首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dog plasma and prenodal peripheral lymph apoA-I distribution was examined by nondenaturing gradient gel electrophoresis-immunoblot analysis. In control dogs, plasma apoA-I could be localized to two distinct populations of particles with modal diameters of 8.4 nm and 10.4 nm. The smaller sized population accounted for over 50% of plasma apoA-I. Peripheral lymph apoA-I distribution was significantly different. The percentage of apoA-I localized to the 10.4 nm population was reduced by 40% and the modal diameter of the smaller HDL apoA-I population was significantly decreased by 0.1 nm. Additionally, peripheral lymph apoA-I could be localized to particles smaller than albumin (lipoprotein-unassociated apoA-I). The presence of lipoprotein-unassociated apoA-I particles was confirmed by gel filtration chromatography. Immunoblots of column fractions subjected to agarose electrophoresis revealed that these particles had slow pre-beta electrophoretic mobility. In dogs fed an atherogenic diet, lipoprotein-unassociated apoA-I particles with slow pre-beta electrophoretic mobility could be found in both plasma and peripheral lymph. With increasing degree of hypercholesterolemia, the relative amount of plasma lipoprotein-unassociated apoA-I tended to increase. In peripheral lymph, an increasing degree of hypercholesterolemia was associated with a decrease in the relative amount of lipoprotein-unassociated apoA-I. Instead, a population of large apoA-I particles (11-25 nm) became increasingly prominent.  相似文献   

2.
Five lines of transgenic mice, which had integrated the human apolipoprotein (apo) A-I gene and various amounts of flanking sequences, were established. Normally, apoA-I is expressed mainly in liver and intestine, but all of the transgenic lines only expressed apoA-I mRNA in liver, strongly suggesting that 256 base pairs of 5'-flanking sequence was sufficient for liver apoA-I gene expression but that 5.5 kilobase pairs was not sufficient for intestinal expression. Mean plasma levels of human apoA-I varied in different lines from approximately 0.1 to 200% of normal mouse levels. This was not dependent on the amount of flanking sequence. Lipoprotein levels were studied in detail in one of the lines with a significantly increased apoA-I pool size. In one study, the total plasma apoA-I level (mouse plus human) was 381 +/- 43 mg/dl in six animals from this line, compared to 153 +/- 17 mg/dl in matched controls. Total and high density lipoprotein cholesterol (HDL-C) levels were increased 60% in transgenic animals, compared to controls (total cholesterol: 125 +/- 12 versus 78 +/- 13 mg/dl, p = 0.0001; HDL-C 90 +/- 7 versus 55 +/- 11 mg/dl, p = 0.0001). The molar ratio of HDL-C/apoA-I was significantly lower in transgenic animals, 17 +/- 1 versus 25 +/- 2 (p = 0.0001), suggesting the increase was in smaller HDL particles. This was confirmed by native gradient gel electrophoresis. This was not due to aberrant metabolism of human apoA-I in the mouse, since human apoA-I was distributed throughout the HDL particle size range and was catabolized at the same rate as mouse apoA-I. In another study of 23 transgenic mice, HDL-C and human apoA-I levels were highly correlated (r = 0.87, p less than 0.001). The slope of the correlation line also indicated the additional HDL particles were in the smaller size range. We conclude that human apoA-I can be incorporated into mouse HDL, and excessive amounts increase HDL-C levels primarily by increasing smaller HDL particles, comparable to human HDL3 (HDL-C/apoA-I molar ratio = 18).  相似文献   

3.
Substrates for matrix metalloproteinase (MMP)-14 were previously identified in human plasma using proteomic techniques. One putative MMP-14 substrate was apolipoprotein A-I (apoA-I), a major component of high-density lipoprotein (HDL). In vitro cleavage assays showed that lipid-free apoA-I is a more accessible substrate for MMP-14 compared to lipid-bound apoA-I, and that MMP-14 is more prone to digest apoA-I than MMP-3. The 28-kDa apoA-I was cleaved into smaller fragments of 27, 26, 25, 22, and 14-kDa by MMP-14. ApoA-I sites cleaved by MMP-14 were determined by isotope labeling of C-termini derived from the cleavage and analysis of the labeled peptides by mass spectrometry, along with N-terminal sequencing of the fragments. Cleavage of apoA-I by MMP-14 resulted in a loss of ability to form HDL. Our results suggest that cleavage of lipid-free apoA-I by MMP-14 may contribute to reduced HDL formation, and this may be occurring during the development of various vascular diseases as lipid metabolism is disrupted.  相似文献   

