首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A biotin-requiring coryneform bacterium which produces glutamic acid was mutated to adenine dependency. The adenine-requiring strain, which excreted insoine-5′-monophosphate (IMP), was further mutated to xanthine dependency. As expected, IMP was also excreted by this mutant. The mutant strain was reverted to xanthine independence in an attempt to obtain a culture with an altered IMP dehydrogenase which would be less sensitive to feedback inhibition by guanosine-5′-monophosphate (GMP). A revertant was obtained which produced GMP and IMP, each at 0.5 g per liter. The reversion to xanthine independence had resulted in a concomitant requirement for isoleucine, leucine, and valine. Further mutation to increased nutritional requirements led to culture MB-1802, which accumulated 1 g per liter each of GMP and IMP. Both nucleotides were isolated in pure form. The concentrations of GMP and IMP produced by MB-1802 were four times that of cytidylate, uridylate, or adenylate, indicating that the mechanism of GMP and IMP production was direct and not via ribonucleic acid breakdown.  相似文献   

2.
3.
Nocardia sp. strain NRRL 5646 contains a nitric oxide synthase (NOS) enzyme system capable of generating nitric oxide (NO) from arginine and arginine-containing peptides. To explain possible roles of the NOS system in this bacterium, guanylate cyclase (GC) and tetrahydrobiopterin (H(4)B) biosynthetic enzymes were identified in cell extracts and in culture media. Cell extracts contained GC activity, as measured by the conversion of GTP to cyclic guanosine-3',5'-monophosphate (cGMP) at 9.56 pmol of cGMP h(-1) mg of protein(-1). Concentrations of extracellular cGMP in culture media were significantly increased, from average control levels of 45 pmol cGMP liter(-1) to a maximum of 315 pmol liter(-1), in response to additions of GTP, L-arginine, H(4)B, and sodium nitroprusside to growing Nocardia cultures. On the other hand, the NOS inhibitor N(G)-nitro-L-arginine and the GC inhibitor 1H-[1,2, 4]oxadiazole[4,3-a]quinoxalin-1-one both dramatically decreased extracellular cGMP levels. Activities for GTP-cyclohydrase-1, 6-pyruvoyltetrahydropterin synthase and sepiapterin reductase, enzymes essential for H(4)B biosynthesis, were present in Nocardia culture extracts at 77.5 pmol of neopterin and 45.8 pmol of biopterin h(-1) mg of protein(-1), respectively. In Nocardia spp., as in mammals, GTP is a key intermediate in H(4)B biosynthesis, and GTP is converted to cGMP by a GC enzyme system that is activated by NO.  相似文献   

4.
The kinetic mechanism of Escherichia coli guanosine-5'-monophosphate synthetase has been determined by utilizing initial velocity kinetic patterns and positional isotope exchange experiments. The initial velocity patterns of MgATP, XMP, and either NH3 or glutamine (as nitrogen source) were consistent with the ordered addition of MgATP followed by XMP and then NH3. The enzyme catalyzes the exchange of 18O from the beta-nonbridge positions of [beta,beta,beta gamma,gamma,gamma,gamma-18O6]ATP into the alpha beta-bridge position only in the presence of XMP and Mg2+. The exchange reaction did not require NH3. The isotope exchange reaction increased as the XMP concentration increased and then decreased at saturating levels of XMP. These results also support the ordered addition of MgATP followed by XMP. GMP synthetase catalyzes the hydrolysis of ATP to AMP and PPi along with an ATP/PPi exchange reaction in the absence of NH3. These data taken together support a mechanism in which the initial step in the enzymatic reaction involves formation of an adenyl-XMP intermediate. Psicofuranine, an irreversible inhibitor of the enzyme, acts by preventing the release or further reaction of adenyl-XMP with H2O or NH3 but does not suppress the isotope exchange or ATP/PPi exchange reactions. GMP synthetase has also been shown to require a free divalent cation for full activity. When Ca2+ replaces Mg2+ in the reaction, the positional isotope exchange reaction is enhanced but the reaction with NH3 to form GMP is greatly suppressed.  相似文献   

