首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A denaturing gradient gel electrophoresis (DGGE) method is described that detects even single base pair changes in mitochondrial DNA (mtDNA). In this method, restriction fragments of mtDNA are electrophoresed in a urea/formamide gradient gel at 60 degrees C. Migration distance of each mtDNA fragment in the gel depends on melting behavior which reflects base composition. Fragments are located by Southern blotting with specific mtDNA probes. With just four carefully chosen restriction enzymes and as little as 50-100 ng of mtDNA, the method covers almost the entire human mitochondrial genome. To demonstrate the method, human mtDNA was analyzed. In six normal individuals, DGGE revealed melting behavior polymorphisms (MBPs) in mtDNA fragments that were not detected by restriction fragment length polymorphism (RFLP) analysis in agarose gels. Another individual, shown to have a melting behavior polymorphism in the cytochrome b coding region, was studied in detail. By mapping, the mutation was deduced to lie between nt 14905 and 15370. The affected fragment was amplified by PCR and sequenced. Specific base changes were identified in the region predicted by the gel result. This method will be especially useful as a diagnostic tool in mitochondrial disease for rapid localization of mtDNA mutations to specific regions of the genome, but DGGE also could complement RFLP analysis as a more sensitive method to follow maternal lineage in human and animal populations in a variety of research fields.  相似文献   

2.
Fluorescent multiplex denaturing gradient gel electrophoresis (FMD) is a mutation screening technique designed to detect unknown as well as previously identified mutations. FMD constitutes a recent modification of the standard denaturing gradient gel electrophoresis (DGGE) technique, which combines multiplex PCR amplification of target DNA using fluorescently labeled primers with DGGE separation of the amplicon mixture, allowing immediate identification of sequence variants by wet gel scanning. FMD permits the simultaneous detection of small insertions, deletions and single nucleotide substitutions among multiple DNA fragments (up to 480 fragments) from 96 samples in parallel for each run. It increases output and reduces cost dramatically compared with classical DGGE, without sacrificing sensitivity and accuracy in detecting mutations. This protocol details an accurate, fast, nonradioactive and cost-effective way to screen the BRCA1 gene for mutations with high sensitivity, providing easily interpreted results. It may also be adapted to screen other target genes and/or used in large-scale epidemiological studies.  相似文献   

3.
The mitochondrial DNA (mtDNA) of two unrelated infants with lethal respiratory chain defects was studied using denaturing gradient gel analysis. This analysis revealed melting behavior differences suggesting a point mutation(s) in a restriction fragment containing the apocytochrome b and tRNA(thr) genes. Sequencing revealed that patient 1 had an A to G mutation at nt 15924 which is the last base pair of the anticodon stem adjacent to the anticodon loop of tRNA(thr). Patient 2 had an A to G mutation at nt 15923 which is the last base of the anticodon loop. The results suggest that mtDNA mutations affecting the anticodon loop structure of tRNA(thr) cause mitochondrial disease that is fatal in infancy.  相似文献   

4.
The need for rapid analysis of sequence variations in PCR fragments of the same length is increasing in medical diagnostics and environmental studies. Therefore a modified denaturing gradient gel electrophoresis (DGGE) method was developed in which mixed PCR fragments of 1,500 bp could be analysed on a conventional DNA sequencing gel apparatus. In addition, PCR primers without long GC-clamps could be used to amplify the target genes. © Rapid Science Ltd. 1998  相似文献   

5.
A method involving denaturing gradient gel electrophoresis (DGGE) was developed to detect mitochondrial DNA (mtDNA) polymorphisms in human peripheral T-lymphocytes. DGGE analysis of 100- to 200-bp sequences of low melting temperature domains within the origin/membrane attachment site, NADH dehydrogenase subunit I, cytochrome c oxidase subunit I and two overlapping regions of the tRNA glycine/NADH dehydrogenase subunit III sequences was performed to identify sequence variants at these sites in a human B-cell line TK6 and T-cells from four individuals. A T → C transition at position 16519 in the origin/membrane attachment site in the TK6 cell line and the T-cells from one individual was found. A sequence variant resulting in a G → A transition at position 9966 in the tRNA glycine/NADH dehydrogenase III was identified in another individual. This method should be useful for the rapid screening of polymorphisms in a large number of samples. Received: 19 October 1995 / Revised: 26 March 1996  相似文献   

