首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insertion of beta-barrel proteins into the outer membrane of mitochondria is mediated by the TOB complex. Known constituents of this complex are Tob55 and Mas37. We identified a novel component, Tob38. It is essential for viability of yeast and the function of the TOB complex. Tob38 is exposed on the surface of the mitochondrial outer membrane. It interacts with Mas37 and Tob55 and is associated with Tob55 even in the absence of Mas37. The Tob38-Tob55 core complex binds precursors of beta-barrel proteins and facilitates their insertion into the outer membrane. Depletion of Tob38 results in strongly reduced levels of Tob55 and Mas37 and the residual proteins no longer form a complex. Tob38-depleted mitochondria are deficient in the import of beta-barrel precursor proteins, but not of other outer membrane proteins or proteins of other mitochondrial subcompartments. We conclude that Tob38 has a crucial function in the biogenesis of beta-barrel proteins of mitochondria.  相似文献   

2.
All mitochondrial precursor proteins studied so far are recognized initially at the surface of the organelle by the translocase of the outer membrane (TOM complex). Precursors of beta-barrel proteins are transferred further to another complex in the outer membrane that mediates their topogenesis (TOB complex). Tob55 is an essential component of the TOB complex in that it constitutes the core element of the protein-conducting pore. The other two components of the TOB complex are Tob38, which builds a functional TOB core complex with Tob55, and Mas37, a peripheral member of the complex. We have investigated the biogenesis of the TOB complex. Reduced insertion of the Tob55 precursor in the absence of Tom20 and Tom70 argues for initial recognition of the precursor of Tob55 by the import receptors. Next, it is transferred through the import channel formed by Tom40. Variants of the latter protein influenced the insertion of Tob55. Assembly of newly synthesized Tob55 into preexisting TOB complexes, as analyzed by blue native gel electrophoresis, depended on Tob38 but did not require Mas37. Surprisingly, both the association of Mas37 precursor with mitochondria and its assembly into the TOB complex were not affected by mutation in the TOM complex. Mas37 assembled directly with the TOB core complex. Hence, the biogenesis of Mas37 represents a novel import pathway of mitochondrial proteins.  相似文献   

3.
The translocase of the outer mitochondrial membrane (TOM complex) is the general entry site for newly synthesized proteins into mitochondria. This complex is essential for the formation and maintenance of mitochondria. Here, we report on the role of the integral outer membrane protein, Mim1 (mitochondrial import), in the biogenesis of mitochondria. Depletion of Mim1 abrogates assembly of the TOM complex and results in accumulation of Tom40, the principal constituent of the TOM complex, as a low-molecular-mass species. Like all mitochondrial beta-barrel proteins, the precursor of Tom40 is inserted into the outer membrane by the TOB complex. Mim1 is likely to be required for a step after this TOB-complex-mediated insertion. Mim1 is a constituent of neither the TOM complex nor the TOB complex; rather, it seems to be a subunit of another, as yet unidentified, complex. We conclude that Mim1 has a vital and specific function in the assembly of the TOM complex.  相似文献   

4.
beta-Barrel membrane proteins have several important functions in outer membranes of Gram-negative bacteria and in the organelles of endosymbiotic origin, mitochondria and chloroplasts. The biogenesis of beta-barrel membrane proteins was, until recently, an unresolved process. A breakthrough was achieved when a specific pathway for the insertion of beta-barrel outer-membrane proteins was identified in both mitochondria and Gram-negative bacteria. The key component of this pathway is Tob55 (also known as Sam50) in mitochondria and Omp85 in bacteria, both beta-barrel membrane proteins themselves. Tob55 is part of the hetero-oligomeric TOB (topogenesis of mitochondrial outer-membrane beta-barrel proteins) or SAM (sorting and assembly of mitochondria) complex, which is present in the mitochondrial outer membrane. Tob55 belongs to an evolutionarily conserved protein family, the members of which are present in almost all eukaryotes and in Gram-negative bacteria and chloroplasts. Thus, is it emphasized that the insertion pathway of mitochondrial beta-barrel membrane proteins was conserved during evolution of mitochondria from endosymbiotic bacterial ancestors.  相似文献   