4.
Plasma from individual human subjects is known to contain multiple discrete subpopulations of low (LDL) and intermediate (IDL) density lipoproteins that differ in particle size and density. The metabolic origins of these subpopulations are unknown. Transformation of IDL and larger LDL to smaller, denser LDL particles had been postulated to occur as a result of the combined effects of triglyceride hydrolysis and lipid transfer. However, the presence of multiple small LDL subspecies has been described in patients lacking cholesteryl ester transfer protein. We have characterized an alternative pathway in which size decrements in IDL or LDL are produced in the presence of unesterified fatty acids and a source of apolipoprotein (apo) A-I. Incubation of IDL or LDL subfractions with palmitic acid and either high density lipoproteins (HDL), apoHDL, or purified apoA-I gives rise to apoA-I, apoB-containing complexes that can dissociate into two particles, an apoB-containing lipoprotein with particle diameter 10-30 A smaller than the starting material, and a still smaller species (apparent peak particle diameter 140-190 A) containing lipid and apoA-I but no apoB. The newly formed IDL or LDL are depleted in phospholipid and free cholesterol with no change in apoB-100 as assessed by SDS gel electrophoresis. We hypothesize that this reaction may contribute to the formation of discrete IDL and LDL subpopulations of varying size during the course of hydrolysis of triglyceride-rich lipoproteins in plasma.  相似文献   

5.
The binding of apoA-I to lysolecithin has been studied by fluorescence and circular dichroism. The influence of the conformation of apoA-I on its interaction with lysolecithin has also been evaluated. ApoA-I is bound to lysolecithin with an association greater than 10(7) whether apoA-I is native or highly unfolded in 1.8 M guanidinium hydrochloride. The association of apoA-I with lysolecithin results in an increase in secondary structure. A 25-residue fragment of apoA-I binds to lysolecithin equally strongly as the native molecule.  相似文献   

6.
Endothelial lipase (EL) is a triglyceride lipase gene family member that has high phospholipase and low triglyceride lipase activity. The aim of this study was to determine whether the phospholipase activity of EL is sufficient to remodel HDLs into small particles and mediate the dissociation of apolipoprotein A-I (apoA-I). Spherical, reconstituted HDLs (rHDLs) containing apoA-I only [(A-I)rHDLs], apoA-II only [(A-II)rHDLs], or both apoA-I and apoA-II [(A-I/A-II) rHDLs] were prepared. The rHDLs, which contained only cholesteryl esters in their core and POPC on the surface, were incubated with EL. As the rHDLs did not contain triacylglycerol, only the POPC was hydrolyzed. Hydrolysis was greater in the (A-I/A-II)rHDLs than in the (A-I)rHDLs. The (A-II)rHDL phospholipids were not hydrolyzed by EL. EL remodeled the (A-I)rHDLs and (A-I/A-II)rHDLs, but not the (A-II)rHDLs, into smaller particles. The reduction in particle size was related to the amount of phospholipid hydrolysis, with the diameter of the (A-I/A-II)rHDLs decreasing more than that of the (A-I)rHDLs. These changes did not affect the conformation of apoA-I, and neither apoA-I nor apoA-II dissociated from the rHDLs. Comparable results were obtained when human plasma HDLs were incubated with EL. These results establish that the phospholipase activity of EL remodels plasma HDLs and rHDLs into smaller particles without mediating the dissociation of apolipoproteins.  相似文献   

