 insertion was not improved when mixed with wild-type cells. Thus, the asgE insertion mutant appears to belong to a class of developmental mutants that are unable to produce cell-cell signals required for M. xanthus development, but they retain the ability to respond to them when they are provided by wild-type cells. Several lines of evidence indicate that asgE cells fail to produce normal levels of A-factor, a cell density signal. A-factor consists of a mixture of heat-stable amino acids and peptides, and at least two heat-labile extracellular proteases. The asgE mutant yielded about 10-fold less heat-labile A-factor and about twofold less heat-stable A-factor than wild-type cells, suggesting that the primary defect of asgE cells is in the production or release of heat-labile A-factor.  相似文献   

17.
The C-signal is a morphogen that controls the assembly of fruiting bodies and the differentiation of myxospores. Production of this signal, which is encoded by the csgA gene, is regulated by the act operon of four genes that are co-transcribed from the same start site. The act A and act B genes regulate the maximum level of the C-signal, which never rises above one-quarter of the maximum wild-type level of CsgA protein in null mutants of either gene. The act A and act B mutants have the same developmental phenotype: both aggregate, neither sporulates, both prolong rippling. By sequence homology, act A encodes a response regulator, and act B encodes a sigma-54 activator protein of the NTRC class. The similar phenotypes of act A and act B deletion mutants suggest that the two gene products are part of the same signal transduction pathway. That pathway responds to C-signal and also regulates the production of CsgA protein, thus creating a positive feedback loop. The act C and act D genes regulate the time pattern of CsgA production, while achieving the same maximum level. An act C null mutant raises CsgA production 15 h earlier than the wild type, whereas an act D null mutant does so 6 h later than wild type. The loop explains how the C-signal rises continuously from early development to a peak at the time of sporulation, and the act genes govern the time course of that rise.  相似文献   

18.
19.
CsgA mutants of Myxococcus xanthus appear to be defective in producing an extracellular molecule essential for the developmental behaviors of this bacterium. The csgA gene encodes a 17.7-kilodalton polypeptide whose function and cellular location were investigated with immunological probes. Large quantities of the CsgA gene product were obtained from a lacZ-csgA translational gene fusion expressed in Escherichia coli. The chimeric 21-kilodalton protein was purified by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Affinity-purified polyclonal antibodies raised against the fusion protein were used to determine the cellular location of the native CsgA protein by colloidal gold labeling and transmission electron microscopy. Between 1,100 and 2,200 extracellular molecules of CsgA per developing M. xanthus cell were detected, most of which were associated with the extracellular matrix. The anti-CsgA antibodies inhibited wild-type development unless they were first neutralized with the fusion protein. Together these results suggest that the CsgA gene product has an essential, extracellular function during development, possibly as a pheromone.  相似文献   

20.
Myxococcus xanthus is a developmental gram-negative bacterium which forms multicellular fruiting bodies upon nutrient starvation. This bacterium was found to contain a 115-kDa membrane protein which separated with the inner membrane fraction by sucrose density gradient centrifugation. The gene for this protein was cloned, and its DNA sequence was determined. The deduced amino acid sequence consists of 1,061 residues. This protein contains a putative signal sequence and many short segments, found scattered throughout the entire protein, that have sequence similarities with OmpA, a major outer membrane protein of Escherichia coli. Thus, the gene was designated oar (OmpA-related protein). A second open reading frame was found 36 bases downstream of the oar termination codon. This open reading frame encodes a protein of 236 residues and contains a putative lipoprotein signal sequence. An aor disruption mutation (delta oar) showed no effect on vegetative growth but caused abnormal morphogenesis during development and reduced myxospore formation. When examined with a light microscope, delta oar cells were unable to aggregate on developmental agar, indicating that Oar is required for cellular adhesiveness during development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号