6.
Currently, there is a need for practical, accurate and cost-efficient tests to comprehensively scan human genes for disease-related DNA sequence variation. Two-dimensional gene scanning (TDGS) is a parallel mutation detection system, based on a combination of extensive multiplex PCR amplification (‘PCR megaplex’) and two-dimensional (2-D) DNA electrophoresis. The latter comprises a size separation step followed by denaturing gradient gel electrophoresis (DGGE), and allows single base pair changes to be distinguished among multiple DNA fragments in parallel. Here, we describe the rapid design of TDGS tests and its application to mutation identification in several large human cancer genes.  相似文献   

7.
Fingerprinting techniques provide access to understanding the ecology of uncultured microbial consortia. However, the application of current techniques such as terminal restriction fragment length polymorphism (T-RFLP) and denaturing gradient gel electrophoresis (DGGE) has been hindered due to their limitations in characterizing complex microbial communities. This is due to that different populations possibly share the same terminal restriction fragments (T-RFs) and DNA fragments may co-migrate on DGGE gels. To overcome these limitations, a new approach was developed to separate terminal restriction fragments (T-RFs) of 16S rRNA genes on a two-dimensional gel (T-RFs-2D). T-RFs-2D involves restriction digestion of terminal fluorescence-labelled PCR amplified 16S rRNA gene products and their high-resolution separation via a two-dimensional (2D) gel electrophoresis based on the T-RF fragment size (1(st) D) and its sequence composition on the denaturing gradient gel (2(nd) D). The sequence information of interested T-RFs on 2D gels can be obtained through serial poly(A) tailing reaction, PCR amplification and subsequent DNA sequencing. By employing the T-RFs-2D method, bacteria with MspI digested T-RF size of 436 (±1) bp and 514 (±1) bp were identified to be a Lysobacter sp. and a Dehalococcoides sp. in a polychlorinated biphenyl (PCB) dechlorinating culture. With the high resolution of 2D separation, T-RFs-2D separated 63 DNA fragments in a complex river-sediment microbial community, while traditional DGGE detected only 41 DNA fragments in the same sample. In all, T-RFs-2D has its advantage in obtaining sequence information of interested T-RFs and also in characterization of complex microbial communities.  相似文献   

8.
变性梯度凝胶电泳(DGGE)在微生物生态学中的应用   总被引:47,自引:3,他引:44  
由于从环境样品中分离和培养细菌的困难,分子生物学方法已发展用来描述和鉴定微生物群落。近年来基于DNA方法的群落分析得到了迅速的发展,如PCR扩增技术,克隆文库法,荧光原位杂交法,限制性酶切片段长度多态性法,变性和温度梯度凝胶电泳法。DGGE已广泛用于分析自然环境中细菌、蓝细菌,古菌、微微型真核生物、真核生物和病毒群落的生物多样性。这一技术能够提供群落中优势种类信息和同时分析多个样品。具有可重复和容易操作等特点,适合于调查种群的时空变化,并且可通过对切下的带进行序列分析或与特异性探针杂交分析鉴定群落成员。DGGE分析微生物群落的一般步骤如下:一是核酸的提取,二是16S rRNA,18S rRNA或功能基因如可容性甲烷加单氧酶羟化酶基因(mmoX)和氨加单氧酶a一亚单位基因(amoA)片段的扩增,三是通过DGGE分析PCR产物。DGGE使用具有化学变性剂梯度的聚丙烯酰胺凝胶,该凝胶能够有区别的解链PCR扩增产物。由PCR产生的不同的DNA片段长度相同但核苷酸序列不同。因此不同的双链DNA片段由于沿着化学梯度的不同解链行为将在凝胶的不同位置上停止迁移。DNA解链行为的不同导致一个凝胶带图案,该图案是微生物群落中主要种类的一个轮廓。DGGE使用所有生物中保守的基因片段如细菌中的16S rRNA基因片段和真菌中的18S rRNA基因片段。然而同其他分子生物学方法一样,DGGE也有缺陷,其中之一是只能分离较小的片段,使用于系统发育分析比较和探针设计的序列信息量受到了限制。在某些情况下,由于所用基因的多拷贝导致一个种类多于一条带,因此不易鉴定群落结构到种的水平。此外,该技术具有内在的如单一细菌种类16S rDNA拷贝之间的异质性问题,可导致自然群落中微生物数量的过多估计。DGGE是分析微生物群落的一种有力的工具。不过为了减少DGGE和其它技术的缺陷,建议研究者结合DGGE和其它分子及微生物学方法以便更详细的观察微生物的群落结构和功能。  相似文献   

