首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Increased oxidative stress and impaired antioxidant defense mechanism are important factors in the pathogenesis and progression of diabetes mellitus and other oxidant-related diseases. The present study was undertaken to evaluate the possible protective effects of S-allyl cysteine (SAC) against oxidative stress in streptozotocin (STZ) induced diabetic rats. SAC was administered orally for 45 days to control and STZ induced diabetic rats. The effects of SAC on glucose, plasma insulin, thiobarbituric acid reactive substances (TBARS), hydroperoxide, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH), oxidized glutathione (GSSG) and GSH/GSSG ratio were studied. The levels of glucose, TBARS, hydroperoxide, and GSSG were increased significantly whereas the levels of plasma insulin, reduced glutathione, GSH/GSSG ratio, superoxide dismutase, catalase and GPx were decreased in STZ induced diabetic rats. Administration of SAC to diabetic rats showed a decrease in plasma glucose, TBARS, hydroperoxide and GSSG. In addition, the levels of plasma insulin, superoxide dismutase, catalase, GPx and reduced glutathione (GSH) were increased in SAC treated diabetic rats. The above findings were supported by histological observations of the liver and kidney. The antioxidant effect of SAC was compared with glyclazide, a well-known antioxidant and antihyperglycemic drug. The present study indicates that the SAC possesses a significant favorable effect on antioxidant defense system in addition to its antidiabetic effect.  相似文献   

2.
Administration of B. diffusa leaf extract (BLEt; 200 mg/kg) for 4 weeks resulted in a significant reduction in thiobarbutric acid reactive substances and hydroperoxides, with a significant increase in reduced glutathione, superoxide dismutase, catalase, glutathione peroxidase and glutathione--S-transferase in liver and kidney of alloxan induced diabetic rats. The results suggest that BLEt has remarkable antidiabetic activity and can improve antioxidant status in alloxan induced diabetic rats.  相似文献   

3.
Knowing that curcumin has low bioavailability when administered orally, and that piperine has bioenhancer activity by inhibition of hepatic and intestinal biotransformation processes, the aim of this study was to investigate the antidiabetic and antioxidant activities of curcumin (90 mg/kg) and piperine (20 or 40 mg/kg), alone or co-administered, incorporated in yoghurt, in streptozotocin (STZ)-diabetic rats. The treatment for 45 days of STZ-diabetic rats with curcumin-enriched yoghurt improved all parameters altered in this experimental model of diabetes: the body weight was increased in association with the weight of skeletal muscles and white adipose tissues; the progressive increase in the glycemia levels was avoided, as well as in the glycosuria, urinary urea, dyslipidemia, and markers of liver (alanine and aspartate aminotransferases and alkaline phosphatase) and kidney (urinary protein) dysfunction; the hepatic oxidative stress was decreased, since the activities of the antioxidant enzymes superoxide dismutase, catalase and gluthatione peroxidase were increased, and the levels of malondialdehyde and protein carbonyl groups were reduced. The dose of 20 mg/kg piperine also showed antidiabetic and antioxidant activities. The treatment of STZ-diabetic rats with both curcumin and 20 mg/kg piperine in yoghurt did not change the antidiabetic and antioxidant activities of curcumin; notably, the treatment with both curcumin and 40 mg/kg piperine abrogated the beneficial effects of curcumin. In addition, the alanine aminotransferase levels were further increased in diabetic rats treated with curcumin and 40 mg/kg piperine in comparison with untreated diabetic rats. These findings support that the co-administration of curcumin with a bioenhancer did not bring any advantage to the curcumin effects, at least about the antidiabetic and antioxidant activities, which could be related to changes on its biotransformation.  相似文献   

4.
Oxidative stress has been suggested as a contributory factor in development and complication of diabetes. The aim of the study was to evaluate the effect of diosmin (DS) in oxidative stress in streptozotocin-nicotinamide (STZ-NA)-induced diabetic rats by measuring the lipid peroxidation (LPO) as well as the ameliorative properties. Experimental diabetes was induced by a single intraperitoneal (i.p) injection of STZ (45 mg/kg body weight (b.w.)) dissolved in 0.1 mol/L citrate buffer (pH 4.5), 15 min after the i.p administration of NA (110 mg/kg b.w.). Diabetic rats exhibited increased plasma glucose with significant decrease in plasma insulin levels. The activities of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and the levels of low-molecular weight antioxidants vitamin C, vitamin E and reduced glutathione (GSH) were decreased while increases in the levels of LPO markers were observed in liver and kidney tissues of diabetic control rats as compared to normal control rats. Oral treatment with DS (100mg/kg/day) for a period of 45 days showed significant ameliorative effects on all the biochemical parameters studied. Biochemical findings were supported by histological studies. These results indicated that DS has potential ameliorative effects in addition to its antidiabetic effect in type 2 diabetic rats.  相似文献   