7.
The lecithin:cholesterol acyltransferase (LCAT)-induced transformation of two discrete species of model complexes that differ in number of apolipoprotein A-I (apoA-I) molecules per particle was investigated. One complex species (designated 3A-I(UC)-complexes) contained 3 apoA-I per particle, was discoidal (13.5 X 4.4 nm), and had a molar composition of 22:78:1 (unesterified cholesterol (UC):egg yolk phosphatidylcholine (egg yolk PC):apoA-I). The other complex species (designated 2A-I(UC)complexes) containing 2 apoA-I per particle was also discoidal (8.4 X 4.1 nm) and had a molar composition of 6:40:1. Transformation of 3A-I(UC)complexes by partially purified LCAT yielded a product (24 hr, 37 degrees C) with a cholesteryl ester (CE) core, 3 apoA-I, and a mean diameter of 9.2 nm. The 2A-I(UC)complexes were only partially transformed to a core-containing product (24 hr, 37 degrees C) which also had 3 apoA-I; this product, however, was smaller (diameter of 8.5 nm) than the product from 3A-I(UC)complexes. Transformation of 3A-I(UC)complexes appeared to result from build-up of core CE directly within the precursor complex. Transformation of 2A-I(UC)complexes, however, followed a stepwise pathway to the product with 3 apoA-I, apparently involving fusion of transforming precursors and release of one apoA-I from the fusion product. In the presence of low density lipoprotein (LDL), used as a source of additional cholesterol, conversion of 2A-I(UC)complexes to the product with 3 apoA-I was more extensive. The transformation product of 3A-I(UC)complexes in the presence of LDL also had 3 apoA-I but was considerably smaller in size (8.6 vs. 9.2 nm, diameter) and had a twofold lower molar content of PC compared with the product formed without LDL. LDL appeared to act both as a donor of UC and an acceptor of PC. Transformation products with 3 apoA-I obtained under the various experimental conditions in the present studies appear to be constrained in core CE content (between 13 to 22 CE per apoA-I; range of 9 CE molecules) but relatively flexible in content of surface PC molecules they can accommodate (between 24 to 49 PC per apoA-I; range of 25 PC molecules). The properties of the core-containing products with 3 apoA-I compare closely with those of the major subpopulation of human plasma HDL in the size range of 8.2-8.8 nm that contains the molecular weight equivalent of 3 apoA-I molecules.  相似文献   

8.
The apoA-I molecule adopts a two-domain tertiary structure and the properties of these domains modulate the ability to form HDL particles. Thus, human apoA-I differs from mouse apoA-I in that it can form smaller HDL particles; the C-terminal α-helix is important in this process and human apoA-I is unusual in containing aromatic amino acids in the non-polar face of this amphipathic α-helix. To understand the influence of these aromatic amino acids and the associated high hydrophobicity, apoA-I variants were engineered in which aliphatic amino acids were substituted with or without causing a decrease in overall hydrophobicity. The variants human apoA-I (F225L/F229A/Y236A) and apoA-I (F225L/F229L/A232L/Y236L) were compared to wild-type (WT) apoA-I for their abilities to (1) solubilize phospholipid vesicles and form HDL particles of different sizes, and (2) mediate cellular cholesterol efflux and create nascent HDL particles via ABCA1. The loss of aromatic residues and concomitant decrease in hydrophobicity in apoA-I (F225L/F229A/Y236A) has no effect on protein stability, but reduces by a factor of about three the catalytic efficiencies (Vmax/Km) of vesicle solubilization and cholesterol efflux; also, relatively large HDL particles are formed. With apoA-I (F225L/F229L/A232L/Y236L) where the hydrophobicity is restored by the presence of only leucine residues in the helix non-polar face, the catalytic efficiencies of vesicle solubilization and cholesterol efflux are similar to those of WT apoA-I; this variant forms smaller HDL particles. Overall, the results show that the hydrophobicity of the non-polar face of the C-terminal amphipathic α-helix plays a critical role in determining apoA-I functionality but aromatic amino acids are not required. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).  相似文献   

9.
Lipoprotein metabolism in the central nervous system (CNS) is based on high-density lipoprotein-like particles that use apoE as their predominant apolipoprotein rather than apoA-I. Although apoA-I is not expressed in astrocytes and microglia, which produce CNS apoE, apoA-I is reported to be expressed in porcine brain capillary endothelial cells and also crosses the blood-brain barrier (BBB). These mechanisms allow apoA-I to reach concentrations in cerebrospinal fluid (CSF) that are approximately 0.5% of its plasma levels. Recently, apoA-I has been shown to enhance cognitive function and reduce cerebrovascular amyloid deposition in Alzheimer's Disease (AD) mice, raising questions about the regulation and function of apoA-I in the CNS. Peripheral apoA-I metabolism is highly influenced by ABCA1, but less is known about how ABCA1 regulates CNS apoA-I. We report that ABCA1 deficiency leads to greater retention of apoA-I in the CNS than in the periphery. Additionally, treatment of symptomatic AD mice with GW3965, an LXR agonist that stimulates ABCA1 expression, increases apoA-I more dramatically in the CNS compared to the periphery. Furthermore, GW3965-mediated up-regulation of CNS apoA-I is independent of ABCA1. Our results suggest that apoA-I may be regulated by distinct mechanisms on either side of the BBB and that apoA-I may serve to integrate peripheral and CNS lipid metabolism. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).  相似文献   

