首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The peripheral nervous system of embryos homozygous for prd, ftz, en and bxd was examined for defects and transformations in the segment-specific pattern of sensilla and peripheral nerves. This analysis permitted me to assign a distinct subset of sensilla to any of the three genetically and morphologically defined compartments s, a and p of each segment. In the wild-type embryonic segments, sensory axons deriving from sensilla of different compartments form a part of the common peripheral nerves. In the composite segments of prd and ftz mutant embryos, subsets of sensilla of two neighbouring segments are combined. Nevertheless, the axons of sensilla of different segmental identity are able to fasciculate and to form afferent nerves, which connect in an apparently normal fashion to the central nervous system. It is concluded that in the Drosophila embryo compartmental and segmental identity of sensory organs has no influence on the trajectories of sensory axons.  相似文献   

2.
Segmentation in the head of the embryo of the Colorado beetleLeptinotarsa decemlineata is described on the basis of anti-engrailed (en) immunostaining of germ band stages. Six segmental units can be identified with this technique. Three segmentalen stripes can be distinguished in the gnathal region, a weak stripe interrupted medially shows the intercalary segment rudiment, a pair of oblique stripes indicate the antennal segment, and one pair of preantennalen spots are taken to indicate a sixth segment. In the broad head lobes of the beetle the spacing of the six segmental units as demarcated byen regions is similar to that in other parts of the germ band. The results are discussed with respect to old and new data concerning the number of head segments and origin of the compound eye in insects.  相似文献   

3.
The evolution of larval head morphology in holometabolous insects is characterized by reduction of antennal appendages and the visual system components. Little insight has been gained into molecular developmental changes underlying this morphological diversification. Here we compare the expression of the segment polarity gene wingless (wg) in the pregnathal head of fruit fly, flour beetle and grasshopper embryos. We provide evidence that wg activity contributes to segment border formation, and, subsequently, the separation of the visual system and protocerebrum anlagen in the anterior procephalon. In directly developing insects like grasshopper, seven expression domains are formed during this process. The activation of four of these, which correspond to polar expression pairs in the optic lobe anlagen and the protocerebral ectoderm, has shifted to postembryonic stages in flour beetle and Drosophila. The remaining three domains map to the protocerebral neuroectoderm, and form by disintegration of a large precursor domain in flour beetle and grasshopper. In Drosophila, the precursor domain remains intact, constituting the previously described “head blob”. These data document major changes in the expression of an early patterning gene correlated with the dramatic evolution of embryonic visual system development in the Holometabola.  相似文献   

4.
As the putative sister group to the arthropods, onychophorans can provide insight into ancestral developmental mechanisms in the panarthropod clade. Here, we examine the expression during segmentation of orthologues of wingless (Wnt1) and engrailed, two genes that play a key role in defining segment boundaries in Drosophila and that appear to play a role in segmentation in many other arthropods. Both are expressed in segmentally reiterated stripes in all forming segments except the first (brain) segment, which only shows an engrailed stripe. Engrailed is expressed before segments are morphologically visible and is expressed in both mesoderm and ectoderm. Segmental wingless expression is not detectable until after mesodermal somites are clearly distinct. Early engrailed expression lies in and extends to both sides of the furrow that first demarcates segments in the ectoderm, but is largely restricted to the posterior part of somites. Wingless expression lies immediately anterior to engrailed expression, as it does in many arthropods, but there is no precise cellular boundary between the two expression domains analogous to the overt parasegment boundary seen in Drosophila. Engrailed stripes extend along the posterior part of each limb bud, including the antenna, while wingless is restricted to the distal tip of the limbs and the neurectoderm basal to the limbs. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
We documented expression of the pan-metazoan neurogenic gene engrailed in larval and juvenile Patiriella sea stars to determine if this gene patterns bilateral and radial echinoderm nervous systems. Engrailed homologues, containing conserved En protein domains, were cloned from the radial nerve cord. During development, engrailed was expressed in ectodermal (nervous system) and mesodermal (coeloms) derivatives. In larvae, engrailed was expressed in cells lining the larval and future adult coeloms. Engrailed was not expressed in the larval nervous system. As adult-specific developmental programs were switched on during metamorphosis, engrailed was expressed in the central nervous system and peripheral nervous system (PNS), paralleling the pattern of neuropeptide immunolocalisation. Engrailed was first seen in the developing nerve ring and appeared to be up-regulated as the nervous system developed. Expression of engrailed in the nerve plexus of the tube feet, the lobes of the hydrocoel along the adult arm axis, is similar to the reiterated pattern of expression seen in other animals. Engrailed expression in developing nervous tissue reflects its conserved role in neurogenesis, but its broad expression in the adult nervous system of Patiriella differs from the localised expression seen in other bilaterians. The role of engrailed in patterning repeated PNS structures indicates that it may be important in patterning the fivefold organisation of the ambulacrae, a defining feature of the Echinodermata.  相似文献   