5.
Curcumin is the most active component of turmeric. It is believed that curcumin is a potent antioxidant and anti-inflammatory agent. Tetrahydrocurcumin (THC) is one of the major metabolites of curcumin, and exhibits many of the same physiological and pharmacological activities as curcumin and, in some systems, may exert greater antioxidant activity than curcumin. Using circulating erythrocytes as the cellular mode, the insulin-binding effect of THC and curcumin was investigated. Streptozotocin (STZ)-nicotinamide-induced male Wistar rats were used as the experimental models. THC (80 mg/kg body weight) was administered orally for 45 days. The effect of THC on blood glucose, plasma insulin and insulin binding to its receptor on the cell membrane of erythrocytes were studied. Mean specific binding of insulin was significantly lowered in diabetic rats with a decrease in plasma insulin. This was due to a significant decrease in mean insulin receptors. Erythrocytes from diabetic rats showed a decreased ability for insulin-receptor binding when compared with THC-treated diabetic rats. Scatchard analysis demonstrated that the decrease in insulin binding was accounted for by a decrease in insulin receptor sites per cell, with erythrocytes of diabetic rats having less insulin receptor sites per cell than THC-treated rats. High affinity (K d1), low affinity (K d2) and kinetic analyses revealed an increase in the average receptor affinity of erythrocytes from THC-treated rats compared with those of diabetic rats. These results suggest that acute alteration of the insulin receptor on the membranes of erythrocytes occurred in diabetic rats. Treatment with THC significantly improved specific insulin binding to the receptors, with receptor numbers and affinity binding reaching near-normal levels. Our study suggests the mechanism by which THC increases the number of total cellular insulin binding sites resulting in a significant increase in plasma insulin. The effect of THC is more prominent than that of curcumin.  相似文献   

6.
The present study was to evaluate the effects of 20-OH ecdysone on hyperglycemia mediated oxidative stress in streptozotocin induced diabetic rats. Diabetes was induced in experimental rats by single intraperitoneal injection of STZ (45 mg/kg b.w.) dissolved in 0.1 mol/L citrate buffer (pH 4.5). Diabetic rats exhibited increased blood glucose with significant decrease in plasma insulin levels. The activities of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and the levels of non-enzymic antioxidants vitamin C, vitamin E and reduced glutathione (GSH) were decreased while increases in the levels of LPO markers were observed in liver and kidney tissues of diabetic rats. Moreover, hepatic markers (aspartate aminotransferase and alanine aminotransferase) and renal markers (urea, creatinine) were significantly increased in diabetic rats as compared to control rats. Upon treatment with 20-OH ecdysone to diabetic rats showed significant ameliorative effects on all the biochemical parameters studied. Biochemical findings were supported by histological studies. These results indicated that 20-OH ecdysone exerts a protective action on pancreatic beta cell function and overcomes oxidative stress through its hypoglycemic potential. The effect produced by the 20-OH ecdysone on various parameters was comparable to that of glibenclamide – an antidiabetic drug.  相似文献   

7.
Abstract

Objective

The aim of the present study was to evaluate the protective effect of kaempferol against oxidative stress in streptozotocin (STZ)-induced diabetic rats.

Methods

Diabetes was induced in male, adult albino rats of the Wistar strain, by intraperitoneal administration of STZ (40 mg/kg body weight (BW)). Kaempferol (100 mg/kg BW) or glibenclamide (600 µg/kg BW) was administered orally once daily for 45 days to normal and STZ-induced diabetic rats.