10.
Population studies have found that a natural human apoA-I variant, apoA-I[K107del], is strongly associated with low HDL-C but normal plasma apoA-I levels. We aimed to reveal properties of this variant that contribute to its unusual phenotype associated with atherosclerosis. Our oil-drop tensiometry studies revealed that compared to WT, recombinant apoA-I[K107del] adsorbed to surfaces of POPC-coated triolein drops at faster rates, remodeled the surfaces to a greater extent, and was ejected from the surfaces at higher surface pressures on compression of the lipid drops. These properties may drive increased binding of apoA-I[K107del] to and its better retention on large triglyceride-rich lipoproteins, thereby increasing the variant’s content on these lipoproteins. While K107del did not affect apoA-I capacity to promote ABCA1-mediated cholesterol efflux from J774 cells, it impaired the biogenesis of large nascent HDL particles resulting in the formation of predominantly smaller nascent HDL. Size-exclusion chromatography of spontaneously reconstituted 1,2-dimyristoylphosphatidylcholine-apoA-I complexes showed that apoA-I[K107del] had a hampered ability to form larger complexes but formed efficiently smaller-sized complexes. CD analysis revealed a reduced ability of apoA-I[K107del] to increase α-helical structure on binding to 1,2-dimyristoylphosphatidylcholine or in the presence of trifluoroethanol. This property may hinder the formation of large apoA-I[K107del]-containing discoidal and spherical HDL but not smaller HDL. Both factors, the increased content of apoA-I[K107del] on triglyceride-rich lipoproteins and the impaired ability of the variant to stabilize large HDL particles resulting in reduced lipid:protein ratios in HDL, may contribute to normal plasma apoA-I levels along with low HDL-C and increased risk for CVD.  相似文献   

11.
Optimized bacterial expression of human apolipoprotein A-I   总被引:3,自引:0,他引:3  
Apolipoprotein A-I (apoA-I) serves critical functions in plasma lipoprotein metabolism as a structural component of high density lipoprotein, activator of lecithin:cholesterol acyltransferase, and acceptor of cellular cholesterol as part of the reverse cholesterol transport pathway. In an effort to facilitate structure:function studies of human apoA-I, we have optimized a plasmid vector for production of recombinant wild type (WT) and mutant apoA-I in bacteria. To facilitate mutagenesis studies, subcloning, and DNA manipulation, numerous silent mutations have been introduced into the apoA-I cDNA, generating 13 unique restriction endonuclease sites. The coding sequence for human apoA-I has been modified by the introduction of additional silent mutations that eliminate 18 separate codons that employ tRNAs that are of low or moderate abundance in Escherichia coli. Yields of recombinant apoA-I achieved using the optimized cDNA were 100+/-20 mg/L bacterial culture, more than fivefold greater than yields routinely obtained with the original cDNA. Site-directed mutagenesis of the apoA-I cDNA was performed to generate a Glu2Asp mutation in the N-terminal sequence of apoA-I. This modification, which creates an acid labile Asp-Pro peptide bond between amino acids 2 and 3, permits specific chemical cleavage of an N-terminal His-Tag fusion peptide used for rapid protein purification. The product protein's primary structure is identical to WT apoA-I in all other respects. Together, these changes in apoA-I cDNA and bacterial expression protocol significantly improve the yield of apoA-I protein without compromising the relative ease of purification.  相似文献   

12.
Inflammation is associated with significant decreases in plasma HDL-cholesterol (HDL-C) and apoA-I levels. Endothelial lipase (EL) is known to be an important determinant of HDL-C in mice and in humans and is upregulated during inflammation. In this study, we investigated whether serum amyloid A (SAA), an HDL apolipoprotein highly induced during inflammation, alters the ability of EL to metabolize HDL. We determined that EL hydrolyzes SAA-enriched HDL in vitro without liberating lipid-free apoA-I. Coexpression of SAA and EL in mice by adenoviral vector produced a significantly greater reduction in HDL-C and apoA-I than a corresponding level of expression of either SAA or EL alone. The loss of HDL occurred without any evidence of HDL remodeling to smaller particles that would be expected to have more rapid turnover. Studies with primary hepatocytes demonstrated that coexpression of SAA and EL markedly impeded ABCA1-mediated lipidation of apoA-I to form nascent HDL. Our findings suggest that a reduction in nascent HDL formation may be partly responsible for reduced HDL-C during inflammation when both EL and SAA are known to be upregulated.  相似文献   

