首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T cell subsets from virgin and immunized mice, which are Ir gene controlled nonresponders to GAT, which regulate antibody responses to GAT have been characterized. Virgin nonresponder B10.Q B cells develop GAT-specific antibody responses to GAT, B10.Q GAT-M phi, and GAT-MBSA when cultured with virgin or GAT-primed Lyt-1+, I-J-, Qa1- B10.Q helper T cells. Virgin T cells are radiosensitive, whereas immune T cells are radioresistant (750 R); qualitatively identical helper activity is obtained with T cells from mice immunized with soluble GAT, B10.Q GAT-M phi, and GAT-MBSA. Responses to GAT and GAT-M phi are not observed when virgin or GAT-primed Lyt-1+, I-J+, Qal+ T cells are added to culture of virgin or GAT-primed Lyt-1+, I-J-, Qa1- helper T cells and virgin B cells; the GAT-specific response to GAT-MBSA is intact. The Lyt-1+, I-J+, Qa1+ T cells from mice primed with GAT, GAT-M phi, and GAT-MBSA were qualitatively identical in mediating this suppression. Virgin Lyt-2+ T cells have no suppressive activity alone or with virgin Lyt-1+, I-J+, Qa1+ T cells, whereas responses to GAT, GAT-M phi, and GAT-MBSA are suppressed in cultures of GAT-primed helper T cells containing GAT-primed Lyt-2+ T cells (with or without GAT-primed Lyt-1+, I-J+, Qa1+ T cells). Suppression of responses to GAT-MBSA in cultures of GAT-M phi-primed helper T cells requires both GAT-M phi-primed Lyt-1+, I-J+, Qa1+ T cells and Lyt-2+ T cells; the Lyt-1+, I-J+, Qa1+ T cells appear to function as inducer cells in this case. In cultures containing GAT-MBSA-primed helper T cells, either GAT-MBSA-primed Lyt-1+, I-J+, Qa1+ or Lyt-2+ T cells suppress responses to GAT and GAT-M phi; under no circumstances are responses to GAT-MBSA suppressed by GAT-MBSA-primed regulatory T cells. This regulation of antibody responses to GAT by suppressor T cells is discussed in the context of the involvement of suppressor T cells in responses to antigens under Ir control, and of the evidence that nonresponsiveness to GAT is not due to a defect in the T cell repertoire, but rather is due to an imbalance in the activation of suppressor vs helper T cells.  相似文献   

2.
Biosynthetic labeling with 35S-methionine and 35S-cysteine of isolated T4+ cells from Con A-activated T cells demonstrated that the T8 antigen was synthesized by activated T4+ cells. Two-color fluorescence analysis of the activated T cell population from which the T4+ fraction was obtained showed that both T4+T8- and T4+T8+ cells were present. The T8 antigen that was immunoprecipitated by monoclonal anti-T8 from activated T4+ cells migrated with an electrophoretic mobility corresponding to an m.w. of approximately 33,000, a previously reported m.w. value for T8 antigen. Con A activation of highly purified peripheral T4+T8- and T8+T4- subsets indicated that both T4+T8- and T8+T4- cells can give rise to T4+T8+ cells. However, substantial T4, T8 coexpression by T4+T8- cells required a signal from T8+T4- cells which could be supplied by incubating T4+T8- cells with irradiated T8+ cells or the supernatant from Con A-activated T8+T4- cells. The generation of T4+T8+ cells from a subset of T4+T8- T cells may be an important mechanism in immune activation and/or the further differentiation of peripheral T4+ cells.  相似文献   