Results

The STZ-induced diabetic rats showed significantly increased levels of plasma glucose, thiobarbituric acid reactive substances, lipid hydroperoxides, and conjugated dienes in plasma, liver, kidney, and heart whereas they showed significantly decreased level of plasma insulin. The levels of non-enzymic antioxidants (vitamin C, vitamin E, reduced glutathione) in plasma, liver, kidney, and heart and the activities of enzymatic antioxidants (superoxide dismutase, catalase, glutathione peroxidase, and glutathione-S-transferase) in liver, kidney, and heart were significantly decreased in diabetic rats. Administration of kaempferol to diabetic rats was showed brought back in plasma glucose, insulin, lipid peroxidation products, enzymatic, and non-enzymatic antioxidants to near normal.

Conclusion

The present study indicates that kaempferol has a good antioxidant property, as evidenced by its increase of antioxidant status and decrease of lipid peroxidation markers, thus providing protection from the risks of diabetic complications.  相似文献   

8.
Quercitrin, a bio flavonoid, was investigated for its antioxidant potential in streptozotocin (STZ)-induced diabetic rats. Rats were induced diabetic by a single intraperitoneal injection of streptozotocin (50 mg/kg). The levels of fasting plasma glucose and insulin were estimated. Lipid peroxidative products and antioxidants were estimated in pancreas, liver, and kidney. Histopathological studies were carried out in these tissues. A significant (P < 0.05) increase in the levels of fasting plasma glucose and lipid peroxidative products (thiobarbituric acid reactive substances and lipid hydroperoxides) and a significant (P < 0.05) decrease in plasma insulin, enzymic antioxidants (superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase), and nonenzymic antioxidants (reduced glutathione, vitamin C, and E) in diabetic pancreas, liver, and kidney were observed. Oral administration of quercitrin (30 mg/kg) for a period of 30 days significantly (P < 0.05) decreased fasting plasma glucose, increased insulin levels, and improved the antioxidant status of diabetic rats by decreasing lipid peroxidative products and increasing enzymic and nonenzymic antioxidants. Normal rats treated with quercitrin (30 mg/kg) showed no significant (P < 0.05) effect on any of the parameters studied. Histopathological studies of the pancreas, liver, and kidney showed the protective role of quercitrin. Thus, our study clearly shows that quercitrin has antioxidant effect in STZ-induced experimental diabetes.  相似文献   

9.
Oral administration of ethanol extract of N. sativa seeds (300 mg/kg body weight/day) to streptozotocin induced diabetic rats for 30 days significantly reduced the elevated levels of blood glucose, lipids, plasma insulin and improved altered levels of lipid peroxidation products (TBARS and hydroperoxides) and antioxidant enzymes like catalase, superoxide dismutase, reduced glutathione and glutathione peroxidase in liver and kidney. The results confirm the antidiabetic activity of N. sativa seeds extract and suggest that because of its antioxidant effects its administration may be useful in controlling the diabetic complications in experimental diabetic rats.  相似文献   

10.
11.
12.
In the present study, the protective effect of curcumin against sodium fluoride-induced nephrotoxicity was evaluated in rats. Renal injury was induced by daily administration of 600 ppm sodium fluoride in drinking water for 1 week. One week before the administration of fluoride, the animals selected as study group were given curcumin (10 and 20 mg/kg body weight, intraperitoneally). After 1 week, lipid peroxidation level, activities of superoxide dismutase, catalase, and level of glutathione in kidney homogenate were measured. Blood serum samples were examined for creatinine, serum urea, and blood urea nitrogen levels. Another group of rats received vitamin C (10 mg/kg) as standard antioxidant. The results show that curcumin and vitamin C treatment prior to fluoride administration normalized the levels of serum creatinine, serum urea, and blood urea nitrogen. Moreover, curcumin and vitamin C administrations prevented the antioxidant enzyme decreasing and lipid peroxidation levels imbalance. In conclusion, curcumin treatment at the doses of 10 and 20 mg/kg (intraperitoneally) showed significant nephroprotective effects.  相似文献   