13.
The initial stage of oxidation of high density lipoproteins (HDL) is accompanied by the lipid hydroperoxide-dependent, selective oxidation of two of the three Met residues of apolipoprotein A-I (apoA-I) to Met sulfoxides (Met(O)). Formation of such selectively oxidized apoA-I (i.e. apoA-I(+32)) may affect the antiatherogenic properties of HDL, because it has been suggested that Met(86) and Met(112) are important for cholesterol efflux and Met(148) is involved in the activation of lecithin:cholesterol acyl transferase (LCAT). We therefore determined which Met residues were oxidized in apoA-I(+32) and how such oxidation of apoA-I affects its secondary structure, the affinity for lipids, and its ability to remove lipids from human macrophages. We also assessed the capacity of discoidal reconstituted HDL containing apoA-I(+32) to act as substrate for LCAT, and the dissociation of apoA-I and apoA-I(+32) from reconstituted HDL. Met(86) and Met(112) were present as Met(O), as determined by amino acid sequencing and mass spectrometry of isolated peptides derived from apoA-I(+32). Selective oxidation did not alter the alpha-helicity of lipid-free and lipid-associated apoA-I as assessed by circular dichroism, and the affinity for LCAT was comparable for reconstituted HDL containing apoA-I or apoA-I(+32). Cholesteryl ester transfer protein mediated the dissociation of apoA-I more readily from reconstituted HDL containing apoA-I(+32) than unoxidized apoA-I. Also, compared with native apoA-I, apoA-I(+32) had a 2- to 3-fold greater affinity for lipid (as determined by the rate of clearance of multilamellar phospholipid vesicles) and its ability to cause efflux of [(3)H]cholesterol, [(3)H]phospholipid, and [(14)C]alpha-tocopherol from lipid-laden human monocyte-derived macrophages was significantly enhanced. By contrast, no difference was observed for cholesterol and alpha-tocopherol efflux to lipid-associated apolipoproteins. Together, these results suggest that selective oxidation of Met residues enhances rather than diminishes known antiatherogenic activities of apoA-I, consistent with the overall hypothesis that detoxification of lipid hydroperoxides by HDL is potentially antiatherogenic.  相似文献   

14.
Non-enzymatic glycation of serum apolipoproteins is a main feature of diabetes mellitus under hyperglycemia. Advanced glycation end products are implicated in the development of aging and metabolic syndrome, including premature atherosclerosis in diabetic subjects. ApoA-I is the principal protein constituent of HDL. In this study, glycated human apoA-I (gA-I) by fructation was characterized on functional and structural correlations in lipid-free and lipid-bound states.The gA-I showed more spontaneous multimeric band formation up to pentamer and exhibited slower elution profile with more degraded fragments from fast protein liquid chromatography. The gA-I showed modified secondary structure from fluorescence and circular dichroism analysis. Reconstituted high-density lipoprotein (rHDL) containing the gA-I had less content of phospholipid with a much smaller particle size than those of rHDL-containing nA-I (nA-I-rHDL). The rHDL containing gA-I (gA-I-rHDL) consisted of less molecular number of apoA-I than nA-I-rHDL with decreased α-helical content. Treatment of the gA-I-rHDL induced more atherogenic process in macrophage cell and premature senescence in human dermal fibroblast cell.Conclusively, fructose-mediated apoA-I glycation resulted in severe loss of several beneficial functions of apoA-I and HDL regarding anti-senescence and anti-atherosclerosis activities due to a lack of anti-oxidant activity with increased susceptibility of protein degradation and structural modification.  相似文献   

