首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quan-Guo Zhang  Da-Yong Zhang 《Oikos》2007,116(10):1748-1758
Species extinction and immigration are both common in natural communities and the sequence with which species are lost from or added to communities may be crucial to community structure. We experimentally addressed this issue by growing six green algal species in monocultures and all possible two-species mixtures, with two colonization sequences for each mixture. Both convergence and divergence in community structure were observed. The compositions containing particularly productive species were more likely to converge, while those comprising of species with similar monoculture yields were more likely to diverge. The species mixtures with high-yielding initial and low-yielding invading species produced more biomass than monocultures, but mixtures with the opposite assembly order produced only the same level of biomass as monocultures did. To address the diversity–ecosystem functioning issue, we estimate complementarity effect by relative yield total (RYT) and selection effect by the correlation between species' monoculture yields and their relative yields in mixtures, respectively. We found overall negative complementarity and positive selection effect in mixtures with high-yielding species as initial colonizers, but positive complementarity and negative selection effect in mixtures with low-yielding initial species. Nonetheless, because we used only up to two species in each microcosm, our results are limited in addressing the relationship between species diversity and ecosystem functioning. Future research should study the effects of immigration history with many more species involved in community assembly.  相似文献   

2.
Summary The gains in yields of mixtures expected to follow various methods of selection of components from populations of randomly constituted mixtures are formulated in terms of a statistical model and a model of first-order inter-plant competition. The types of selection investigated include that among whole mixtures and among groups or individual components on a within-mixture or unrestricted basis, or on the basis of the yields of sets of mixtures to which the group or individual is common. In all cases the sizes of mixture used for selection and for measurement of gain may differ. While evaluation of components in groups or whole mixtures allows selection for component interactions, gains are lower overall because of the reduction in variance caused by grouping. Gains due to interaction are lost if the components are pooled after selection, as in a population improvement programme. Individual selection carries some risk of negative gains, but these are reduced if assessment is made on an unrestricted rather than within-mixture basis. When second and higher order competitive interactions are absent, monoculture assessment is expected to be an efficient means of selection of components for binary and tertiary mixtures.  相似文献   

3.
Plant species richness can increase primary production because plants occupy different niches or facilitate each other (“complementarity effects”) or because diverse mixtures have a greater chance of having more productive species (“selection effects”). To determine how complementarity and selection influence dune restoration, we established four types of plant communities [monocultures of sea oats (Uniola paniculata), bitter panicgrass (Panicum amarum) and saltmeadow cordgrass (Spartina patens) and the three-species mixture] under different soil treatments typical of dune restorations (addition of soil organic material, nutrients, both, or neither). This fully factorial design allowed us to determine if plant identity, diversity and soil treatments influenced the yield of both the planted species and species that recruited naturally (volunteers). Planted species responses in monocultures and mixtures varied among soil treatments. The composition of the plantings and soils also influenced the abundance of volunteers. The mixture of the three species had the lowest cover of volunteers. We also found that the effect of diversity on production increased with fertilizer. We partitioned the biodiversity effect into complementarity and selection effects and found that the increase in the diversity effect occurred because increased nutrients decreased dominance by the largest species and increased complementarity among species. Our findings suggest that different planting schemes can be used to meet specific goals of restoration (e.g., accelerate plant recovery while suppressing colonization of non-planted species).  相似文献   

4.
Abstract Plant species richness influences primary productivity via mechanisms that (1) favour species with particular traits (selection effect) and (2) promote niche differentiation between species (complementarity). Influences of species evenness, plant density and other properties of plant communities on productivity are poorly defined, but may depend on whether selection or complementarity prevails in species mixtures. We predicted that selection effects are insensitive to species evenness but increase with plant density, and that the converse is true for complementarity. To test predictions, we grew three species of annuals in monocultures and in three‐species mixtures in which evenness of established plants was varied at each of three plant densities in a cultivated field in Texas, USA. Above‐ground biomass was smaller in mixtures than expected from monocultures because of negative ‘complementarity’ and a negative selection effect. Neither selection nor complementarity varied with species evenness, but selection effects increased at the greatest plant density as predicted.  相似文献   