5.
A multisubunit translocase of the outer mitochondrial membrane (TOM complex) mediates both the import of mitochondrial precursor proteins into the internal compartments of the organelle and the insertion of proteins residing in the mitochondrial outer membrane. The proposed beta-barrel structure of Tom40, the pore-forming component of the translocase, raises the question of how the apparent uninterrupted beta-barrel topology can be compatible with a role of Tom40 in releasing membrane proteins into the lipid core of the bilayer. In this review, I discuss insertion mechanisms of proteins into the outer membrane and present alternative models based on the opening of a multisubunit beta-barrel TOM structure or on the interaction of outer membrane precursors with the outer face of the Tom40 beta-barrel structure.  相似文献   

6.
The TOB or SAM complex is responsible for assembling several proteins into the mitochondrial outer membrane, including all β-barrel proteins. We have identified several forms of the complex in Neurospora crassa. One form contains Tob55, Tob38, and Tob37; another contains these three subunits plus the Mdm10 protein; while additional complexes contain only Tob55. As previously shown for Tob55, both Tob37 and Tob38 are essential for viability of the organism. Mitochondria deficient in Tob37 or Tob38 have reduced ability to assemble β-barrel proteins. The function of two hydrophobic domains in the C-terminal region of the Tob37 protein was investigated. Mutant Tob37 proteins lacking either or both of these regions are able to restore viability to cells lacking the protein. One of the domains was found to anchor the protein to the outer mitochondrial membrane but was not necessary for targeting or association of the protein with mitochondria. Examination of the import properties of mitochondria containing Tob37 with deletions of the hydrophobic domains reveals that the topology of Tob37 may be important for interactions between specific classes of β-barrel precursors and the TOB complex.  相似文献   

7.
Tob55 is the major component of the TOB complex, which is found in the outer membrane of mitochondria. A sheltered knockout of the tob55 gene was developed in Neurospora crassa. When grown under conditions that reduce the levels of the Tob55 protein, the strain exhibited a reduced growth rate and mitochondria isolated from these cells were deficient in their ability to import beta-barrel proteins. Surprisingly, Western blots of wild-type mitochondrial proteins revealed two bands for Tob55 that differed by approximately 4 kDa in their apparent molecular masses. Sequence analysis of cDNAs revealed that the tob55 mRNA is alternatively spliced and encodes three isoforms of the protein, which are predicted to contain 521, 516, or 483 amino acid residues. Mass spectrometry of proteins isolated from purified outer membrane vesicles confirmed the existence of each isoform in mitochondria. Strains that expressed each isoform of the protein individually were constructed. When cells expressing only the longest form of the protein were grown at elevated temperature, their growth rate was reduced and mitochondria isolated from these cells were deficient in their ability to assembly beta-barrel proteins.  相似文献   

8.
Signal-anchored proteins are a class of mitochondrial outer membrane proteins that expose a hydrophilic domain to the cytosol and are anchored to the membrane by a single transmembrane domain in the N-terminal region. Like the vast majority of mitochondrial proteins, signal-anchored proteins are synthesized on cytosolic ribosomes and are subsequently imported into the organelle. We have studied the mechanisms by which precursors of these proteins are recognized by the mitochondria and are inserted into the outer membrane. The import of signal-anchored proteins was found to be independent of the known import receptors, Tom20 and Tom70, but to require the major Tom component, Tom40. In contrast to precursors destined to internal compartments of mitochondria and those of outer membrane beta-barrel proteins, precursors of signal-anchored proteins appear not to be inserted via the general import pore. Taken together, we propose a novel pathway for insertion of these proteins into the outer membrane of mitochondria.  相似文献   

9.
Communication of mitochondria with the rest of the cell requires beta-barrel proteins of the outer membrane. All beta-barrel proteins are synthesized as precursors in the cytosol and imported into mitochondria by the general translocase TOM and the sorting machinery SAM. The SAM complex contains two proteins essential for cell viability, the channel-forming Sam50 and Sam35. We have identified the sorting signal of mitochondrial beta-barrel proteins that is universal in all eukaryotic kingdoms. The beta-signal initiates precursor insertion into a hydrophilic, proteinaceous membrane environment by forming a ternary complex with Sam35 and Sam50. Sam35 recognizes the beta-signal, inducing a major conductance increase of the Sam50 channel. Subsequent precursor release from SAM is coupled to integration into the lipid phase. We propose that a two-stage mechanism of signal-driven insertion into a membrane protein complex and subsequent integration into the lipid phase may represent a general mechanism for biogenesis of beta-barrel proteins.  相似文献   