9.
We present a simple, efficient extension of denaturing gradient gel electrophoresis that allows the detection of nearly any sequence change in a defined fragment of DNA. The fragment can be obtained either by means of the polymerase chain reaction or by restriction digestion of genomic DNA. With restriction fragments of genomic DNA, sequence information is not required, and covalent modifications in genomic DNA that are lost in a PCR, such as methylation, are detectable. We describe how a GC clamp (an arbitrary, G+C-rich sequence of 30 to 60 bp) can be attached to a selected restriction fragment present in a digest of genomic DNA. The GC clamp alters the melting properties of the fragment; this change greatly increases the fraction of possible mutations that is detectable. In a 272-bp HaeIII fragment from the human beta-globin gene, we were able to detect 13 of 13 mutations tested in human genomic DNA. Four additional mutations in cloned plasmids were analyzed. The data agree with a simple theoretical model for DGGE, which predicts how two fragments, differing at a single (specified) base pair, are resolved in a gradient gel as a function of running time for the gel. The calculation assists in the design of probes and gel conditions that aid in the detection of sequence changes.  相似文献   

10.
This protocol describes the use of the chemical cleavage of mismatch (CCM) method to assess whether a region of DNA contains mutations and to localize them. Compared with other mutation-detection techniques (such as single strand-conformation polymorphism (SSCP) analysis, denaturing high-performance liquid chromatography (DHPLC) and denaturing gradient gel electrophoresis (DGGE)) that detect mutations in short DNA fragments and require highly specific melting temperatures, CCM has a higher diagnostic sensitivity suited to the detection of mutations in tumor genes, and can analyze amplicons < or = 2 kb in length. To detect mutations, PCR heteroduplexes are incubated with two mismatch-specific reagents. Hydroxylamine modifies unpaired cytosine and potassium permanganate modifies unpaired thymine. The samples are then incubated with piperidine, which cleaves the DNA backbone at the site of the modified mismatched base. Cleavage products are separated by electrophoresis, revealing the identity and location of the mutation. The CCM method can efficiently detect point mutations as well as insertions and deletions. This protocol can be completed in 10 h.  相似文献   

11.
It has been shown that minor differences, such as single-base-pair substitutions between otherwise identical DNA fragments can result in altered melting behavior detectable by denaturing gradient gel electrophoresis (DGGE). Sequence variations in only a small DNA region within one locus can be detected using the previously described procedures. We have developed a method for the efficient Southern transfer of genomic DNA fragments from the denaturing gradient gels in order to be able to analyze larger regions in several loci for variation. The gels were made using polyacrylamide containing 2% low-geling-temperature agarose (LGT). The polyacrylamide gel (PAG) was crosslinked with a reversible crosslinker, and after electrophoresis the crosslinks were cleaved, the structure of the gel being maintained by the agarose. After this treatment of the denaturing gels, more than 90% of the DNA fragments could be transferred to nylon membranes by alkaline transfer, while electroblotting transferred only 10% of the DNA. Hybridization with gene-specific probes was then performed. We have used this technique to identify an RFLP in the COL1A2 gene in a human genomic DNA sample. The transfer technique described should make the use of DGGE more widely applicable since the genomic DNA fragments separated on one gel can be screened with several different probes, both cDNA and genomic probes.  相似文献   