5.
Six white clover genotypes and eight grass varieties belonging to four different species were grown both in monoculture and as grass-legume binary mixtures in dense swards for two years under a mowing regime and a management including N fertilization. Dry matter yield and yield-related traits were recorded to investigate some aspects of inter-specific interference in white clover-based mixtures and to define a methodology for selecting genotypes of this clover suited to conditions of association. Clover was at a competitive disadvantage in most mixtures. Differences among grasses for aggressiveness were related more to variety vigour than to species. Clover compatibility proved specific only in relation to grass vigour. Variation among clovers for tolerance to competitive stress involved significant cross-over interactions passing from monoculture to severe stress conditions for clover yield and other traits, and was related positively to stolon density and negatively to yield and leaf gigantism traits recorded in monoculture. Clover selection for high levels of competitive stress seems possible either by genotype assessment in stress conditions or by a combination of high yield and stolon density assessed in monoculture.  相似文献   

6.
Aims In grassland biodiversity experiments, positive biodiversity effects on primary productivity increase over time. Recent research has shown that differential selection in monoculture and mixed-species communities leads to the rapid emergence of monoculture and mixture types, adapted to their own biotic community. We used eight plant species selected for 8 years in such a biodiversity experiment to test if monoculture and mixture types differed in metabolic profiles using infrared spectroscopy.Methods Fourier transform infrared spectroscopy (FTIR) was used to assess metabolic fingerprints of leaf samples of 10 individuals of each species from either monocultures or mixtures. The FTIR spectra were analyzed using multivariate procedures to assess (i) whether individuals within species could be correctly assigned to monoculture or mixture history based on the spectra alone and (ii) which parts of the spectra drive the group assignment, i.e. which metabolic groups were subject to differential selection in monocultures vs. mixtures.Important findings Plant individuals within each of the eight species could be classified as either from monoculture or mixture selection history based on their FTIR spectra. Different metabolic groups were differentially selected in the different species; some of them may be related to defense of pathogens accumulating more strongly in monocultures than in mixtures. The rapid selection of the monoculture and mixture types within the eight study species could have been due to a sorting-out process based on large initial genetic or epigenetic variation within the species.  相似文献   

7.
Summary The effects of procedures generally used to reduce variation of lactation length on the efficiency of selection for milk yield are examined applying existing theory to a set of average literature estimates of heritabilities and correlations between lactation yield and length. Adjustment of milk yield for lactation length should be expected to remove more genetic than phenotypic variation, thus reducing selection efficiency in relation to unadjusted yield. Selecting individuals on an optimum index of lactation yield and length would be more efficient for improving yield than selecting on yield alone, while both criteria would have practically the same efficiency for selection on progeny test. This result could be applied to reduce milk recording frequency without losing selection accuracy. Culling on lactation length before selecting on yield would have little effect on individual selection efficiency. However, excluding short lactation records should be expected to reduce both selection accuracy of the progeny test and genetic variation in yield.  相似文献   

8.
According to theory, two consequences of sexual selection are sexual dimorphism in size and secondary sexual characteristics, due to either intra- or intersexual selection. In this paper I suggest three criteria for the test of an evolutionary hypothesis involving quantitative morphological characters. First, the postulated change must be shown to have occurred in evolutionary time. Second, this change must be positively correlated with a change in the proposed selective agent. Third, given two taxa with different degrees of sexual size dimorphism and different mating system, the possible influence of drift must be rejected. If the hypothesis is not rejected by these three criteria, then we still have no proof of causality, but we can at least be more confident about its plausibility. This is applied to the particular hypothesis that sexual dimorphism in the Boat-tailed and Great-tailed grackles (Quiscalus spp; Icterinae; Aves) is caused by the highly polygynous mating system in these species. In relation to an outgroup, both species have increased disproportionately in male tarsus and tail size, creating an increased sexual dimorphism. This has cooccurred with the evolution of their particular mating system. However, the variance among species in male tarsus size can be accounted for by drift, and need not be a result of selection for increased size. In contrast, the variance among species in male tail size was much larger than expected under a null model of drift, indicating directional selection for long tails. The variance in female tail size was not larger than expected by drift, whereas the variance in female tarsus size was in fact lower than expected by drift, indicating stabilizing selection. The data are consistent with the hypothesis with regard to tail size, but not with regard to body size.  相似文献   