6.
We have cloned and sequenced the single Tribolium homolog of the Drosophila engrailed gene. The predicted protein contains a homeobox and several domains conserved among all engrailed genes identified to date. In addition it contains several features specific to the invected homologs of Bombyx and Drosophila, indicating that these features most likely were present in the ancestral gene in the common ancestor of holometabolous insects. We used the cross-reacting monoclonal antibody, 4D9, to follow the expression of the Engrailed protein during segmentation in Tribolium embryos. As in other insects, Engrailed accumulates in the nuclei of cells along the posterior margin of each segment. The first Engrailed stripe appears as the embryonic rudiment condenses. Then as the rudiment elongates into a germ band, Engrailed stripes appear in an anterior to posterior progression, just prior to morphological evidence of the formation of each segment. As in Drosophila (a long germ insect), expression of engrailed in Tribolium (classified as a short germ insect) is preceeded by the expression of several homologous segmentation genes, suggesting that similar genetic regulatory mechanisms are shared by diverse developmental types. © 1994 Wiley-Liss, Inc.  相似文献   

7.
Trilobites have a rich and abundant fossil record, but little is known about the intrinsic mechanisms that orchestrate their body organization. To date, there is disagreement regarding the correspondence, or lack thereof, of the segmental units that constitute the trilobite trunk and their associated exoskeletal elements. The phylogenetic position of trilobites within total-group Euarthropoda, however, allows inferences about the underlying organization in these extinct taxa to be made, as some of the fundamental genetic processes for constructing the trunk segments are remarkably conserved among living arthropods. One example is the expression of the segment polarity gene engrailed, which at embryonic and early postembryonic stages is expressed in extant panarthropods (i.e. tardigrades, onychophorans, euarthropods) as transverse stripes that define the posteriormost region of each trunk segment. Due to its conservative morphology and allegedly primitive trunk tagmosis, we have utilized the centipede Strigamia maritima to study the correspondence between the expression of engrailed during late embryonic to postembryonic stages, and the development of the dorsal exoskeletal plates (i.e. tergites). The results corroborate the close correlation between the formation of the tergite borders and the dorsal expression of engrailed, and suggest that this association represents a symplesiomorphy within Euarthropoda. This correspondence between the genetic and phenetic levels enables making accurate inferences about the dorsoventral expression domains of engrailed in the trunk of exceptionally preserved trilobites and their close relatives, and is suggestive of the widespread occurrence of a distinct type of genetic segmental mismatch in these extinct arthropods. The metameric organization of the digestive tract in trilobites provides further support to this new interpretation. The wider evolutionary implications of these findings suggest the presence of a derived morphogenetic patterning mechanism responsible for the reiterated occurrence of different types of trunk dorsoventral segmental mismatch in several phylogenetically distant, extinct and extant, arthropod groups.  相似文献   