10.
The translocase of the outer membrane (TOM complex) is the central entry gate for nuclear-encoded mitochondrial precursor proteins. All Tom proteins are also encoded by nuclear genes and synthesized as precursors in the cytosol. The channel-forming beta-barrel protein Tom40 is targeted to mitochondria via Tom receptors and inserted into the outer membrane by the sorting and assembly machinery (SAM complex). A further outer membrane protein, Mim1, plays a less defined role in assembly of Tom40 into the TOM complex. The three receptors Tom20, Tom22, and Tom70 are anchored in the outer membrane by a single transmembrane alpha-helix, located at the N terminus in the case of Tom20 and Tom70 (signal-anchored) or in the C-terminal portion in the case of Tom22 (tail-anchored). Insertion of the precursor of Tom22 into the outer membrane requires pre-existing Tom receptors while the import pathway of the precursors of Tom20 and Tom70 is only poorly understood. We report that Mim1 is required for efficient membrane insertion and assembly of Tom20 and Tom70, but not Tom22. We show that Mim1 associates with SAM(core) components to a large SAM complex, explaining its role in late steps of the assembly pathway of Tom40. We conclude that Mim1 is not only required for biogenesis of the beta-barrel protein Tom40 but also for membrane insertion and assembly of signal-anchored Tom receptors. Thus, Mim1 plays an important role in the efficient assembly of the mitochondrial TOM complex.  相似文献   

11.
Mitochondrial preproteins synthesized in the cytosol are imported through the mitochondrial outer membrane by the translocase of the outer mitochondrial membrane (TOM) complex. Tom40 is the major component of the complex and is essential for cell viability. We generated 21 different mutations in conserved regions of the Neurospora crassa Tom40 protein. The mutant genes were transformed into a tom40 null nucleus maintained in a sheltered heterokaryon, and 17 of the mutant genes gave rise to viable strains. All mutations reduced the efficiency of the altered Tom40 molecules to assemble into the TOM complex. Mitochondria isolated from seven of the mutant strains had defects for importing mitochondrial preproteins. Only one strain had a general import defect for all preproteins examined. Another mutation resulted in defects in the import of a matrix-destined preprotein and an outer membrane beta-barrel protein, but import of the ADP/ATP carrier to the inner membrane was unaffected. Five strains showed deficiencies in the import of beta-barrel proteins. The latter results suggest that the TOM complex distinguishes beta-barrel proteins from other classes of preprotein during import. This supports the idea that the TOM complex plays an active role in the transfer of preproteins to subsequent translocases for insertion into the correct mitochondrial subcompartment.  相似文献   

12.
Tom40 forms the central channel of the preprotein translocase of the mitochondrial outer membrane (TOM complex). The precursor of Tom40 is encoded in the nucleus, synthesized in the cytosol, and imported into mitochondria via a multi-step assembly pathway that involves the mature TOM complex and the sorting and assembly machinery of the outer membrane (SAM complex). We report that opening of the mitochondrial intermembrane space by swelling blocks the assembly pathway of the beta-barrel protein Tom40. Mitochondria with defects in small Tim proteins of the intermembrane space are impaired in the Tom40 assembly pathway. Swelling as well as defects in the small Tim proteins inhibit an early stage of the Tom40 import pathway that is needed for formation of a Tom40-SAM intermediate. We propose that the biogenesis pathway of beta-barrel proteins of the outer mitochondrial membrane not only requires TOM and SAM components, but also involves components of the intermembrane space.  相似文献   