3.
The regulatory function of peripheral blood CD4 T cells correlates with the presence or absence of the membrane glycoprotein recognized by anti-Leu-8 antibody; CD4,Leu8- T cells help Ig synthesis and CD4,Leu-8+ T cells suppress Ig synthesis. In contrast to CD4 T cells from the peripheral blood and organized gut-associated lymphoid tissues, intestinal lamina propria CD4 T cells were found to have diminished expression of the Leu-8 Ag. Therefore, studies were performed to determine whether the decreased expression of the Leu-8 Ag on lamina propria CD4 T cells correlates with a difference in the ability of peripheral blood and lamina propria CD4 T cells to regulate PWM-stimulated Ig synthesis. At high T cell to non-T cell ratios, the helper function of lamina propria CD4 T cells was significantly higher than that of peripheral blood CD4 T cells. When CD4 T cells were incubated with anti-Leu-8 antibody, the suppressor function of peripheral blood CD4 T cells was increased, but lamina propria CD4 T cells did not suppress Ig synthesis. No difference was found between the helper function of CD4,Leu-8- T cells and the suppressor function of CD4, Leu-8+ T cells isolated from either the peripheral blood or the lamina propria. Thus, the difference in the regulatory function of CD4 T cells from the peripheral blood and the lamina propria is due to the quantitative difference in CD4,Leu-8+ T cells in these sites. Consequently, the intestinal lamina propria is a site enriched in CD4,Leu-8- T cells which predominantly mediate help for Ig synthesis.  相似文献   

4.
CD4 and CD8 T cells have been shown to proliferate and differentiate to different extents following antigenic stimulation. CD4 T cells form a heterogenous pool of effector cells in various stages of division and differentiation, while nearly all responding CD8 T cells divide and differentiate to the same extent. We examined CD4 and CD8 T cell responses during bacterial infection by adoptive transfer of CFSE-labeled monoclonal and polyclonal T cells. Monoclonal and polyclonal CD8 T cells both divided extensively, whereas monoclonal CD4 T cells underwent limited division in comparison with polyclonal CD4 T cells. Titration studies revealed that the limited proliferation of transferred monoclonal CD4 T cells was due to inhibition by a high precursor frequency of clonal T cells. This unusually high precursor frequency of clonal CD4 T cells also inhibited the differentiation of these cells. These results suggest that the adoptive transfer of TCR transgenic CD4 T cells significantly underestimates the extent of proliferation and differentiation of CD4 T cells following infection.  相似文献   

5.
CD8 T cells are critical for the clearance of intracellular pathogens. Upon infection, naive CD8 T cells differentiate into effector cells that target and eliminate infected cells. Following clearance of the pathogen, most effector cells die, although a small fraction survives to establish a memory population. Subsequent exposure to the same pathogen induces a rapid response of memory T cells and efficient elimination of the pathogen. Although much is known about the CD8 T cell response, the precise microenvironment location of effector and memory CD8 T cells in secondary lymphoid organs is not well characterized. In this study, we present an in situ analysis of the localization of effector and memory CD8 T cells during the murine immune response to lymphocytic choriomenginits virus. We identified the location of these cells using a transgenic mouse model system in which CD8 T cells are irreversibly tagged with yellow fluorescent protein (YFP) after activation. After infection, YFP+ CD8 T cells were initially observed within T cell zones. Later, these cells were found in the red pulp and a disruption of all CD8 T cell zones was observed. After resolution of the immune response, YFP+ memory CD8 T cells were observed primarily in T cells zones. Thus, in the spleens of mice, effector CD8 T cells localize to the red pulp and memory CD8 T cells localize to the T cell zones. Upon rechallenge, memory CD8 T cells rapidly proliferate and the secondary effector CD8 T cells are found in the red pulp.  相似文献   