12.
Denaturing gradient gel electrophoresis (DGGE) is based upon the different melting behaviors of DNA molecules in a chemical denaturant gradient according to their sequences. This technique has recently become a widespread tool to detect mutations. The introduction of a GC-clamp enables the detection of most single base differences between two DNA molecules. As a test system we have applied the polymerase chain reaction (PCR) in combination with DGGE to detect a number of mutations in the mouse H2Kb DNA sequence. A wide variety of spontaneous in vivo mutations of this haplotype have been reported in the C57BL/6J mouse strain and are clustered in the alpha 1 and alpha 2 domains. The combination of PCR and DGGE revealed almost all base changes present in the H2Kb mutants used. However, most of the PCR products of these mutants showed melting behavior which is not easily predicted. We suggest that in addition to current simple theory, which considers that the migration of a DNA molecule in a denaturing gradient depends primarily on its initial melting behavior, additional factors such as secondary structure in partially melted molecules may play a role and can be used to detect mutations.  相似文献   

13.
Summary DNA sequence analysis and electrophoresis in denaturing gel revealed that a 60 base pair insertion which had been previously postulated on the basis of native polyacrylamide gel electrophoresis of mitochondrial DNA from Japanese (Horai and Matsunaga 1986) did not exist at all. Unusual behavior of certain restriction fragments in native polyacrylamide gels apparently resulted in what appeared to be an insertion. Further study revealed that this behavior is most likely due to secondary structures of the fragments. The results of the present study suggest that adequate care should be taken when assessing molecular weights of restriction fragments by native polyacrylamide gel electrophoresis.  相似文献   

14.
Familial hypercholesterolemia (FH) is an autosomal semi-dominant disorder caused by defects in the low density lipoprotein receptor (LDLR) gene and is a well-documented risk factor for developing cardiovascular disease. The LDLR genes of five Swedish children with FH were examined in this study. Initial mutation screening was performed by denaturing gradient gel electrophoresis (DGGE) with enzymatically amplified exon-sized fragments, each containing a tailing GC-rich requence. The GC-clamped fragments had been synthesized with a restriction site adjacent to the intron-corresponding sequence to allow detachment of the clamps, thereby rendering the fragments suitable for subsequent analysis by single-strand conformation polymorphism (SSCP) analysis of samples from patients with no DGGE-detectable mutations. In addition, all the LDLR genes of the patients were screened for large alterations by restriction fragment length polymorphism analysis. Following this strategy, seven different, potentially disease-causing mutations were detected in the five children with FH. Six of the alterations, five single-base substitutions and one dinucleotide deletion, have not previously been described. DGGE detected six of the mutations and SSCP the seventh.  相似文献   

15.
DNA molecules that differ by a single base-pair can be separated by denaturing gradient gel electrophoresis due to the sequence-specific melting properties of DNA. Base modifications such as methylation are also known to affect the melting temperature of DNA. We examined the final position of DNA fragments containing either 5-methyl-cytosine or 6-methyl-adenine in denaturing gradient gels. The presence of a single methylated base within an early melting domain resulted in a well-resolved shift in fragment position relative to the unmethylated sequence. In addition, fragments containing hemimethylated and fully methylated sites could be distinguished, and a proportionally larger shift was observed with an increasing number of methylated bases. Denaturing gradient gel electrophoresis thus provides a sensitive method for analyzing the methylation state of DNA, which is not dependent on the presence of restriction enzyme cleavage sites. We also demonstrate that denaturing gradient gel electrophoresis can be used to obtain a quantitative estimate of the change in helix stability caused by modification of one or two bases in a complex DNA sequence. Such estimates should allow more accurate modeling of melting of natural DNA sequences.  相似文献   

16.
A set of Escherichia coli freshwater isolates was chosen to compare the effectiveness of denaturing gradient gel electrophoresis (DGGE) vs temporal temperature gradient gel electrophoresis (TTGE) for separating homologous amplicons from the respective uidA region differing in one to seven single base substitutions. Both methods revealed congruent results but DGGE showed a five to eight times higher spatial separation of the uidA amplicons as compared with TTGE, although the experiments were performed at comparable denaturing gradients. In contrast to TTGE, DGGE displayed clear and focused bands. The results strongly indicated a significantly higher discrimination efficiency of the spatial chemical denaturing gradient as compared with the temporal temperature denaturing gradient for separating the uidA amplicons. Denaturing gradient gel electrophoresis proved to be highly efficient in the differentiation of E. coli uidA sequence types.  相似文献   