15.
A method is described which will determine the distribution of individual apolipoproteins within the HDL subclasses. This method requires 1-2 microliters of plasma per determination and involves six steps: 1) electrophoresis of samples on non-denaturing 2-30% concave acrylamide gradient gels; 2) electrophoretic transfer of the lipoproteins to charge-modified nylon membranes; 3) fixation of the transferred lipoproteins with glutaraldehyde; 4) immunolocalization of the apolipoproteins with iodinated monospecific antibodies; 5) autoradiography followed by densitometry; and 6) reduction of the data to provide a plot of percent distribution versus particle size. When this method was applied to the analysis of rat apolipoproteins, differences were noted in the distribution of apoA-I, apoA-IV, and apoE. The majority of apoA-I was localized to HDL particles between 9 and 12 nm in diameter, with a median diameter of 10.0 nm, while apoE resided on substantially larger particles with a median diameter of 12.5 nm. ApoA-IV could be localized to three distinct areas: an HDL particle with a median diameter approximately 0.4 nm larger than apoA-I HDL, a particle smaller than albumin (lipoprotein-free apoA-IV), and a particle of 7.6 nm that does not appear to contain apoA-I or apoE.  相似文献   

16.
Oxidized HDL has been proposed to play a key role in atherogenesis. A wide range of reactive intermediates oxidizes methionine residues to methionine sulfoxide (MetO) in apolipoprotein A-I (apoA-I), the major HDL protein. These reactive species include those produced by myeloperoxidase, an enzyme implicated in atherogenesis. The aim of the present study was to develop a sensitive and specific ELISA for detecting MetO residues in HDL. We therefore immunized mice with HPLC-purified human apoA-I containing MetO(86) and MetO(112) (termed apoA-I(+32)) to generate a monoclonal antibody termed MOA-I. An ELISA using MOA-I detected lipid-free apoA-I(+32), apoA-I modified by 2e-oxidants (hydrogen peroxide, hypochlorous acid, peroxynitrite), and HDL oxidized by 1e- or 2e-oxidants and present in buffer or human plasma. Detection was concentration dependent, reproducible, and exhibited a linear response over a physiologically plausible range of concentrations of oxidized HDL. In contrast, MOA-I failed to recognize native apoA-I, native apoA-II, apoA-I modified by hydroxyl radical or metal ions, or LDL and methionine-containing proteins other than apoA-I modified by 2e-oxidants. Because the ELISA we have developed specifically detects apoA-I containing MetO in HDL and plasma, it should provide a useful tool for investigating the relationship between oxidized HDL and coronary artery disease.  相似文献   

17.
To elucidate the molecular details of how high density lipoprotein (HDL) microstructure affects the conformation of apolipoprotein (apo) A-I in various classes of HDL particles, apoA-I structure in homogeneous recombinant HDL (rHDL) complexes containing palmitoyl-oleoyl phosphatidylcholine (POPC) and cholesteryl oleate has been investigated by NMR spectroscopy of [13C]lysine-labeled apoA-I. All Lys residues in rHDL apoA-I were labeled with 13C by reductive methylation, and then their ionization behavior was characterized by 13C NMR spectroscopy. Four discoidal particles were prepared to contain from 64 to 256 molecules of POPC and 2 molecules of apoA-I; their major diameters ranged from 9.3 to 12.1 nm. (13CH3)2-Lys resonances from apoA-I in discoidal complexes exhibit six distinct chemical shifts at pH 10. The various Lys have pKa values ranging from 8.3 to 10.5, indicating that they exist in different microenvironments. More than 80% of the Lys residues in small (9.3 nm) discoidal particles titrate at a significantly lower pH than in the large (12.1 nm) discoidal particles. This indicates that apoA-I has a different conformation on the differently size discs. Two spherical particles were prepared with POPC:cholesteryl oleate:apoA-I molar stoichiometries of 56:16:2 and 232:84:4 and diameters of 7.4 and 12.6 nm, respectively. On spherical rHDL, apoA-I (13CH3)2-Lys resonances exhibit five distinct chemical shifts at pH 10. The titration behavior of apoA-I Lys residues is the same in small and large spherical particles, indicating that apoA-I conformation is similar on the two particles. The Lys microenvironments indicate that the conformation of apoA-I in discoidal complexes is dependent on particle size and that these conformations are substantially different from that of apoA-I on spherical complexes. Lys microenvironments in discoidal complexes differ from that of spherical complexes by 4 to 5 ysines which titrate with relatively low pKa values on discs. This reflects apparent differences in conformation in the NH2-terminal one-third of apoA-I on discs and spheres.  相似文献   