9.
Aim s: We tested for the effect of final sowing plant density (i.e. density of established seedlings) on the values of biodiversity effects [transgressive overyielding, net effect, complementarity effect (CE) and selection effect (SE), trait-dependent complementarity and dominance effect] in a glasshouse pot experiment.Methods: We conducted a single-season (4 months) glasshouse experiment. Species monocultures and mixtures containing up to four common meadow species from different functional groups were sown and subsequently thinned to five density levels (8–128 individuals per pot, i.e. 200–3200 individuals m ?2). Community functioning was characterized by yield (both living and dead biomass) of all constituent species.Important Findings: Our results show that plant density (final sowing density in our case, but this finding can be generalized) affects the yields of both monocultures and mixtures. As these and their relationships are the basis for calculation of biodiversity effects, these effects also varied along the density gradient. Net biodiversity effect, CE and SE all increased with density. The net biodiversity effect and the CE switched from negative to quite positive in the four-species mixture. Using Fox's tripartite partitioning, trait-dependent complementarity was minor in comparison to the dominance effect. One of our experimental species did not follow the density-productivity relationship, called constant final yield (CFY), which was reflected in the biodiversity measures. The shape of the density-productivity relationship for experimental species affects also the values of biodiversity indices, particularly when species do not follow the CFY relationship. According to our data and recent simulation experiments, the values of commonly used biodiversity effects can be rather misleading if a species has, e.g. a unimodal dependence of yield for the density gradient and the density level used in the experiment is higher than the peak density.  相似文献   

10.
A potato breeding strategy is presented which avoids the common but ineffective practice of intense early-generation visual selection between seedlings in a glasshouse and spaced plants at a seed site. Once pair crosses have been made, progeny tests are used to discard whole progenies before starting conventional within-progeny selection at the unreplicated small-plot stage. Clones are also visually selected from the best progenies for use as parents in the next cycle of crosses whilst they are multiplied to provide enough tubers for assessment of their yield and quality. Mid-parent values, as well as progeny tests, are then used to select between the resultant crosses. Material from other breeding programmes can be included in the parental assessments and used in the next cycle of crosses if superior. Finally, in seeking new cultivars, the number of clones on which to practise selection is increased by sowing more true seed of the best progenies, but without selection until the small-plot stage. Traits considered are resistance to late blight [ Phytophthora infestans (Mont.) de Bary] and to the white potato cyst nematode [ Globodera pallida (Stone)], fry colour and tuber yield and appearance, as visually assessed by breeders. The theoretical superiority of the strategy for seeking new cultivars lies in being able to practise between-cross selection for a number of economically important traits within 1 or 2 years of making crosses, something that is not possible on individuals as seedlings in the glasshouse or spaced plants at the seed site. This also means that full-sib family selection can be operated on a 3-year cycle, an improvement on current practice of clonal selection on what is often at least a nine-year cycle. New cultivars can be sought with more confidence from the best progenies in each cycle, and modern methods of rapid multiplication used to reduce the number of clonal generations required to find the best clones.  相似文献   

11.
We derive and test some assumptions and predictions of the Sampling Effect Hypothesis (SEH) by examining the relationship between the traits of species in monoculture and their relative abundance in mixture, and by comparing polyculture performance with single-species plots. Although we found a positive relationship between production in monoculture and dominance in mixtures as predicted by the SEH, the relationship had low explanatory power. Counter to predictions, the species with the highest monoculture biomass were not able to strongly dominate all mixtures; instead the dominance of these species decreased with increasing species richness. On average, polycultures did not achieve greater biomass than (transgressively overyield) the species in each mixture, or at each site, that was most productive in monoculture. However, mixture yields did transgressively overyield both the monoculture biomass of the dominant species in the mixtures, and the weighted average of all monocultures (non-transgressive overyielding), both of which were positively related to increasing species richness. The varying responses of different overyielding tests resulted because resource partitioning and positive interactions were often counter-balanced by selection for species with lower biomass than the highest-yielding monocultures. Judging whether or not mixtures overyield therefore depends in part upon which species is the basis for comparison. We present a new general framework for overyielding analysis where every monoculture provides a potential comparison and from which the most relevant tests can be selected.  相似文献   