13.
The TOB–SAM complex is an essential component of the mitochondrial outer membrane that mediates the insertion of β-barrel precursor proteins into the membrane. We report here its isolation and determine its size, composition, and structural organization. The complex from Neurospora crassa was composed of Tob55–Sam50, Tob38–Sam35, and Tob37–Sam37 in a stoichiometry of 1:1:1 and had a molecular mass of 140 kD. A very minor fraction of the purified complex was associated with one Mdm10 protein. Using molecular homology modeling for Tob55 and cryoelectron microscopy reconstructions of the TOB complex, we present a model of the TOB–SAM complex that integrates biochemical and structural data. We discuss our results and the structural model in the context of a possible mechanism of the TOB insertase.  相似文献   

14.
A majority of the proteins targeted to the mitochondria are transported through the translocase of the outer membrane (TOM) complex. Tom70 is a major surface receptor for mitochondrial protein precursors in the TOM complex. To investigate how Tom70 receives the mitochondrial protein precursors, we have determined the crystal structure of yeast Tom70p to 3.0 A. Tom70p forms a homodimer in the crystal. Each subunit consists primarily of tetratricopeptide repeat (TPR) motifs, which are organized into a right-handed superhelix. The TPR motifs in the N-terminal domain of Tom70p form a peptide-binding groove for the C-terminal EEVD motif of Hsp70, whereas the C-terminal domain of Tom70p contains a large pocket that may be the binding site for mitochondrial precursors. The crystal structure of Tom70p provides insights into the mechanisms of precursor transport across the mitochondrion's outer membrane.  相似文献   

15.
Crista junctions (CJs) are tubular invaginations of the inner membrane of mitochondria that connect the inner boundary with the cristae membrane. These architectural elements are critical for mitochondrial function. The yeast inner membrane protein Fcj1, called mitofilin in mammals, was reported to be preferentially located at CJs and crucial for their formation. Here we investigate the functional roles of individual domains of Fcj1. The most conserved part of Fcj1, the C-terminal domain, is essential for Fcj1 function. In its absence, formation of CJ is strongly impaired and irregular, and stacked cristae are present. This domain interacts with full-length Fcj1, suggesting a role in oligomer formation. It also interacts with Tob55 of the translocase of outer membrane β-barrel proteins (TOB)/sorting and assembly machinery (SAM) complex, which is required for the insertion of β-barrel proteins into the outer membrane. The association of the TOB/SAM complex with contact sites depends on the presence of Fcj1. The biogenesis of β-barrel proteins is not significantly affected in the absence of Fcj1. However, down-regulation of the TOB/SAM complex leads to altered cristae morphology and a moderate reduction in the number of CJs. We propose that the C-terminal domain of Fcj1 is critical for the interaction of Fcj1 with the TOB/SAM complex and thereby for stabilizing CJs in close proximity to the outer membrane. These results assign novel functions to both the C-terminal domain of Fcj1 and the TOB/SAM complex.  相似文献   

16.
Mitochondria import more than 1,000 different proteins from the cytosol. The proteins are synthesized as precursors on cytosolic ribosomes and are translocated by protein transport machineries of the mitochondrial membranes. Five main pathways for protein import into mitochondria have been identified. Most pathways use the translocase of the outer mitochondrial membrane (TOM) as the entry gate into mitochondria. Depending on specific signals contained in the precursors, the proteins are subsequently transferred to different intramitochondrial translocases. In this article, we discuss the connection between protein import and mitochondrial membrane architecture. Mitochondria possess two membranes. It is a long‐standing question how contact sites between outer and inner membranes are formed and which role the contact sites play in the translocation of precursor proteins. A major translocation contact site is formed between the TOM complex and the presequence translocase of the inner membrane (TIM23 complex), promoting transfer of presequence‐carrying preproteins to the mitochondrial inner membrane and matrix. Recent findings led to the identification of contact sites that involve the mitochondrial contact site and cristae organizing system (MICOS) of the inner membrane. MICOS plays a dual role. It is crucial for maintaining the inner membrane cristae architecture and forms contacts sites to the outer membrane that promote translocation of precursor proteins into the intermembrane space and outer membrane of mitochondria. The view is emerging that the mitochondrial protein translocases do not function as independent units, but are embedded in a network of interactions with machineries that control mitochondrial activity and architecture.  相似文献   

