首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The EcoA restriction enzyme from Escherichia coli 15T- has been isolated. It proves to be an unusual enzyme, clearly related functionally to the classical type I restriction enzymes. The basic enzyme is a two subunit modification methylase. Another protein species can be purified which by itself has no enzymatic activities but which converts the modification methylase to an ATP and S-adenosylmethionine-dependent restriction endonuclease. The DNA recognition sequence of EcoA has an overall structure that is very similar to previously determined type I sequences. It is: 5'-GAGNNNNNNNGTCA-3' 3'-CTCNNNNNNNCAGT-5' where N can be any nucleotide. Modification methylates the adenosyl residue in the specific trinucleotide and the adenosyl residue in the lower strand of the specific tetranucleotide.  相似文献   

2.
The genes (hsd A) encoding EcoA, a restriction and modification system first identified in Escherichia coli 15T-, behave in genetic crosses as alleles of the genes (hsd K) encoding the archetypal type I restriction and modification system of E. coli K12. Nevertheless, molecular experiments have failed to detect relatedness between the A and K systems. We have cloned the hsd A genes and have identified, on the basis of DNA homology, related genes (hsd E) conferring a new specificity to a natural isolate of E. coli. We show that the overall organization of the genes encoding EcoA and EcoE closely parallels that for EcoK. Each enzyme is encoded by three genes, of which only one, hsdS, confers the specificity of DNA interaction. The three genes are in the same order as those encoding EcoK, i.e. hsdR, hsdM and hsdS and, similarly, they include a promoter between hsdR and hsdM from which the M and S genes can be transcribed. The evidence indicates that EcoA and EcoE are type I restriction and modification enzymes, but they appear to identify an alternative family to EcoK. For both families, the hsdR polypeptide is by far the largest, but the sizes of the other two polypeptides are reversed, with the smallest polypeptide of EcoK being the product of hsd S, and the smallest for the EcoA family being the product of hsdM. Physiologically, the A restriction and modification system differs from that of K and its relatives, in that A-specific methylation of unmodified DNA is particularly effective.  相似文献   

3.
The nucleotide recognition sequence for the restriction-modification enzyme of Escherichia coli A (EcoA) has been determined to be GAG-7N-GTCA. This sequence is fairly similar, but distinctly different from the two other type I restriction enzyme recognition sites known for E. coli B and E. coli K12, respectively. N6-adenosine methylation has been observed at nucleotide positions 2 and 12 within that sequence after modification by EcoA. As a reference point for mapping the single EcoA site in lambda, the position of lambda point mutation Oam29 has been determined also.  相似文献   

4.
We screened Salmonella typhimurium, Citrobacter freundii, Klebsiella pneumoniae, Shigella boydii, and many isolates of Escherichia coli for DNA sequences homologous to those encoding each of two unrelated type I restriction and modification systems (EcoK and EcoA). Both K- and A-related hsd genes were identified, but never both in the same strain. S. typhimurium encodes three restriction and modification systems, but its DNA hybridized only to the K-specific probe which we know to identify the StySB system. No homology to either probe was detected in the majority of E. coli strains, but in C. freundii, we identified homology to the A-specific probe. We cloned this region of the C. freundii genome and showed that it encoded a functional, A-related restriction system whose specificity differs from those of known type I enzymes. Sequences immediately flanking the hsd K genes of E. coli K-12 and the hsd A genes of E. coli 15T- were shown to be homologous, indicating similar or even identical positions in their respective chromosomes. E. coli C has no known restriction system, and the organization of its chromosome is consistent with deletion of the three hsd genes and their neighbor, mcrB.  相似文献   