5.
6.
7.
Apomorphine was found to cause an increase in cerebellar cGMP content. Bromocriptine, at a dose that caused stereotypies, neither elevated cGMP, nor blocked the apomorphine- induced rise in cGMP. The apomorphine-induced rise in cGMP was effectively blocked by haloperidol and some other neuroleptics, but not by sulpiride. These actions of the neuroleptics correlated with their ability to displace 3H-spiroperidol from striatal membranes, suggesting that dopamine receptor interactions were important in the cGMP changes noted. Based on the observation that haloperidol antagonized the increase induced by restraint, it is suggested that dopaminergic systems are involved in the reaction to stress.  相似文献   

8.
9.
Uptake of 3H-cGMP by cultured murine 3T6 cells was studied. The cells were shown to contain radioactivity 1 minute after its addition, with the level of radioactivity increasing during a 3 hour incubation period. By this time, the intracellular non-metabolized cGMP corresponded to 1-5% of the whole intracellular radioactivity. In the presence of theophylline the uptake of 3H-cGMP by cells was seen decreasing, however, the portion of non-metabolized cGMP reached 45-50% of the whole intracellular radioactivity. Thus, the presence of theophylline made it possible to maintain the high level of intracellular cGMP. It is concluded that the incubation of cell cultures in the medium with cGMP may be useful for achieving an elevating intracellular cGMP concentration and for studying the biological effect of cyclic nucleotide.  相似文献   

10.
11.
The role of cyclic GMP in the insulin effect was investigated using isolated frog sartorii. A study was made of the effect of exogenous cyclic GMP, dibutyryl cyclic GMP, 8-bromo-cyclic GMP on xylose transport, glycogen synthesis and muscle respiration. Only dibutyryl cyclic GMP (1.10(-6) - 10(-4) M) alone was observed to have a stimulating effect on glycogen synthesis and respiration. The xylose transport was but slightly accelerated only following a 20 hours incubation of muscles in the cyclic GMP solution. Cyclic GMP was shown to penetrate the muscle fibres. The cyclic GMP content in muscles was equal to 22.7 +/- 2.0 pM per gram of wet weight. Insulin exerted no effect on cyclic GMP concentration in muscles. The data obtained do not allow to conclude that cyclic GMP may serve as a mediator in realization of the insulin effect on membrane and intracellular processes.  相似文献   

12.
Crude extracts of human lung tissue were examined for cyclic adenosine- and guanosine-3',5'-monophosphate (cAMP and cGMP) phosphodiesterase activities. Nonlinear reciprocal plots were observed for each substrate. DEAE-Sephadex chromatography of the extracts revealed four main fractions of activity, which were further purified by Sephadex gel filtration. The phosphodiesterase activity of the resulting individual fractions was partially characterized with respect to substrate specificity, kinetic parameters, apparent molecular weight (gel filtration), thermal stability at 30 and 37 degrees C, effect of the cyclic nucleotide not utilized as substrate, and the possible influence of Ca2+-dependent protein activator. The results indicate that the tissue contains phosphodiesterases with strict specificity and a high apparent affinity for each of the two cyclic nucleotides (the Km values determined were approximately 0.3-0.4 muM). The high affinity cAMP phosphodiesterase activity was enriched in two of the purified fractions; both activities probably represent fragments of the native high affinity cAMP specific enzyme. A third purified phosphodiesterase showed mixed substrate specificity. The Km value recorded for hydrolysis of either substrate with this enzyme was approximately 25 muM. A fourth, irregularly occurring, phosphodiesterase activity also showed mixed substrate specificity. The Km value registered for hydrolysis of either substrate with this fraction was approximately 0.4 muM. There was no evidence for a Ca2+-dependent specific activation by a boiled lung tissue supernatant of any of the purified enzymes.  相似文献   