8.
The embryonic development of the primordia of the Drosophila head was studied by using an enhancer trap line expressed in these structures from embryonic stage 13 onward. Particular attention was given to the question of how the adult head primordia relate to the larval head segments. The clypeo-labral bud to the stage 13 embryo is located at a lateral position in the labrum adjacent to the labral sensory complex (epiphysis). Both clypeo-labral bud and sensory complex are located anterior to the engrailed-expression domain of the labrum. Throughout late embryogenesis and the larval period, the clypeo-labral bud forms integral part of the epithelium lining the roof of the atrium. The labial disc originates from the lateral labial segment adjacent to the labial sensory complex (hypophysis). It partially overlaps with the labial en-domain. After head involution, the labial disc forms a small pocket in the ventro-lateral wall of the atrium. The eye-antenna disc develops from a relatively large territory occupying the dorso-posterior part of the procephalic lobe, as well as parts of the dorsal gnathal segments. Cells in this territory are greatly reduced in number by cell death during stages 12–14. After head involution, the presumptive eye-antenna disc occupies a position in the lateral-posterior part of the dorsal pouch. Evagination of this tissue occurs during the first hours after hatching. In the embryo, no en-expression is present in the presumptive eye-antenna disc. en-expression starts in three separate regions in the third instar larva.  相似文献   

9.
Summary Mutations of the homeotic gene fork head (fkh) of Drosophila transform the non-segmented terminal regions of the embryonic ectoderm into segmental derivatives: Pre-oral head structures and the foregut are replaced by post-oral head structures which are occasionally associated with thoracic structures. Posterior tail structures including the hindgut and the Malpighian tubules are replaced by post-oral head structures associated with anterior tail structures. The fkh gene shows no maternal effect and is required only during embryogenesis. The phenotypes of double mutants indicate that fkh acts independently of other homeotic genes (ANT-C, BX-C, spalt) and caudal. In addition, the fkh domains are not expanded in Polycomb (Pc) group mutant embryos. Ectopic expression of the homeotic selector genes of the ANT-C and BX-C in Pc group mutant embryos causes segmental transformations in terminal regions of the embryo only in the absence of fkh gene activity. Thus, fkh is a region-specific homeotic rather than a selector gene, which promotes terminal as opposed to segmental development. Offprint requests to: Institut für Biologie II (Genetik), Universität Tübingen, Auf der Morgenstelle 28, D-7400 Tübingen, Federal Republic of Germany  相似文献   

10.
Polycomb group (PcG) proteins maintain the spatial expression patterns of genes that are involved in cell-fate specification along the anterior-posterior (A/P) axis. This repression requires cis-acting silencers, which are called PcG response elements (PREs). One of the PcG proteins, Pleiohomeotic (Pho), which has a zinc finger DNA binding protein, plays a critical role in recruiting other PcG proteins to bind to PREs. In this study, we characterized the effects of a pho mutation on embryonic segmentation. pho maternal mutant embryos showed various segmental defects including pair-rule gene mutant patterns. Our results indicated that engrailed and even-skipped genes were misexpressed in pho mutant embryos, which caused embryonic segment defects.  相似文献   