12.
13.
The unit of adaptation is usually thought to be a gene or set of interacting genes, rather than the whole genome, and this may be true of species differentiation. Defining species on the basis of reproductive isolation (RI), on the other hand, is a concept best applied to the entire genome. The biological species concept (BSC; 84 ) stresses the isolation aspect of speciation on the basis of two fundamental genetic assumptions – the number of loci underlying species differentiation is large and the whole genome behaves as a cohesive, or coadapted genetic unit. Under these tenets, the exchange of any part of the genomes between diverging groups is thought to destroy their integrity. Hence, the maintenance of each species’ genome cohesiveness by isolating mechanisms has become the central concept of species. In contrast, the Darwinian view of speciation is about differential adaptation to different natural or sexual environments. RI is viewed as an important by product of differential adaptation and complete RI across the whole genome need not be considered as the most central criterion of speciation. The emphasis on natural and sexual selection thus makes the Darwinian view compatible with the modern genic concept of evolution. Genetic and molecular analyses of speciation in the last decade have yielded surprisingly strong support for the neo‐Darwinian view of extensive genetic differentiation and epistasis during speciation. However, the extent falls short of what BSC requires in order to achieve whole‐genome ‘cohesiveness’. Empirical observations suggest that the gene is the unit of species differentiation. Significantly, the genetic architecture underlying RI, the patterns of species hybridization and the molecular signature of speciation genes all appear to support the view that RI is one of the manifestations of differential adaptation, as 34 , Chap. 8) suggested. The nature of this adaptation may be as much the result of sexual selection as natural selection. In the light of studies since its early days, BSC may now need a major revision by shifting the emphasis from isolation at the level of whole genome to differential adaptation at the genic level. With this revision, BSC would in fact be close to Darwin’s original concept of speciation.  相似文献   

14.
Questions: How is succession on ex‐arable land affected by sowing high and low diversity mixtures of grassland species as compared to natural succession? How long do effects persist? Location: Experimental plots installed in the Czech Republic, The Netherlands, Spain, Sweden and the United Kingdom. Methods: The experiment was established on ex‐arable land, with five blocks, each containing three 10 m × 10 m experimental plots: natural colonization, a low‐ (four species) and high‐diversity (15 species) seed mixture. Species composition and biomass was followed for eight years. Results: The sown plants considerably affected the whole successional pathway and the effects persisted during the whole eight year period. Whilst the proportion of sown species (characterized by their cover) increased during the study period, the number of sown species started to decrease from the third season onwards. Sowing caused suppression of natural colonizing species, and the sown plots had more biomass. These effects were on average larger in the high diversity mixtures. However, the low diversity replicate sown with the mixture that produced the largest biomass or largest suppression of natural colonizers fell within the range recorded at the five replicates of the high diversity plots. The natural colonization plots usually had the highest total species richness and lowest productivity at the end of the observation period. Conclusions: The effect of sowing demonstrated dispersal limitation as a factor controlling the rate of early secondary succession. Diversity was important primarily for its‘insurance effect’: the high diversity mixtures were always able to compensate for the failure of some species.  相似文献   

15.
Basal rate of metabolism (BMR) is a physiological parameter that should be measured under strictly defined experimental conditions. In comparative analyses among mammals BMR is widely used as an index of the intensity of the metabolic machinery or as a proxy for energy expenditure. Many databases with BMR values for mammals are available, but the criteria used to select metabolic data as BMR estimates have often varied and the potential effect of this variability has rarely been questioned. We provide a new, expanded BMR database reflecting compliance with standard criteria (resting, postabsorptive state; thermal neutrality; adult, non‐reproductive status for females) and examine potential effects of differential selectivity on the results of comparative analyses. The database includes 1739 different entries for 817 species of mammals, compiled from the original sources. It provides information permitting assessment of the validity of each estimate and presents the value closest to a proper BMR for each entry. Using different selection criteria, several alternative data sets were extracted and used in comparative analyses of (i) the scaling of BMR to body mass and (ii) the relationship between brain mass and BMR. It was expected that results would be especially dependent on selection criteria with small sample sizes and with relatively weak relationships. Phylogenetically informed regression (phylogenetic generalized least squares, PGLS) was applied to the alternative data sets for several different clades (Mammalia, Eutheria, Metatheria, or individual orders). For Mammalia, a ‘subsampling procedure’ was also applied, in which random subsamples of different sample sizes were taken from each original data set and successively analysed. In each case, two data sets with identical sample size and species, but comprising BMR data with different degrees of reliability, were compared. Selection criteria had minor effects on scaling equations computed for large clades (Mammalia, Eutheria, Metatheria), although less‐reliable estimates of BMR were generally about 12–20% larger than more‐reliable ones. Larger effects were found with more‐limited clades, such as sciuromorph rodents. For the relationship between BMR and brain mass the results of comparative analyses were found to depend strongly on the data set used, especially with more‐limited, order‐level clades. In fact, with small sample sizes (e.g. <100) results often appeared erratic. Subsampling revealed that sample size has a non‐linear effect on the probability of a zero slope for a given relationship. Depending on the species included, results could differ dramatically, especially with small sample sizes. Overall, our findings indicate a need for due diligence when selecting BMR estimates and caution regarding results (even if seemingly significant) with small sample sizes.  相似文献   

