首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human bone marrow-derived mesenchymal stem cells (hMSCs) have the potential to differentiate into several types of cells. We have demonstrated spontaneous [Ca(2+)](i) oscillations in hMSCs without agonist stimulation, which result primarily from release of Ca(2+) from intracellular stores via InsP(3) receptors. In this study, we further investigated functions and contributions of Ca(2+) transporters on plasma membrane to generate [Ca(2+)](i) oscillations. In confocal Ca(2+) imaging experiments, spontaneous [Ca(2+)](i) oscillations were observed in 193 of 280 hMSCs. The oscillations did not sustain in the Ca(2+) free solution and were completely blocked by the application of 0.1mM La(3+). When plasma membrane Ca(2+) pumps (PMCAs) were blocked with blockers, carboxyeosin or caloxin, [Ca(2+)](i) oscillations were inhibited. Application of Ni(2+) or KBR7943 to block Na(+)-Ca(2+) exchanger (NCX) also inhibited [Ca(2+)](i) oscillations. Using RT-PCR, mRNAs were detected for PMCA type IV and NCX, but not PMCA type II. In the patch clamp experiments, Ca(2+) activated outward K(+) currents (I(KCa)) with a conductance of 170+/-21.6pS could be recorded. The amplitudes of I(KCa) and membrane potential (V(m)) periodically fluctuated liked to [Ca(2+)](i) oscillations. These results suggest that in undifferentiated hMSCs both Ca(2+) entry through plasma membrane and Ca(2+) extrusion via PMCAs and NCXs play important roles for [Ca(2+)](i) oscillations, which modulate the activities of I(KCa) to produce the fluctuation of V(m).  相似文献   

2.
Changes in cytosolic free calcium ([Ca(2+)](i)) often take the form of a sustained response or repetitive oscillations. The frequency and amplitude of [Ca(2+)](i) oscillations are essential for the selective stimulation of gene expression and for enzyme activation. However, the mechanism that determines whether [Ca(2+)](i) oscillates at a particular frequency or becomes a sustained response is poorly understood. We find that [Ca(2+)](i) oscillations in rat megakaryocytes, as in other cells, results from a Ca(2+)-dependent inhibition of inositol 1,4,5-trisphosphate (IP(3))-induced Ca(2+) release. Moreover, we find that this inhibition becomes progressively less effective with higher IP(3) concentrations. We suggest that disinhibition, by increasing IP(3) concentration, of Ca(2+)-dependent inhibition is a common mechanism for the regulation of [Ca(2+)](i) oscillations in cells containing IP(3)-sensitive Ca(2+) stores.  相似文献   

3.
Carotid bodies are peripheral chemoreceptors that detect lowering of arterial blood O(2) level. The carotid body comprises clusters of glomus (type I) cells surrounded by glial-like sustentacular (type II) cells. Hypoxia triggers depolarization and cytosolic [Ca(2+)] ([Ca(2+)](i)) elevation in glomus cells, resulting in the release of multiple transmitters, including ATP. While ATP has been shown to be an important excitatory transmitter in the stimulation of carotid sinus nerve, there is considerable evidence that ATP exerts autocrine and paracrine actions in carotid body. ATP acting via P2Y(1) receptors, causes hyperpolarization in glomus cells and inhibits the hypoxia-mediated [Ca(2+)](i) rise. In contrast, adenosine (an ATP metabolite) triggers depolarization and [Ca(2+)](i) rise in glomus cells via A(2A) receptors. We suggest that during prolonged hypoxia, the negative and positive feedback actions of ATP and adenosine may result in an oscillatory Ca(2+) signal in glomus cells. Such mechanisms may allow cyclic release of transmitters from glomus cells during prolonged hypoxia without causing cellular damage from a persistent [Ca(2+)](i) rise. ATP also stimulates intracellular Ca(2+) release in sustentacular cells via P2Y(2) receptors. The autocine and paracrine actions of ATP suggest that ATP has important roles in coordinating chemosensory transmission in the carotid body.  相似文献   