6.
The purpose of this study was to determine whether gamma delta T cells were able to regulate graft-vs-host (GVH) reactivity mediated by alpha beta T cells in murine recipients transplanted with MHC-mismatched marrow grafts. Studies were conducted using ex vivo-activated gamma delta T cells because this was a more clinically relevant strategy, and these cells have been shown to be capable of facilitating alloengraftment without causing GVH disease (GVHD). Coadministration of activated gamma delta T cells and naive alpha beta T cells at the time of bone marrow transplantation (BMT) significantly exacerbated GVHD when compared with naive alpha beta T cells alone. In contrast, when the administration of naive alpha beta T cells was delayed for 2 wk post-BMT, survival was significantly enhanced in mice transplanted with BM plus activated gamma delta T cells vs those given marrow cells alone. Mitigation of GVHD by activated gamma delta T cells occurred only at high doses (150 x 106) and was a unique property of gamma delta T cells, as activated alpha beta T cells were incapable of ameliorating the subsequent development of GVHD. Protection from GVHD was not due to the direct inhibition of naive alpha beta T cells by gamma delta T cells. Rather, gamma delta T cells mediated this effect indirectly through donor BM-derived alpha beta T cells that acted as the proximate regulatory population responsible for the decrease in GVH reactivity. Collectively, these data demonstrate that activated gamma delta T cells are capable of modulating the ability of MHC-incompatible nontolerant alpha beta T cells to cause GVHD after allogeneic BMT.  相似文献   

7.
Increasing evidence shows that NK cells regulate adaptive immunity, but the underlying mechanisms are not well understood. In this study, we show that activated human NK cells suppress autologous naive CD4 T cell proliferation in response to allogeneic dendritic cells (DCs) by selectively killing Ag-activated T cells. Naive CD4 T cells, which were initially resistant to NK cell-mediated cytotoxicity, became substantially susceptible to NK cells within a day after priming with DCs. Ag-activated T cells showed various degrees of susceptibility to NK cells. After 1 d of priming with LPS-matured DCs, T cells were less susceptible to NK cells than were T cells primed with TNF-α-matured DCs. Subsequently at day 3, Ag-activated T cells regained resistance to NK cells. The level of HLA-E expression on Ag-activated T cells was closely correlated with resistance to NK cells. HLA-E was highly expressed at day 1 by T cells primed with LPS-matured DCs but not by T cells primed with TNF-α-matured DCs. An Ab blockade revealed a critical role for the HLA-E-NKG2A interaction in the protection of Ag-activated T cells from NK cells. Collectively, this study demonstrates that NK cells impact adaptive immunity through the finely controlled kinetics of HLA-E expression on T cells. Thus, HLA-E may be a new target for immunoregulation.  相似文献   

8.
Only antibodies of the IgM class were produced in vitro by peripheral blood mononuclear cells stimulated with streptococcal carbohydrate. B cells of the peripheral blood mononuclear cells, however, synthesized both IgM and IgG class antibodies when combined with tonsillar T cells, suggesting that T cells inducing immunoglobulin class switching are present in the tonsils. Peripheral blood T cells also became capable of inducing B cells to produce IgG class antibodies when the T cells were incubated with antigen-pulsed macrophages. Surface IgM-positive, IgG-negative high-density B cells produced IgG antibodies for streptococcal carbohydrate in the presence of these T cells or tonsillar T cells. The culture supernatant solutions from these T cells or tonsillar T cells, however, failed to cause the B cells to produce IgG, indicating that class switching is not mediated by factors released from T cells. Lymphokines such as interleukin-2, human B cell growth factor, helper T cell factor, or interferon-gamma were also incapable of inducing IgG production. These results suggest that the cognate interaction between T cells and B cells is necessary for the immunoglobulin class switching.  相似文献   

9.
Human T cells, when activated by antigen or mitogen, express Ia antigens. We have examined the capacity of activated T cells to stimulate autologous and allogeneic T cells and their ability to present soluble antigen. Interleukin 2-dependent T-cell lines (TCL), free of accessory cells, were used for antigen-presenting cells. These activated T cells were potent stimulators in an autologous mixed lymphocyte reaction (AMLR), more so than autologous irradiated non-T mononuclear cells. Activated T cells were also able to stimulate proliferation of allogeneic T cells in the absence of any other accessory cells, and this stimulation was blocked by anti-Ia antibodies. Resting unstimulated T cells were unable to stimulate autologous or allogeneic responses. Thus, activated T cells were able to present self antigens and alloantigens. However, activated T cells could not present soluble antigens to autologous T cells or to antigen-specific TCL even if exogenous interleukin 1 was added to cultures. The ability of activated T cells to stimulate an AMLR in vitro may reflect an important immunologic amplification mechanism in vivo. The ability of activated T cells to present alloantigens but not soluble antigens suggests an inability to process antigen, and this may provide further insights into the complexities of antigen presentation.  相似文献   