13.
Heart failure (HF) is one of diabetic complications. This work was designed to investigate the possible modulatory effect of curcumin against streptozotocin‐induced diabetes and consequently HF in rats. Rats were divided into control, vehicle‐treated, curcumin‐treated, diabetic‐untreated, diabetic curcumin–treated, and diabetic glibenclamide–treated groups. Animal treatment was started 5 days after induction of diabetes and extended for 6 weeks. Diabetic rats showed significant increase in serum glucose, triglycerides, total cholesterol, low‐density lipoprotein‐cholesterol, very low density lipoprotein‐cholesterol, nitric oxide, lactate dehydrogenase, cardiac malondialdehyde, plasma levels of interleukin‐6, and tumor necrosis factor‐alpha, and also showed marked decrease in serum high‐density lipoprotein‐cholesterol, cardiac reduced glutathione, and cardiac antioxidant enzymes (catalase, superoxide dismutase, and glutathione‐S‐transferase). However, curcumin or glibenclamide treatment significantly mitigated such changes. In conclusion, curcumin has a beneficial therapeutic effect in diabetes‐induced HF, an effect that might be attributable to its antioxidant and suppressive activity on cytokines.  相似文献   

14.
Rutin, a polyphenolic flavonoid, was investigated for its antioxidant potential in streptozotocin (STZ)-induced diabetic rats. Rats were rendered diabetic by a single intraperitoneal injection of streptozotocin (50 mg/kg). The levels of fasting plasma glucose and insulin were estimated. Lipid peroxidative products and antioxidants were estimated in liver, kidney and brain. Histopathological studies were carried out in these tissues. A significant (p < 0.05) increase in the levels of fasting plasma glucose, lipid peroxidative products (thiobarbituric acid reactive substances [TBARS] and lipid hydroperoxides [HP]) and a significant (p < 0.05) decrease in plasma insulin, enzymic antioxidants (superoxide dismutase [SOD], catalase, glutathione peroxidase [GPx] and glutathione reductase [GRx]) and nonenzymic antioxidants (reduced glutathione [GSH], vitamin C and E) in diabetic liver, kidney and brain were observed. Oral administration of rutin (100 mg/kg) for a period of 45 days significantly (p < 0.05) decreased fasting plasma glucose, increased insulin levels and improved the antioxidant status of diabetic rats by decreasing lipid peroxidative products and increasing enzymic and nonenzymic antioxidants. Normal rats treated with rutin (100 mg/kg) showed no significant (p < 0.05) effect on any of the parameters studied. Histopathological studies of the liver, kidney and brain showed the protective role of rutin. Thus, our study clearly shows that rutin has antioxidant effect in STZ-induced experimental diabetes.  相似文献   

15.
Succinic acid monoethyl ester (EMS) was recently proposed as an insulinotropic agent for the treatment of non-insulin dependent diabetes mellitus. In the present study the effect of EMS and metformin on erythrocyte membrane bound enzymes and antioxidants activity in plasma and erythrocytes of streptozotocin-nicotinamide induced type 2 diabeteic model was investigated. Succinic acid monoethyl ester was administered intraperitonially for 30 days to control and diabetic rats. The effect of EMS on glucose, insulin, hemoglobin, glycosylated hemoglobin, TBARS, hydroperoxide, superoxide dismutase (SOD), catalase (CAT), glutathione peroxide (Gpx), glutathione-S-transferase (GST), vitamins C and E, reduced glutathione (GSH) and membrane bound enzymes were studied. The effect of EMS was compared with metformin, a reference drug. The levels of glucose, glycosylated hemoglobin, TBARS, hyderoperoxide, and vitamin E were increased significantly whereas the level of insulin and hemoglobin, as well as antioxidants (SOD, CAT, Gpx, GST, vitamin C and GSH) membrane bound total ATPase, Na(+)/K(+)-ATPase, Ca(2+)-ATPase and Mg(2+)-ATPase were decreased significantly in streptozotocin-nicotinamide diabetic rats. Administration of EMS to diabetic rats showed a decrease in the levels of glucose, glycosylated hemoglobin, lipid peroxidation markers and vitamin E. In addition the levels of insulin, hemoglobin, enzymic antioxidants, vitamin C, and GSH and the activities of membrane bound enzymes also were increased in EMS and metformin treated diabetic rats. The present study indicates that the EMS possesses a significant beneficial effect on erythrocyte membrane bound enzymes and antioxidants defense system in addition to its antidiabetic effect.  相似文献   