18.
ABCA1, a member of the ATP-binding cassette family, mediates the efflux of cellular lipids to free apolipoproteins, mainly apoA-I. The role of the C-terminal domain of apoA-I in this process has been evaluated by measuring the efflux capacity of a truncated form (apoA-I-(1-192)) versus intact apoA-I in different cellular models. In stimulated J774 macrophages, cholesterol efflux to apoA-I-(1-192) was remarkably lower than that to the intact apoA-I. The truncated apoA-I, lacking an important lipid-binding domain, was also significantly less efficient in removing phospholipids from stimulated macrophages. No difference was detected with stimulated Tangier fibroblasts that do not express functional ABCA1. The C-terminal domain of apoA-I is clearly involved in ABCA1-driven lipid efflux. Independent of the interaction with the cell surface, it may be the decreased ability of the truncated apoA-I to recruit membrane phospholipids that impairs its capacity to promote cell cholesterol efflux.  相似文献   

19.
Human apolipoprotein A-I (apoA-I)-derived amyloidosis can present with either wild-type (Wt) protein deposits in atherosclerotic plaques or as a hereditary form in which apoA-I variants deposit causing multiple organ failure. More than 15 single amino acid replacement amyloidogenic apoA-I variants have been described, but the molecular mechanisms involved in amyloid-associated pathology remain largely unknown. Here, we have investigated by fluorescence and biochemical approaches the stabilities and propensities to aggregate of two disease-associated apoA-I variants, apoA-IGly26Arg, associated with polyneuropathy and kidney dysfunction, and apoA-ILys107-0, implicated in amyloidosis in severe atherosclerosis. Results showed that both variants share common structural properties including decreased stability compared to Wt apoA-I and a more flexible structure that gives rise to formation of partially folded states. Interestingly, however, distinct features appear to determine their pathogenic mechanisms. ApoA-ILys107-0 has an increased propensity to aggregate at physiological pH and in a pro-inflammatory microenvironment than Wt apoA-I, whereas apoA-IGly26Arg elicited macrophage activation, thus stimulating local chronic inflammation. Our results strongly suggest that some natural mutations in apoA-I variants elicit protein tendency to aggregate, but in addition the specific interaction of different variants with macrophages may contribute to cellular stress and toxicity in hereditary amyloidosis.  相似文献   

20.
The monolayer system was employed to investigate the relative affinities of apolipoproteins A-I and A-II for the lipid/water interface. The adsorption of reductively 14C-methylated apolipoproteins to phospholipid monolayers spread at the air/water interface was determined by monitoring the surface pressure of the mixed monolayer and the surface concentration of the apoprotein. ApoA-II has a higher affinity than apoA-I for lipid monolayers; for a given initial surface pressure, apoA-II adsorbs more than apoA-I to monolayers of egg phosphatidylcholine (PC), distearoyl-PC and human high-density lipoprotein (HDL3) surface lipids. Comparison of the molecular packing of apolipoproteins A-I and A-II suggests that apoA-II adopts a more condensed conformation at the lipid/water interface compared to apoA-I. The ability of apoA-II to displace apoA-I from egg PC and HDL3 surface lipid monolayers was studied by following the adsorption and desorption of the reductively 14C-methylated apolipoproteins. At saturating subphase concentrations of the apoproteins (3.10(-5) g/100 ml), two molecules of apoA-II absorbed for each molecule of apoA-I displaced. This displacement was accompanied by an increase in surface pressure. An identical stoichiometry for the displacement of apoA-I from HDL particles by apoA-II has been reported by others. At low subphase concentrations of apoproteins (5.10(-6) g/100 ml), the apoA-I/lipid monolayer was not fully compressed and could accommodate the adsorbing apoA-II molecules without displacement of apoA-I molecules. ApoA-I molecules were unable to displace apoA-II from the lipid/water interface. The average residue hydrophobicity of apoA-II is higher than that of apoA-I; this may contribute to the higher affinity of apoA-II for lipids compared to apoA-I. The probable helical regions in apolipoproteins A-I and A-II were located using a secondary structure prediction algorithm. The analysis suggests that the amphiphilic properties of the alpha-helical regions of apoA-I and apoA-II are probably not significantly different. Further understanding of the differences in surface activity of these apolipoproteins will require more knowledge of their secondary and tertiary structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号