10.
Although the existence of autoreactive T cells has been widely reported, the functional capacities of these populations have been less well defined. Studies were therefore carried out to characterize the relationship of autoreactive T cells to antigen-specific major histocompatibility complex (MHC)-restricted T cells in their ability to act as helper cells for the induction of immunoglobulin synthesis by B cells. A number of autoreactive T cell lines and clones were isolated from antigen-primed spleen and lymph node cell populations. Autoreactive T cells were found to proliferate in response to direct recognition of syngeneic I-A or I-E subregion-encoded antigens in the absence of any apparent foreign antigen. It was shown that cloned autoreactive T cells were capable of activating B cell responses through two distinct pathways. After appropriate stimulation by syngeneic cells, autoreactive T cells polyclonally activated primed or unprimed B cells to synthesize IgM antibodies. These activated T cells functioned in these responses through an MHC-unrestricted pathway in which polyclonal responses were induced in both syngeneic and allogeneic B cells. These cloned autoreactive T cells were also able to activate IgG responses by primed B cells through a different activation pathway. In contrast to the polyclonal activation of IgM responses, the induction of IgG antibodies by the same cloned T cells required primed B cells and stimulation with the priming antigen. The activation of B cells to produce IgG was strongly MHC restricted and required the direct recognition by the autoreactive T cells of self MHC determinants expressed on the B cell surface, with no bystander activation of allogeneic B cells. These results indicate that cloned autoreactive T cells resemble antigen-specific MHC-restricted T cells in their ability to function as T helper cells through distinct MHC-restricted and MHC-unrestricted pathways.  相似文献   

11.
Recently, we have found that the neuropeptide alpha-melanocyte stimulating hormone (alpha-MSH) not only suppresses IFN-gamma production, but also induces TGF-beta1 production by activated effector T cells. These alpha-MSH- treated effector T cells function as regulatory T cells in that they suppress IFN-gamma production and hypersensitivity mediated by other effector T cells. Experimental autoimmune uveoretinitis (EAU) was suppressed in its severity and incidence in mice that were injected with primed T cells activated in vitro by APC and antigen in the presence of alpha-MSH. Moreover, it appeared that alpha-MSH had converted a population of effector T cells polarized to mediate hypersensitivity into a population of T cells that now mediated immunoregulation. To characterize these alpha-MSH- treated T cells, primed T cells were TCR-stimulated in the presence of alpha-MSH in vitro and their lymphokine profile was examined. Such effector T cells displayed enhanced levels of TGF-beta1 production and no IFN-gamma or IL-10, with IL-4 levels remaining unchanged in comparison with inactivated T cells. In addition, if soluble TGF-beta receptor II was added to cocultures of alpha-MSH-treated T cells and activated Th1 cells, the alpha-MSH-treated T cells could not suppress IFN-gamma production by the Th1 cells. These results suggest that alpha-MSH induces T cells with a regulatory lymphokine pattern, and that through their production of TGF-beta1 these cells suppress other effector T cells. Examination of the alpha-MSH-treated T cells showed that alpha-MSH did not alter the phosphorylation of CD3 molecules following TCR engagement. Primed T cells express the melanocortin 5 receptor (MC5r), a receptor that is linked to an intracellular signalling pathway shared by other cytokine receptors. Blocking the receptor with antibody prevented alpha-MSH from suppressing IFN-gamma production by the activated regulatory T cells, suggesting that alpha-MSH immunoregulation is through the MC5r on primed T cells. Surface staining and cell sorting of the alpha-MSH- treated primed T cells showed that the regulatory T cells are CD25+ CD4+ T cells. From these results we find that alpha-MSH can mediate the induction of CD25+ CD4+ regulatory T cells. These regulatory T cells require specific antigen for activation, but through non-specific TGF-beta1-mediated mechanisms they can suppress other effector T cells.  相似文献   