5.
We have identified the recognition sequence for the Citrobacter freundii restriction endonuclease CfrA, a member of the A-family of type I R-M enzymes. This bipartite target sequence differs in both its components from those of other type I enzymes. We determined the nucleotide sequence of its specificity gene (hsdS) and a comparison of this with its relative EcoA identifies two extensive variable regions, an organization analogous to that found in the K-family of type I R-M enzymes. The specificity polypeptides of the A-family, unlike those of K, have an N-terminal conserved region, and this includes a sequence repeated within the central conserved region. A second repeat sequence, identified at the amino acid level, coincides with the only sequence similarity common to all type I S polypeptides. Sequences immediately downstream from the hsdS genes of EcoA, CfrA, EcoK, B and D are almost identical, consistent with an allelic chromosomal location.  相似文献   

6.
We have purified the type I restriction enzymes SB and SP from Salmonella typhimurium and S. potsdam, respectively, and determined the DNA sequences that they recognize. These sequences resemble those previously determined for the type I enzymes, EcoB, EcoK and EcoA, in that the specific part of the sequence is divided into two domains by a spacer of non-specific sequence that has a fixed length for each enzyme. Two main differences from the previously determined sequences are seen. Both of the new sequences are degenerate and one of them, SB, has one trinucleotide and one pentanucleotide-specific domain rather than the trinucleotide and tetranucleotide domains seen for all of the other enzymes. The only conserved features of the recognition sequences are the adenosyl residues that are methylated in the modification reaction. For all of the enzymes these are situated ten or 11 base-pairs apart, one on each strand of the DNA. This suggests that the enzymes bind to DNA along one face of the double helix making protein-DNA interaction in two successive major grooves with most of the non-specific spacer sequence in the intervening minor groove.  相似文献   

7.
G M Cowan  A A Gann  N E Murray 《Cell》1989,56(1):103-109
One polypeptide, designated S, confers sequence-specificity to the multisubunit type I restriction enzymes. Two families of such enzymes, K and A, include members that recognize diverse, bipartite, target sequences. The S polypeptides of the K family, while having areas of near identity, also contain two extensive regions of variable sequence. We now show that one of these, comprising the N-terminal 150 amino acids, specifies recognition of one component of the bipartite target sequence. We have determined the sequence recognized by EcoE, a member of the A family. This sequence, 5'GAG(N7)ATGC, has the trinucleotide GAG in common with EcoA and with StySB of the K family. We determined the nucleotide sequences of the S genes of EcoA and EcoE, and compared their predicted amino acid sequences with each other and with those of the five members of the K family. There is no general sequence similarity between families, but the domain of the S polypeptide of StySB, which specifies GAG, shows nearly 50 per cent identity with the amino variable region of the S polypeptides of EcoA and EcoE. A complex domain that recognizes and directs methylation of GAG is therefore common to enzymes of generally dissimilar amino acid sequence.  相似文献   

8.
Type I restriction enzymes comprise three subunits encoded by genes designated hsdR, hsdM, and hsdS; S confers sequence specificity. Three families of enzymes are known and within families, but not between, hsdM and hsdR are conserved. Consequently, interfamily comparisons of M and R sequences focus on regions of putative functional significance, while both inter- and intrafamily comparisons address the origin, nature and role of diversity of type I restriction systems. We have determined the sequence of the hsdR gene for EcoA, thus making available sequences of all three hsd genes of one representative from each family. The predicted R polypeptide sequences share conserved regions with one superfamily of putative helicases, so-called ‘DEAD box’ proteins; these conserved sequences may be associated with the ATP-dependent translocation of DNA that precedes restriction. We also present hsdM and hsdR sequences for EcoE, a member of the same family as EcoA. The sequences of the M and R genes of EcoA and EcoE are at least as divergent as typical genes from Escherichia coli and Salmonella, perhaps as the result of selection favouring diversity of restriction specificities combined with lateral transfer among different species.  相似文献   

9.
Our understanding of the evolution of DNA restriction and modification systems, the control of the expression of the structural genes for the enzymes, and the importance of DNA restriction in the cellular economy has advanced by leaps and bounds in recent years. This review documents these advances for the three major classes of classical restriction and modification systems, describes the discovery of a new class of restriction systems that specifically cut DNA carrying the modification signature of foreign cells, and deals with the mechanisms developed by phages to avoid the restriction systems of their hosts.  相似文献   

10.