11.
Embryonic development of the head of Oxyrhachis tarandus (Membracidae) has been investigated in detail to settle the controversy of head segmentation and to refute the occurrence of an intercalary segment. The head is formed from six distinct elements: the prostominal lobe, the paired cephalic lobes, the antennal segment and the three noncontroversial gnathal segments. The prostomial lobe, which possesses a neuromere and a pair of coelomic cavities, represents the first body segment, called the prostomial segment. The tritocerebral lobes of the brain and the stomatogastric nervous system, consisting of a frontal ganglion, clypeolabral nerves, and the recurrent nerve etc., develop from the neuromere of the prostomial lobe. The tritocerebrum thus belongs to the prostomial segment rather than to an imaginary intercalary segment and mainly represents the ganglionic center of the stomatogastric nervous system in the brain. Frons, clypeus, and labrum develop from the outer wall of the prostomial lobulate plate, whereas the epipharyngeal wall, including the cibarial pump, develops from its inner wall. The presence of three coelomic cavities and of three distinct neural masses in the cephalic lobes during the initial stages of development shows that they have developed by the fusion of three distinct segments during the long phylogenetic history of insects. The portion of the germ band presently considered as the intercalary segment is actually the sternal part of the antennal segment. The neural cells located in this region give rise to the deutocerebrum by shifting forward, around the stomodaeum, and always leaving a commissure behind. The intercalary segment is thus a complete illusion. The antennal segment is postoral in the beginning and bears a pair of coelomic cavities, but later on it shifts forward and its sternal part invaginates into the stomodaeum.  相似文献   

12.
Summary The thoracic and abdominal segments of the Drosophila embryo contain 373 neurons innervating external sensory structures and 162 neurons innervating chordotonal organs. These neurons are arranged in ventral, lateral and dorsal clusters within each segment, in a highly invariant pattern. Two fascicles are formed in each segment as the sensory axons grow ventrally towards the CNS and meet motor axons growing dorsally from the CNS. In all but the last segment, the anterior fascicle is contributed by the dorsal and lateral neurons, while the posterior one is formed by the ventral neurons. Five distinct segmental patterns are described, corresponding to (1) the prothorax, (2) the other two thoracic segments, (3) the first seven abdominal segments, (4) the eighth and (5) the ninth (and possibly the tenth) abdominal segments.The publisher regrets that two companion papers unfortunately were published out of sequence. The present paper should have preceded the paper entitled The sense organs in the Drosophila larva and their relation to the embryonic pattern of sensory neurons, which appeared in Volume 195, Number 4 of the journal (pp 222–228)  相似文献   

13.
The nervous system is composed of cells including neurons and glia. It has been believed that the former cells play central roles in various neural functions while the latter ones have only supportive functions for neurons. However, recent findings suggest that glial cells actively participate in neural activities, and the cooperation between neurons and glia is important for nervous system functions. In Caenorhabditis elegans, amphid sensory organs in the head also consist of sensory neurons and glia-like support cells (amphid socket and amphid sheath cells). Ciliary endings of some sensory neurons exposed to the environment detect various chemicals, molecules and signals, and the cilia of some neurons can also take up fluorescent dyes such as DiI. Here, we show that the amphid sheath glia are also stained with DiI and that its uptake by the amphid sheath cells correlates with DiI-filling of sensory neurons, suggesting that the amphid sheath glia might interact with sensory neurons. Furthermore, the localization of the amphid sheath cell reporter F52E1.2SP::YFP is abnormal in che-2 mutants, which have defective cilia. These findings imply that sensory neurons might affect amphid sheath glia functions in the amphid sensory organ of C. elegans.  相似文献   

14.
 Using intracellular lineage tracers to study the main neurogenic lineage (N lineage) of the glossiphoniid leech embryo, we have characterized events leading from continuous columns of segmental founder cells (nf and ns primary blast cells) to discrete, segmentally iterated ganglia. The separation between prospective ganglia was first evident as a fissure between the posterior boundary of nf- and the anterior boundary of ns-derived progeny. We also identified the sublineages of nf-derived cells that contribute parallel stripes of cells to each segment. These stripes of cells project ventrolaterally from the dorsolateral margin of each nascent ganglion to the ventral body wall. The position and orientation of the stripes suggests that they play a role in forming the posterior segmental nerve; they are not coincident with the ganglionic boundary, and they form well after the separation of ganglionic primordia. Previous work has shown that cells in the anterior stripe express the leech engrailed-class gene. Thus, in contrast to the role of cells expressing engrailed in Drosophila, the stripes of N-derived cells expressing an engrailed-class gene in leech do not seem to play a direct role in segmentation or segment polarity. Received: 10 October 1997 / Accepted: 12 December 1997  相似文献   