12.
Functional immaturity of neonatal T cells is related to their immature phenotype, with the majority of neonatal T cells of naive (CD45RA+) T cells. The progression of T cells from naive cells to effector cells is dependent on the survival of Ag-specific T cells and their resistance to apoptosis. In this study, we showed for the first time that insulin-like growth factor 1 (IGF-1) converted cord blood CD45RA+ T cells to CD45RO+ T cells and inhibited cord blood T cell apoptosis. We found cord blood T cells stimulated with PHA would result in gradual loss of CD45RA and gain of CD45RO expression. IGF-1 further increased the loss of CD45RA and enhanced CD45RO expression in PHA-stimulated cord blood T cells. In addition, IGF-1 prevented cord blood T cells from spontaneous apoptosis through a mechanism other than Fas/FasL. In PHA-activated cord blood T cells, IGF-1 prevented both naive (CD45RA+) and memory/mature (CD45RO+) T cells from apoptosis. Moreover, cord blood T cells cultured with IGF-1 and PHA had a higher resistance to anti-Fas-induced apoptosis as compared with PHA-activated cord blood T cells. IGF-1 also significantly inhibited PHA-induced Fas expression on cord blood T cells. These results demonstrate that IGF-1 promotes the maturation and maintains the survival of cord blood T cells. Its antiapoptotic effect in PHA-activated cord blood T cells may be mediated through the down-regulation of Fas expression.  相似文献   

13.
In vitro T-cell requirements for and modulation of human B-cell responses were studied in individuals immunized in vivo to the protein antigen keyhole limpet hemocyanin or tetanus toxoid. T cells were required for antibody synthesis in both antigen-driven and pokeweed mitogen (PWM)-driven cultures. T cells were separated into T4+ and T8+ subpopulations using monoclonal antibodies, and their modulation of antibody synthesis was studied. T4+ cells functioned as helper cells in both antigen-driven and PWM-driven cultures in a dose-dependent manner. Whereas T8+ cells suppress both total and specific immunoglobulin secretion in PWM-stimulated cultures, in antigen-stimulated cultures T8+ cells do not suppress unless activated by another cell population present in peripheral blood mononuclear cells (PBMNC). This cellular requirement was further investigated by prestimulation of cells prior to addition to optimally stimulated antigen-driven cultures of PBMNC or B cells, monocytes, and helper T cells. No suppression of these optimally stimulated cultures was seen when T8+ cells were precultured with antigen or PWM. However, after 3-5 days preculture of total T cells with PWM or antigen and then selection of T4+ cells, these cells were able to induce fresh autologous T8+ cells to suppress optimally stimulated antigen-driven cultures. Addition of a precultured mixture of T8+ cells with 20% T4+ cells also resulted in antigen-induced suppression. These data indicate that T8+ cells can suppress antigen-driven cultures but require the presence of preactivated T4+ cells for induction of this suppression of antigen-specific T-cell-dependent human B-cell responses.  相似文献   