13.
The actions of several classes of drugs, thought to be involved with gamma-amino-butyric acid (GABA) mechanisms, have been examined for effects on cerebellar cGMP content. Picrotoxin and TRH increased, while ethanol and diazepam decreased, cerebellar cGMP. Doses of gamma-hydroxybutyrate (GHB) and baclofen caused no significant effect at doses that caused behavioral changes. These cGMP actions were contrasted with those induced by the dopaminergic agents, apomorphine and haloperidol, which respectively, raised and lowered cerebellar cGMP. Apomorphine-induced increases in cGMP were blocked by haloperidol, but not by GHB or baclofen given eight min before sacrifice. However, baclofen given one hour before sacrifice caused effects similar to those of haloperidol. These results are discussed in terms of dopaminergic-GABAergic interactions.  相似文献   

14.
15.
Two novel sterically hindered cisplatin derivatives with the ligand L=NH(2)C(CH(2)CH(2)COOH)(3) were prepared: cis-PtCl(2)L(2) and cis-PtCl(2)L(NH(3)). The starting compound for the syntheses was NH(2)C(CH(2)CH(2)COOtBu)(3), also known as a building block for dendrimers. cis-PtCl(2)L(2) was prepared from K(2)PtCl(4) in an unusual two-phase reaction in water-chloroform, followed by deprotection of the tert-butyl protective groups with formic acid to yield a water-soluble complex. The mixed-ligand compound cis-PtCl(2)L(NH(3)) was prepared from [PPh(4)][PtCl(3)(NH(3))] in methanol, with subsequent deprotection in formic acid. DNA-binding properties of the two compounds were investigated using the model base guanosine-5'-monophosphate (5'-GMP) and pBR322 plasmid DNA. While cisplatin [cis-PtCl(2)(NH(3))(2)] induced an unwinding of 12 degrees in pBR322 plasmid DNA, cis-PtCl(2)L(NH(3)) induced only 3 degrees unwinding, which is indicative of a monofunctional binding mode. Remarkably, cis-PtCl(2)L(2) did not induce any distortion in plasmid DNA, which strongly suggests that the compound does not bind to DNA. Test reactions with 5'-GMP, monitored by 1H and 195Pt NMR, confirmed that cis-PtCl(2)L(2) is unable to bind to DNA, whereas cis-PtCl(2)L(NH(3)) binds only one nucleotide. Apparently, binding of platinum to nucleotides at the coordination site cis with respect to the ligand L is prevented by steric crowding. Thus, cis-PtCl(2)L(NH(3)) must bind DNA monofunctionally at the trans position. Besides, both compounds have a chloride replaced by one of the carboxylate arms, forming a a seven-membered chelate ring. In theory, cis-PtCl(2)L(2) could also form a second chelate ring, but this was not observed.  相似文献   

16.
Since inflammation is a common mechanism of many gastrointestinal diseases, reactive oxygen metabolites may play an important role in their pathophysiology. Therefore it is interesting to know, whether phytopharmaceuticals known to modulate gastroinstinal motor function reveal also antioxdiative properties. We tested STW 5 (Iberogast®), its constituent nine different plant extracts, and some isolated compounds which are present in STW 5 for characterizing their antioxidative and radical quenching activities. The test assays consisted in pure chemical and complex celluar systems in which different types of reactive species were produced. Quantification of the effects was based on chemiluminescence reactions. The results show that all extracts contribute to the effect of the complete remedy STW 5, in the chemical systems in a strongly additve manner, in the cellular systems in a supraadditve manner. The largest contributions resulted from the extracts from peppermint and melissa leafs. Comparison of effects from isolated phytochemical compounds from the extracts with that of the extracts itself shows that usually the extract is more effective than the monosubstance which indicates also the synergism within the whole plant extracts. This means that the plant extracts present in STW 5 provide strong radical quenching activities that could also be involved in the therapeutic gastrointestinal actions.  相似文献   