Background  

Type I restriction-modification (R-M) systems are the most complex restriction enzymes discovered to date. Recent years have witnessed a renaissance of interest in R-M enzymes Type I. The massive ongoing sequencing programmes leading to discovery of, so far, more than 1 000 putative enzymes in a broad range of microorganisms including pathogenic bacteria, revealed that these enzymes are widely represented in nature. The aim of this study was characterisation of a putative R-M system EcoA0ORF42P identified in the commensal Escherichia coli A0 34/86 (O83: K24: H31) strain, which is efficiently used at Czech paediatric clinics for prophylaxis and treatment of nosocomial infections and diarrhoea of preterm and newborn infants.  相似文献   

11.
Biology of DNA restriction.   总被引:1,自引:0,他引:1       下载免费PDF全文
Our understanding of the evolution of DNA restriction and modification systems, the control of the expression of the structural genes for the enzymes, and the importance of DNA restriction in the cellular economy has advanced by leaps and bounds in recent years. This review documents these advances for the three major classes of classical restriction and modification systems, describes the discovery of a new class of restriction systems that specifically cut DNA carrying the modification signature of foreign cells, and deals with the mechanisms developed by phages to avoid the restriction systems of their hosts.  相似文献   

12.
A circular periodic map of short palindromic DNA sequences is constructed using the sequence homology and symmetry. It is applied to compare sequences recognised by class II restriction and modification enzymes with other similar DNA sequences. All known restriction sites have two strong properties: they are enriched by GC pairs, and clustered (purine-purine, pyrimidine-pyrimidine) bonds predominant upon alternating ones. The preference of AT/GC alternation is only slight. These properties were compared quantitatively with the help of suggested numerical methods among different groups of restriction enzymes. The map is applied for prediction of new specificities of restriction modification systems. Possible mechanism of DNA sequence recognition by these enzymes and their evolution are discussed.  相似文献   

13.
14.
Guided by the X-ray structure analysis of a crystalline EcoRV-d(GGGATATCCC) complex (Winkler, in preparation), we have begun to identify functionally important amino acid residues of EcoRV. We show here that Asn70, Asp74, Ser183, Asn185, Thr186, and Asn188 are most likely involved in the binding and/or cleavage of the DNA, because their conservative substitution leads to mutants of no or strongly reduced activity. In addition, C-terminal amino acid residues of EcoRV seem to be important for its activity, since their deletion inactivates the enzyme. Following the identification of three functionally important regions, we have inspected the sequences of other restriction and modification enzymes for homologous regions. It was found that two restriction enzymes that recognize similar sequences as EcoRV (DpnII and HincII), as well as two modification enzymes (M.DpnII and, in a less apparent form, M.EcoRV), have the sequence motif -SerGlyXXXAsnIleXSer- in common, which in EcoRV contains the essential Ser183 and Asn188 residues. Furthermore, the C-terminal region, shown to be essential for EcoRV, is highly homologous to a similar region in the restriction endonuclease SmaI. On the basis of these findings we propose that these restriction enzymes and to a certain extent also some of their corresponding modification enzymes interact with DNA in a similar manner.  相似文献   

15.
Nobusato A  Uchiyama I  Ohashi S  Kobayashi I 《Gene》2000,259(1-2):99-108
The complete genome sequences of two closely related organisms--two Helicobacter pylori strains--have recently become available. Comparison of these genomes at single base pair level has suggested the presence of a mechanism for bacterial gene mobility--insertion with long target duplications. This mechanism is formally similar to classical transposon insertion, but the duplication is much longer, often in the range of 100bp. Restriction and/or modification enzyme genes are often within or adjacent to the insertion. A similar process may have mediated insertion of the cag(+) pathogenicity island in H. pylori. A similar structure was identified in comparisons between Neisseria meningitidis and Neisseria gonorrhoeae genomes. We hypothesize that this mechanism, as well as two other types of polymorphism linked with restriction-modification genes (insertion accompanied by target deletion and a tripartite structure composed of substitution/inversion/deletion), have resulted from attack by restriction enzymes on the chromosome.  相似文献   