17.
The application of culture-independent techniques based on molecular biological methods, especially on the PCR amplification of 16S rRNA genes, attempts to overcome some shortcomings of conventional cultivation methods and reveals far more complex bacterial communities on art objects than can be shown by cultivation methods. One of the major challenges of investigating microbial growth on art objects by molecular means is the extraction of DNA, due to small sample amounts and PCR inhibitors. In the present study, we introduce a DNA extraction protocol, which allowed the extraction of PCR-amplifiable DNA from samples derived from lime wall paintings and loamy soil underground. The DNA extracts were used to amplify 16S ribosomal fragments, which were subsequently analyzed by denaturing gradient gel electrophoresis (DGGE). In parallel with the DGGE analysis, clone libraries containing PCR fragments of the ribosomal gene were constructed and clones were screened by DGGE. Clone libraries allow the inclusion of the entire 16S rDNA sequence in the phylogenetic analyses of microorganisms, providing a more reliable phylogenetic identification of microorganisms than is obtained from sequence analyses of excised and directly sequenced DGGE bands.  相似文献   

18.
PCR has been widely used to identify cry-type genes, to determine their distribution, to detect new such genes and to predict insecticidal activities. We describe here a molecular approach to analyze the genetic diversity of B. thuringiensis cry-like genes based on denaturing gradient gel electrophoresis (DGGE). This analysis demonstrated that different B. thuringiensis isolates can be distinguished according to its PCR-DGGE profile of cry-like genes. Identification of the resolvable DNA fragments was easy to accomplish by DNA sequencing, which was confirmed in this work. Importantly, the strategy allowed the identification of unknown B. thuringiensis cry-like sequences present in a single strain that remained cryptic after PCR analysis using degenerate primers. The method developed in this work contributes to the availability of molecular techniques for both B. thuringiensis strains and cry-like genes identification and discovery.  相似文献   

19.
For genes that have a substantial number of exons and long intronic sequences, mutation screening by denaturing gradient gel electrophoresis (DGGE) requires the amplification of each exon from genomic DNA by PCR. This results in a high number of fragments to be analyzed by DGGE so that the analysis of large sample sets becomes labor intensive and time consuming. To address this problem, we have developed a new strategy for mutation analysis, lexon-DGGE, which combines the joining of different exons by PCR (also known as lexons) with a highly sensitive technique such as DGGE to screen for mutations. The lexon technique is based on the concatenation of several exons, adjacent or not, from genomic DNA into a single DNA fragment so that this approach could simultaneously be used to check the mutational status of several small genes. To show the feasibility of the approach, we have used the lexon-DGGE technique to analyze all coding exons, intron-exon junctions, noncoding exon 1, and part of the noncoding region of exon 11 of the TP53 gene. The validity and performance of the technique were confirmed by using negative and positive controls for each of the DNAfragments analyzed.  相似文献   

20.
Denaturing gradient gel electrophoresis (DGGE) is commonly utilized to identify and quantify microbial diversity, but the conditions required for different electrophoretic systems to yield equivalent results and optimal resolution have not been assessed. Herein, the influence of different DGGE system configuration parameters on microbial diversity estimates was tested using Symbiodinium, a group of marine eukaryotic microbes that are important constituents of coral reef ecosystems. To accomplish this, bacterial clone libraries were constructed and sequenced from cultured isolates of Symbiodinium for the ribosomal DNA internal transcribed spacer 2 (ITS2) region. From these, 15 clones were subjected to PCR with a GC clamped primer set for DGGE analyses. Migration behaviors of the resulting amplicons were analyzed using a range of conditions, including variation in the composition of the denaturing gradient, electrophoresis time, and applied voltage. All tests were conducted in parallel on two commercial DGGE systems, a C.B.S. Scientific DGGE-2001, and the Bio-Rad DCode system. In this context, identical nucleotide fragments exhibited differing migration behaviors depending on the model of apparatus utilized, with fragments denaturing at a lower gradient concentration and applied voltage on the Bio-Rad DCode system than on the C.B.S. Scientific DGGE-2001 system. Although equivalent PCR–DGGE profiles could be achieved with both brands of DGGE system, the composition of the denaturing gradient and application of electrophoresis time × voltage must be appropriately optimized to achieve congruent results across platforms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号