17.
A radioimmunoassay for guanosine-5'-diphosphate-3'-diphosphate (ppGpp) and adenosine-5'-triphosphate-3'-diphosphate (pppApp) has been developed. The assay method is based on competition of an unlabeled highly phosphorylated nucleotide with 3H-labeled highly phosphorylated nucleotide for binding sites on a specific antibody. Antibodies to ppGpp and pppApp were obtained by immunizing rabbits with the antigen prepared by conjugating ppGpp with human serum albumin using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, and with the antigen prepared by conjugating 8-(6-aminohexyl)amino-adenosine-5'-triphosphate-3'-diphosphate with human serum albumin using glutaraldehyde, respectively. Antibody-bound 3H-labeled highly phosphorylated nucleotides were separated from the free 3H-labeled highly phosphorylated nucleotides by selective adsorption on dextran-coated charcoal. Displacement plots were linear over a concentration range of 5-1,000 pmol/assay tube in a log-probit percentage plot. Application of this method to biological systems offers improved accuracy and convenience compared with the previous 32PO4-labeling technique.  相似文献   

18.
Two series of pyrrolidinium (PYA-n) and piperidinium (PPPA-n) bromides with incorporated antioxidant function were synthesized. Both have hydrocarbon chains with odd number of the carbon atoms (n) ranging between 7 and 15. Pig erythrocytes (RBC) were used to study antioxidant activity of these compounds. They were incorporated into RBC membranes in sublytic (micromolar) concentrations and RBC were then subjected to UV radiation. It was found that all the salts used protected erythrocyte membranes against oxidation of membrane lipids. This protection increased with hydrocarbon chain length. Such effect may be the result of an incorporation of particular compounds to different depths into the lipid phase of RBC membrane depending on their chain length. Such possibility was checked by studies on fluidity changes induced by the compounds studied in ghost membranes by fluorimetric measurements. The measurements showed that pyrrolidinium bromides were slightly more effective in a protection of erythrocytes than the corresponding piperidinium ones. The possible reason of such behaviour may be the difference in lipophilicity between piperidine and pyrrolidine rings.  相似文献   

19.
The multifunctional protein uridine 5'-monophosphate (UMP) synthase catalyzes the final two reactions of the de novo biosynthesis of UMP in mammalian cells by the sequential action of orotate phosphoribosyltransferase (EC 2.4.2.10) and orotidine 5'-monophosphate (OMP) decarboxylase (EC 4.1.1.23). This protein is composed of one or two identical subunits; the monomer weighs of 51,500 daltons. UMP synthase from mouse Ehrlich ascites cells can exist as three distinct species as determined by sucrose density gradient centrifugation: a 3.6 S monomer, a 5.1 S dimer, and a 5.6 S conformationally altered dimer. Limited digestion of each of these three species with trypsin produced a 28,500-dalton peptide that was relatively resistant to further proteolysis. The peptide appears to be one of the two enzyme domains of UMP synthase for it retained only OMP decarboxylase activity. Similar results were obtained when UMP synthase was digested with elastase. OMP decarboxylase activity was less stable for the domain than for UMP synthase; the domain can rapidly lose activity upon storage or upon dilution. The size of the mammalian OMP decarboxylase domain is similar to that of yeast OMP decarboxylase. If the polypeptides which are cleaved from UMP synthase by trypsin are derived exclusively from either the amino or the carboxyl end of UMP synthase, then the size of a fragment possessing the orotate phosphoribosyltransferase domain could be as large as 23,000 daltons which is similar in size to the orotate phosphoribosyltransferase of yeast and of Escherichia coli.  相似文献   

20.
Morphine administration (20 mg/kg) to awake rhesus monkeys which had been chronically implanted with catheters for aspiration of cerebrospinal fluid (CSF) produced a significant elevation in the CSF level of guanosine-3′, 5′-cyclic monophosphate (cGMP). Additionally, biopsies of cerebral and cerebellar cortex were taken from anesthetized monkeys given 20 mg/kg of morphine sulfate. Only cerebellar cGMP levels changed significantly, showing a 35% decrease relative to anesthetized controls. Although the controlling factors of brain tissue and CSF cGMP levels are poorly understood, the possibility of a reciprocal relationship between cGMP levels in certain brain regions and in CSF under some conditions is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号