17.
Translocation of preproteins across the mitochondrial outer membrane is mediated by the translocase of the outer mitochondrial membrane (TOM) complex. We report the molecular identification of Tom6 and Tom7, two small subunits of the TOM core complex in the fungus Neurospora crassa. Cross-linking experiments showed that both proteins were found to be in direct contact with the major component of the pore, Tom40. In addition, Tom6 was observed to interact with Tom22 in a manner that depends on the presence of preproteins in transit. Precursors of both proteins are able to insert into the outer membrane in vitro and are assembled into authentic TOM complexes. The insertion pathway of these proteins shares a common binding site with the general import pathway as the assembly of both Tom6 and Tom7 was competed by a matrix-destined precursor protein. This assembly was dependent on the integrity of receptor components of the TOM machinery and is highly specific as in vitro-synthesized yeast Tom6 was not assembled into N. crassa TOM complex. The targeting and assembly information within the Tom6 sequence was found to be located in the transmembrane segment and a flanking segment toward the N-terminal, cytosolic side. A hybrid protein composed of the C-terminal domain of yeast Tom6 and the cytosolic domain of N. crassa Tom6 was targeted to the mitochondria but was not taken up into TOM complexes. Thus, both segments are required for assembly into the TOM complex. A model for the topogenesis of the small Tom subunits is discussed.  相似文献   

18.
The preprotein translocase of the outer mitochondrial membrane (TOM complex) contains one essential subunit, the channel Tom40. The assembly pathway of the precursor of Tom40 involves the TOM complex and the sorting and assembly machinery (SAM complex) with the non-essential subunit Mas37. We have identified Sam50, the second essential protein of the mitochondrial outer membrane. Sam50 contains a beta-barrel domain conserved from bacteria to man and is a subunit of the SAM complex. Yeast mutants of Sam50 are defective in the assembly pathways of Tom40 and the abundant outer membrane protein porin, while the import of matrix proteins is not affected. Thus the protein sorting and assembly machinery of the mitochondrial outer membrane involves an essential, conserved protein.  相似文献   

19.
The role of plant mitochondrial outer membrane proteins in the process of preprotein import was investigated, as some of the principal components characterized in yeast have been shown to be absent or evolutionarily distinct in plants. Three outer membrane proteins of Arabidopsis thaliana mitochondria were studied: TOM20 (translocase of the outer mitochondrial membrane), METAXIN, and mtOM64 (outer mitochondrial membrane protein of 64 kD). A single functional Arabidopsis TOM20 gene is sufficient to produce a normal multisubunit translocase of the outer membrane complex. Simultaneous inactivation of two of the three TOM20 genes changed the rate of import for some precursor proteins, revealing limited isoform subfunctionalization. Inactivation of all three TOM20 genes resulted in severely reduced rates of import for some but not all precursor proteins. The outer membrane protein METAXIN was characterized to play a role in the import of mitochondrial precursor proteins and likely plays a role in the assembly of beta-barrel proteins into the outer membrane. An outer mitochondrial membrane protein of 64 kD (mtOM64) with high sequence similarity to a chloroplast import receptor was shown to interact with a variety of precursor proteins. All three proteins have domains exposed to the cytosol and interacted with a variety of precursor proteins, as determined by pull-down and yeast two-hybrid interaction assays. Furthermore, inactivation of one resulted in protein abundance changes in the others, suggesting functional redundancy. Thus, it is proposed that all three components directly interact with precursor proteins to participate in early stages of mitochondrial protein import.  相似文献   

20.
Import of nuclear-encoded mitochondrial preproteins is mediated by a general translocase in the outer membrane, the TOM complex, and by two distinct translocases in the mitochondrial inner membrane, the TIM23 complex and the TIM22 complex. Both TIM complexes cooperate with the TOM complex but facilitate import of different classes of precursor proteins. Precursors with an N-terminal presequence are imported via the TIM23 complex, whereas mitochondrial carrier proteins require the TIM22 complex for insertion into the inner membrane. This review discusses recent advances in understanding the structure and function of the translocases of the inner membrane and the possible role of Tim proteins in the development of the Mohr-Tranebjaerg syndrome, a mitochondrial disorder leading to neurodegeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号