14.
Previous work has shown that specific helper T cells are required for the primary induction of delayed-type hypersensitivity (DTH). Conditions are defined here under which the primary induction by antigen of precursor helper T cells only occurs in the presence of specific, irradiated effector T cells, demonstrating that the induction of helper T cells requires T-T cooperation. The interaction between precursor and effector helper T cells is mediated by the recognition of epitopes that must be physically linked to one another. In more detail, hapten-Ficoll conjugates and xenogeneic red blood cells induce medium-density but not low-density cultures of unprimed murine spleen cells to express antigen-specific DTH. Low-density cultures do not support the induction of DTH unless they are supplemented with specific irradiated helper T cells. These helper T cells are themselves induced when antigen is added to medium-density but not low-density cultures. Precursor helper T cells in low-density cultures are only induced by antigen in the presence of additional specific irradiated T cells. Further experiments were directed at analyzing the nature of this T-T interaction. Irradiated hapten-primed T cells help the induction of precursor helper T cells specific for burro red blood cells (BRBC) in the presence of haptenated BRBC and chicken red blood cells (CRBC), but do not help in the presence of haptenated CRBC and BRBC. These experiments demonstrate that the interaction between precursor and effector T cells is mediated by the linked recognition of antigen. These findings show that the induction of precursor cells for both DTH reactivity, and those T cells able to help in the induction of DTH, require specific helper T cells. It is further shown that the induction of T cells able to help in the induction of helper precursor cells takes place in medium-density but not low-density cultures. In order words, antigen, when added to medium-density cultures of normal spleen cells, induces T cells able to mediate DTH, and T cells able to help in the induction of these helper T cells, whereas antigen induces none of these T cells when added to low-density cultures unless appropriate specific helper T cells are added.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
We have previously demonstrated that Epstein Barr virus-transformed human B lymphocytes (EBV-B cells) present antigen to activated T cells (lines and clones) in a MHC-restricted manner. In the present study, using EBV-nonimmune donors, we demonstrate that EBV-B cells are unable to trigger tetanus toxoid (TT) antigen-specific proliferation in autologous highly purified resting T cells. EBV-B cells from these same individuals were able to present TT to autologous TT-specific activated T cell blasts (Tbl). The inability of EBV-B cells to present TT to resting T cells was not caused by defective antigen processing by EBV-B cells. Thus, paraformaldehyde treatment of antigen-pulsed EBV-B cells did not impair their ability to trigger proliferation of antigen-specific Tbl, and EBV-B cells pulsed with antigen in the presence of autologous TT-specific T cell blasts did not present antigen to resting T cells. Furthermore, antigen-specific proliferation of resting T cells triggered by monocytes was enhanced rather than suppressed by EBV-B cells. The addition of partially purified human IL 1 allowed EBV-B cells to present TT antigen to resting T cells, suggesting that failure to secrete IL 1 contributed to the failure of EBV-B cells to present antigen. IL 1 could not be detected in supernatants of EBV-B cells stimulated with Staphylococcus epidermidis, concanavalin A, and TT antigen in the presence or absence of up to 5% autologous T cells. The differential capacity of EBV-B cells to present antigen to resting T cells vs activated T cells correlated with the T cell requirement for IL 1, because a rabbit antibody to human IL 1 inhibited the monocyte-supported proliferation of resting T cells but not that of activated T cells. These results suggest that the inability of EBV-B cells to present antigen to resting T cells is related to their inability to secrete detectable IL 1.  相似文献   

16.
T cell subpopulations (Tμ and Tγ cells) were examined in the peripheral blood from fourteen patients with mycosis fungoides and Sézary syndrome. One patient with Sézary syndrome having low lymphocyte count had higher proportions of Tγ cells when compared to controls while the other with high lymphocyte count (75% Sézary cells) lacked Tγ cells and had normal proportions of Tμ cells. T cells from a third patient with Sézary syndrome having high lymphocyte count (95% Sézary cells) lacked almost completely both Tμ and Tγ cells. Three of eleven patients with mycosis fungoides had a high proportion of Tγ cells and one had a high proportion of Tμ cells. Study of T cells in the peripheral blood, lymph nodes, and bone marrow from two patients with mycosis fungoides demonstrated that the quantitative abnormality of tμ and Tγ cells is shared by the peripheral blood and bone marrow and not by the lymph nodes. Heterogeneity of T cells subsets in mycosis fungoides appears to be in non-malignant T cells. However, in Sézary syndrome malignant Sézary T cells demonstrate heterogeneity with regard to receptors for IgM (Tμ) and IgG (Tγ).  相似文献   