16.
Oxidative stress is currently suggested to play as a pathogenesis in the development of diabetes mellitus. The present study was designed to evaluate the effect of Casearia esculenta root extract on oxidative stress-related parameters in streptozotocin (STZ) -induced diabetic rats. Antidiabetic treatment with C. esculenta root extract (45 days) significantly (p < .05) decreased thiobarbituric acid reactive substances (TBARS) and remarkably improved tissue antioxidants status such as glutathione (GSH), ascorbic acid (vitamin C) and alpha-tocopherol (vitamin E) in liver and kidney of STZ-diabetic rats. In diabetics rats, the activities of enzymatic antioxidants such as superoxide dismutase (SOD, EC 1.11.1.1) catalase (CAT, EC 1.11.1.6) were decreased significantly while the activity of glutathione peroxidase (GPx, EC 1.11.1.9) decreased in the liver and increased in the kidney. The treatment of diabetic rats with C. esculenta root extract over a 45-day period returned these levels close to normal. These results suggest that C. esculenta root extracts exhibit antiperoxidative as well as antioxidant effects in STZ-induced diabetic rats.  相似文献   

17.
The present study was aimed to investigate the effect of thymoquinone (TQ) on pancreatic insulin levels, tissue antioxidant and lipid peroxidation (LPO) status in streptozotocin (STZ) nicotinamide (NA) induced diabetic rats. Diabetes was induced in experimental rats by a single intraperitoneal (i.p) injection of STZ (45 mg/kg b.w) dissolved in 0.1 mol/L citrate buffer (pH 4.5), 15 min after the i.p administration of NA (110 mg/kg b.w). Diabetic rats exhibited increased blood glucose with significant decrease in plasma insulin levels. The activities of antioxidant enzymes catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and the levels of low-molecular weight antioxidants Vitamin C, Vitamin E and reduced glutathione (GSH) were decreased while increases in the levels of lipid peroxidation markers were observed in liver and kidney tissues of diabetic control rats as compared to control rats. In addition, diabetic rats showed an obvious decrease in pancreatic insulin levels. Administration of TQ (80 mg/kg b.w) to diabetic rats for 45 days significantly reversed the damage associated with diabetes. Biochemical findings were supported by histological studies. These results indicated that TQ exerts a protective action on pancreatic beta cell function and overcomes oxidative stress through its antioxidant properties.  相似文献   

18.
Objective: To examine the effect of galangin on hyperglycemia-mediated oxidative stress in streptozotocin (STZ)-induced diabetic rats.

Methods: Diabetes was induced by intraperitoneal administration of low-dose STZ (40?mg/kg body weight (BW)) into male albino Wistar rats. Galangin (8?mg/kg BW) or glibenclamide (600?µg/kg BW) was given orally, once daily for 45 days to normal and STZ-induced diabetic rats.

Results: Diabetic rats showed significantly increased levels of plasma glucose, thiobarbituric acid reactive substances, lipid hydroperoxides, and conjugated dienes. The levels of insulin and non-enzymatic antioxidants (vitamin C, vitamin E, reduced glutathione) and the activity of enzymatic antioxidants (superoxide dismutase, catalase, glutathione peroxidase, and glutathione-S-transferase (GST)) were decreased significantly in diabetic control rats. These altered plasma glucose, insulin, lipid peroxidation products, enzymatic and non-enzymatic antioxidants ions were reverted to near-normal level after the administration of galangin and glibenclamide.

Conclusion: The present study shows that galangin decreased oxidative stress and increased antioxidant status in diabetic rats, which may be due to its antidiabetic and antioxidant potential.  相似文献   

19.
Oxidative damage has been suggested to be a contributory factor in the development and complications of diabetes. The antioxidant effect of an aqueous extract of Scoparia dulcis, an indigenous plant used in Ayurvedic medicine in India was studied in rats with streptozotocin-induced diabetes. Oral administration of Scoparia dulcis plant extract (SPEt) (200 mg/kg body weight) for 3 weeks resulted in a significant reduction in blood glucose and an increase in plasma insulin. The aqueous extract also resulted in decreased free radical formation in tissues (liver and kidney) studied. The decrease in thiobarbituric acid reactive substances (TBARS) and hydroperoxides (HPX) and increase in the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH) and glutathione-S-transferase (GST) clearly show the antioxidant properties of SPEt in addition to its antidiabetic effect. The effect of SPEt at 200 mg/kg body weight was better than glibenclamide, a reference drug.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号