16.
17.
M. Nei  J. C. Miller 《Genetics》1990,125(4):873-879
A simple method is proposed for estimating the average number of nucleotide substitutions per site within and between populations for the case where a large number of individuals are examined for many restriction enzymes. This method gives essentially the same results as those obtained by Nei and Li's method but saves a large amount of computer time. The variances of the quantities estimated can be obtained by the jackknife method, and these variances are very similar to those obtained by Nei and Jin's more sophisticated method. A similar method can also be applied to DNA sequence data.  相似文献   

18.
From the characterization of enzyme activities and the analysis of genomic sequences, the complement of DNA methyltransferases (MTases) possessed by the cyanobacterium ANABAENA PCC 7120 has been deduced. ANABAENA has nine DNA MTases. Four are associated with Type II restriction enzymes (AVAI, AVAII, AVAIII and the newly recognized inactive AVAIV), and five are not. Of the latter, four may be classified as solitary MTases, those whose function lies outside of a restriction/modification system. The group is defined here based on biochemical and genetic characteristics. The four solitary MTases, DmtA/M.AVAVI, DmtB/M.AVAVII, DmtC/M. AVAVIII and DmtD/M.AVAIX, methylate at GATC, GGCC, CGATCG and rCCGGy, respectively. DmtB methylates cytosines at the N4 position, but its sequence is more similar to N6-adenine MTases than to cytosine-specific enzymes, indicating that it may have evolved from the former. The solitary MTases, appear to be of ancient origin within cyanobacteria, while the restriction MTases appear to have arrived by recent horizontal transfer as did five now inactive Type I restriction systems. One Mtase, M.AVAV, cannot reliably be classified as either a solitary or restriction MTase. It is structurally unusual and along with a few proteins of prokaryotic and eukaryotic origin defines a structural class of MTases distinct from all previously described.  相似文献   

19.
Anaerobic oxidation of methane (AOM) with sulfate is catalysed by microbial consortia of archaea and bacteria affiliating with methanogens and sulfate-reducing Deltaproteobacteria respectively. There is evidence that methane oxidation is catalysed by enzymes related to those in methanogenesis, but the enzymes for sulfate reduction coupled to AOM have not been examined. We collected microbial mats with high AOM activity from a methane seep in the Black Sea. The mats consisted mainly of archaea of the ANME-2 group and bacteria of the Desulfosarcina-Desulfococcus group. Cell-free mat extract contained activities of enzymes involved in sulfate reduction to sulfide: ATP sulfurylase (adenylyl : sulfate transferase; Sat), APS reductase (Apr) and dissimilatory sulfite reductase (Dsr). We partially purified the enzymes by anion-exchange chromatography. The amounts obtained indicated that the enzymes are abundant in the mat, with Sat accounting for 2% of the soluble mat protein. N-terminal amino acid sequences of purified proteins suggested similarities to the corresponding enzymes of known species of sulfate-reducing bacteria. The deduced amino acid sequence of PCR-amplified genes of the Apr subunits is similar to that of Apr of the Desulfosarcina/Desulfococcus group. These results indicate that the major enzymes involved in sulfate reduction in the Back Sea microbial mats are of bacterial origin, most likely originating from the bacterial partner in the consortium.  相似文献   

20.
The nucleotide sequence was established for the full-length Flavobacterium aquatile operon coding for the FauI restriction–modification system. The operon is unusual in structure and has the gene order control protein / DNA methyltransferase A / restriction endonuclease / DNA methyltransferase B, other than in the known analogs; the genes are similarly oriented and overlap. On evidence of sequence analysis, both methyltransferases are C5 enzymes, the control protein is similar to that of other restriction–modification systems, and the restriction endonuclease shows low similarity to other enzymes cleaving the DNA upper strand in position 4 or 5 relative to the recognition site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号