17.
Follicular helper (T(FH)) cells provide crucial signals to germinal center B cells undergoing somatic hypermutation and selection that results in affinity maturation. Tight control of T(FH) numbers maintains self tolerance. We describe a population of Foxp3(+)Blimp-1(+)CD4(+) T cells constituting 10-25% of the CXCR5(high)PD-1(high)CD4(+) T cells found in the germinal center after immunization with protein antigens. These follicular regulatory T (T(FR)) cells share phenotypic characteristics with T(FH) and conventional Foxp3(+) regulatory T (T(reg)) cells yet are distinct from both. Similar to T(FH) cells, T(FR) cell development depends on Bcl-6, SLAM-associated protein (SAP), CD28 and B cells; however, T(FR) cells originate from thymic-derived Foxp3(+) precursors, not naive or T(FH) cells. T(FR) cells are suppressive in vitro and limit T(FH) cell and germinal center B cell numbers in vivo. In the absence of T(FR) cells, an outgrowth of non-antigen-specific B cells in germinal centers leads to fewer antigen-specific cells. Thus, the T(FH) differentiation pathway is co-opted by T(reg) cells to control the germinal center response.  相似文献   

18.
The T1 subpopulation of peripheral T cells was defined in mice by its short half life, insensitivity to anti-thymocyte sera (ATS) in vivo, and slow kinetics of response to antigen. The T2 subpopulation was defined by its long life time, elimination by ATS in vivo, and rapid response to antigen. Mice containing only T1-type T cells were constructed by adult thymectomy (ATx) followed immediately by the elimination of T2 cells by ATS treatment. Immunization of these mice with SRBC led to the production of memory helper cells in the T2 subpopulation. This process depended on the presence of T1 cells and for the most part required SRBC immunization, although a few SRBC-specific T2 cells reappeared in the mice in the absence of antigen. We conclude that T1 cells can give rise to T2 cells in an antigen-driven step and that the two populations correspond to virgin and memory T cells, respectively.  相似文献   

19.
Engrafted maternal T cells from two patients with severe combined immunodeficiency (SCID) and graft-vs-host disease (GVHD) were characterized for surface phenotype, function, and ecto-5'-nucleotidase (ecto-5'-NT) activity. The majority of engrafted T cells from both patients were T6-, T3+, and Ia+; the ratio of T4+:T8+ cells varied from 0.89 to 3.1 for Patient 1 and was 0.17 for Patient 2. The sum of T4+ + T8+ cells was greater than the number of T3+ cells, and approximately one-third of the patients' T cells were T3-. Two-color immunofluorescent staining showed that one-third of the T cells from Patient 1 had a novel cell surface phenotype (T6-, T3-, T4+, T8+) that was not previously described. T cells from Patient 1 failed to proliferate in response to allogeneic cells or specific antigen and provided little help for PWM-driven Ig synthesis in vitro. However, they did suppress Ig synthesis in vitro and proliferate in response to PHA and Con A; thus they appeared to be more mature than the T cells of Patient 2 and of most previously reported patients with SCID and maternal T cell grafts. Both patients lacked detectable lymphocyte ecto-5'-NT activity, suggesting that either the ecto-5'-NT activity of maternal T cells is lost after engraftment or that a specific subset(s) of ecto-5'-NT-negative maternal T cells predominates in infants with SCID and GVHD. Thus, in vitro T cell function and the proportions of T cells bearing T4 and T8 may vary in SCID patients with maternal T cell grafts. However, the presence of the Ia antigen and the absence of ecto-5'-NT activity may be consistent features of activated maternal T cells responsible for GVHD.  相似文献   

20.
Benzo[a]pyrene-transformed Balb 3T3 cells (BP3T3) exhibit "normal" growth controls at low concentrations of serum. Epidermal growth factor (EGF) stimulates DNA synthesis and cell division in both Balb 3T3 and BP3T3 cells at physiological concentrations. The growth response of BP3T3 cells to EGF is qualitatively the same as that of 3T3 cells, however, the transformed cells have a lower quantitative requirement. Both 3T3 and BP3T3 cells show a density-dependent response to EGF, but the shift in the dose response curve for BP3T3 cells at high cell density is smaller than that seen for 3T3 cells. One cause of the restricted growth of 3T3 cells at high cell density compared with BP3T3 cells is the increased concentration of growth factor needed for stimulation of 3T3 cells at higher cell densities. A lower rate of depletion of other growth factory by BP3T3 cells may also explain the smaller effect of cell density on the EGF response of these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号