15.
16.
The engrailed expression in embryos of a beetle, four midges and a fly has been analysed with special reference to the terminal regions. In all six species the segmental expression pattern is very similar but variability occurs in the clypeolabrum, foregut and hindgut. In some cases, segmental engrailed expression seems to be extended into the hind- and/or foregut. The engrailed expression of these species is compared with published data from other insects. Correspondence to: U. Schmidt-Ott  相似文献   

17.
Summary We have raised antiserum against part of the Deformed (Dfd) protein of the honeybee and describe here the expression pattern of the Dfd protein during honeybee embryogenesis. Dfd protein is first stained in the prospective gnathal region of the cellular blastoderm. This circumferential band corresponds to the distribution of Dfd mRNA described earlier, and to the blastodermal Dfd expression pattern in Drosophila. Using an antibody against the engrailed (en) protein of Drosophila, we found that at the beginning of gastrulation Dfd expression in the honeybee, as in Drosophila, is restricted to the future intercalary, mandibular and maxillary segments. During gastrulation, the mesodermal nuclei loose the Dfd label gradually from anterior to posterior, and in the ectoderm the most posterior ventral cells loose Dfd while retaining en staining; thus, in contrast to what has been described for Drosophila, the posterior Dfd expression border seems to move forward ventrally to the parasegmental boundary within the maxillary segment. In the late germ band, the lateral tips of the Dfd-expressing band are connected across the dorsal side by a row of amnion cells with strongly staining large nuclei. After dorsal closure, a narrow stripe of Dfd-staining dorsal cells behind the neck region may indicate that the maxillary segment contributes to the dorsal body wall posterior to the head capsule. Thus, apart from some minor deviations, the Dfd expression pattern in the honeybee strongly resembles that in Drosophila prior to head involution. This is compatible with the assumption that head involution (which is a special adaption in higher dipterans) ensues after a rather conserved course of early head development in which Dfd appears to play a basic role. Offprint requests to: R. Fleig  相似文献   

18.
Summary The homeotic gene fork head (fkh) of Drosophila melanogaster promotes terminal as opposed to segmental development in the ectodermal parts of the gut. Molecular analysis revealed that fkh expression is not restricted to the ectodermal parts of the gut, but is detectable in a variety of other tissues. Therefore, the phenotype of fkh mutant embryos was re-examined using molecular probes as tissue specific markers. With the exception of the nervous system, which was not studied, phenotypic effects were found in all tissues expressing fkh protein in the wild-type. Particularly, these tissues include all components of the gut in the Drosophila embryo: the foregut and hindgut, the midgut and the yolk nuclei. The defects observed in the gut of fkh mutant embryos are primordium specific.  相似文献   

19.
Following our recent cloning of a novel γ-aminobutyric acid (GABA) receptor subunit geneResistance to dieldrin orRdl from the cyclodiene resistance locus inDrosophila melanogaster, we were interested in defining its pattern of expression during development. Here we report the raising of an anti-Rdl polyclonal antibody that recognizes a single protein of the expected 65 kDa size in immunoblots ofDrosophila head homogenates.In situ hybridization usingRdl cDNA probes and the anti-Rdl antibody shows thatRdl message and protein are highly expressed in the developing central nervous system (CNS) of 15–17 h embryos. Interestingly, despite the use of GABA in both the peripheral and CNS of insects,Rdl GABA receptor subunits appear to be confined to the CNS. Detailed immunocytochemistry ofDrosophila brain sections showed particularly strong anti-Rdl antibody staining in the optic lobes, ellipsoid body, fan shaped body, ventrolateral protocerebrum and the glomeruli of the antennal lobes. Results are compared with the distribution of staining observed in the insect CNS with antibodies against GABA itself and synaptotagmin, a synaptic vesicle protein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号