16.
Plant diversity fosters productivity in natural ecosystems. Biodiversity effects might increase agricultural yields at no cost in additional inputs. However, the effects of diversity on crop assemblages are inconsistent, probably because crops and wild plants differ in a range of traits relevant to plant–plant interactions. We tested whether domestication has changed the potential of crop mixtures to over‐yield by comparing the performance and traits of major crop species and those of their wild progenitors under varying levels of diversity. We found stronger biodiversity effects in mixtures of wild progenitors, due to larger selection effects. Variation in selection effects was partly explained by within‐mixture differences in leaf size. Our results indicate that domestication might disrupt the ability of crops to benefit from diverse neighbourhoods via reduced trait variance. These results highlight potential limitations of current crop mixtures to over‐yield and the potential of breeding to re‐establish variance and increase mixture performance.  相似文献   

17.
A conceptual framework for selecting environmental indicator sets   总被引:1,自引:0,他引:1  
In recent years, environmental indicators have become a vital component of environmental impact assessments and “state of the environment” reporting. This has increased the influence of environmental indicators on environmental management and policy making at all scales of decision making. However, the scientific basis of the selection process of the indicators used in environmental reporting can be significantly improved. In many studies no formal selection criteria are mentioned and when selection criteria are used they are typically applied to indicators individually. Often, no formal criteria are applied regarding an indicator's analytical utility within the total constellation of a selected set of indicators. As a result, the indicator selection process is subject to more or less arbitrary decisions, and reports dealing with a similar subject matter or similar geographical entities may use widely different indicators and consequently paint different pictures of the environment. In this paper, a conceptual framework for environmental indicator selection is proposed that puts the indicator set at the heart of the selection process and not the individual indicators. To achieve this objective, the framework applies the concept of the causal network that focuses on the inter-relation of indicators. The concept of causal networks can facilitate the identification of the most relevant indicators for a specific domain, problem and location, leading to an indicator set that is at once transparent, efficient and powerful in its ability to assess the state of the environment.  相似文献   

18.
Species abundances (evenness or identity of the dominant species in mixtures) usually are not rigorously controlled when testing relationships between plant production and species richness and may be highly dynamic in disturbed or early successional communities. Changes in species abundances may affect the yield of mixtures relative to yields expected from species monocultures [the net biodiversity effect (NBE)] by changing how species that differ in function are distributed in the plant community. To test the prediction that variation in species abundances affects the NBE via changes in the expression of functional differences among species (the complementarity effect), we grew perennial grasses and forbs in field plots in central Texas, USA, as equal-density monocultures and two-species mixtures in which relative abundances of species were varied. Function should differ more consistently between species of different growth forms than of the same growth form. We predicted, therefore, that the complementarity effect and influence of species abundances on the NBE would be more pronounced in grass/forb mixtures than in mixtures with species of the same growth form (grass/grass and forb/forb mixtures). The NBE varied with species evenness in two of the six species pairs studied and with identity of the dominant species in a third species combination. The NBE was sensitive to species proportions in both grass/grass and grass/forb assemblages. In all combinations in which the NBE differed with either evenness or identity of the dominant species, the variation resulted largely from change in the complementarity effect. Our results suggest that the NBE of mixtures is sensitive to effects of species ratios on complementarity.  相似文献   

19.
20.
Differences in the relative diversification rates of species with variant traits are known as species selection. Species selection can produce a macroevolutionary change in the frequencies of traits by changing the relative number of species possessing each trait over time. But species selection is not the only process that can change the frequencies of traits, phyletic microevolution of traits within species and phylogenetic trait evolution among species, the tempo and mode of microevolution can also change trait frequencies. Species selection, phylogenetic, and phyletic processes can all contribute to large‐scale trends, reinforcing or canceling each other out. Even more complex interactions among macroevolutionary processes are possible when multiple covarying traits are involved. Here I present a multilevel macroevolutionary framework that is useful for understanding how macroevolutionary processes interact. It is useful for empirical studies using fossils, molecular phylogenies, or both. I illustrate the framework with the macroevolution of coloniality and photosymbiosis in scleractinian corals using a time‐calibrated molecular phylogeny. I find that standing phylogenetic variation in coloniality and photosymbiosis deflects the direction of macroevolution from the vector of species selection. Variation in these traits constrains species selection and results in a 200 million year macroevolutionary equilibrium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号