4.
Zhang WS  Fei KL  Wu MT  Wu XH  Liang QH 《Biology of reproduction》2012,86(5):154, 1-154, 7
The neuromedin B receptor (Nmbr) is an important physiological regulator of spontaneous activities and stress responses through different cascades as well as its autocrine and paracrine effects. Previous studies have revealed that neuromedin B (Nmb) and its receptor signal via the Rela (also known as p65)/Il6 pathway in a mouse model of pregnancy. This study investigated the mechanism of Nmbr signaling via the Rela/p65-Il6 pathway and regulation of the concentration of intracellular free calcium ([Ca(2+)](i)) during the onset of labor in primary mouse myometrial cell cultures isolated from mice in term labor. Data demonstrated Nmbr agonist-mediated upregulation of the DNA binding activity of Rela/p65, Il6 expression, and [Ca(2+)](i) in a concentration-dependent manner. Furthermore, a significant correlation was observed between DNA binding activity of Rela/p65 and Il6 expression. Moreover, this up-regulation was blocked by Nmbr and Rela/p65 knockdown, achieved by RNA interference (RNAi) technology. No significant differences were identified in the inhibition of Il6 expression as a result of Nmbr or Rela/p65 knockdown. However, significant differences were observed between the [Ca(2+)](i) in Rela/p65-specific group and that in the Nmbr-specific small interfering RNA (siRNA)-treated groups. These data demonstrated that the Nmb/Nmbr interaction in pregnant myometrial primary cells in vitro predominantly influenced uterine activity through regulation of Il6 expression via the Rela/p65 pathway, although the effects of Nmbr on [Ca(2+)](i) involved several pathways that remain to be elucidated.  相似文献   

5.
Cytosolic Ca(2+) ([Ca(2+)](i)) oscillations may be generated by the inositol 1,4,5-trisphosphate receptor (IP(3)R) driven through cycles of activation/inactivation by local Ca(2+) feedback. Consequently, modulation of the local Ca(2+) gradients influences IP(3)R excitability as well as the duration and amplitude of the [Ca(2+)](i) oscillations. In the present work, we demonstrate that the immunosuppressant cyclosporin A (CSA) reduces the frequency of IP(3)-dependent [Ca(2+)](i) oscillations in intact hepatocytes, apparently by altering the local Ca(2+) gradients. Permeabilized cell experiments demonstrated that CSA lowers the apparent IP(3) sensitivity for Ca(2+) release from intracellular stores. These effects on IP(3)-dependent [Ca(2+)](i) signals could not be attributed to changes in calcineurin activity, altered ryanodine receptor function, or impaired Ca(2+) fluxes across the plasma membrane. However, CSA enhanced the removal of cytosolic Ca(2+) by sarco-endoplasmic reticulum Ca(2+)-ATPase (SERCA), lowering basal and inter-spike [Ca(2+)](i). In addition, CSA stimulated a stable rise in the mitochondrial membrane potential (DeltaPsi(m)), presumably by inhibiting the mitochondrial permeability transition pore, and this was associated with increased Ca(2+) uptake and retention by the mitochondria during a rise in [Ca(2+)](i). We suggest that CSA suppresses local Ca(2+) feedback by enhancing mitochondrial and endoplasmic reticulum Ca(2+) uptake, these actions of CSA underlie the lower IP(3) sensitivity found in permeabilized cells and the impaired IP(3)-dependent [Ca(2+)](i) signals in intact cells. Thus, CSA binding proteins (cyclophilins) appear to fine tune agonist-induced [Ca(2+)](i) signals, which, in turn, may adjust the output of downstream Ca(2+)-sensitive pathways.  相似文献   

6.
The aim of this study was to determine whether extracellular ATP ([ATP](o)) stimulated a Ca(2+)-activated K(+) efflux in trophoblast cells that was dependent on extracellular Ca(2+) ([Ca(2+)](o)). Cytotrophoblast cells, isolated from human placenta, were examined following 18 h (relatively undifferentiated) and 66 h (multinucleate cells) of culture. Potassium efflux was measured using (86)Rb as a trace marker. Intracellular Ca(2+) ([Ca(2+)](i)) was examined by microfluorometry using fura 2. [ATP](o) significantly increased (86)Rb efflux to a peak that declined to control (18-h cells) or an elevated plateau (66-h cells) and was inhibited by 100 nM charybdotoxin. Removing [Ca(2+)](o) significantly reduced (86)Rb efflux in both groups as did application of 150 microM GdCl(3). [ATP](o) significantly increased [Ca(2+)](i) in both groups of cells. The response was reduced by removing [Ca(2+)](o) and applying 150 microM GdCl(3). For both (86)Rb efflux and microfluorometry experiments, the response to [ATP](o) was more dependent on [Ca(2+)](o) in 66-h cells compared with 18-h cells (approximately 70% greater). Cytotrophoblast cells exhibit an [ATP](o)-stimulated Ca(2+)-activated K(+) efflux. The dependency of this pathway on [Ca(2+)](o) is greater in the 66-h multinucleate syncytiotrophoblast-like cells, suggesting that the mechanism for Ca(2+) entry may be altered during differentiation of trophoblast cells.  相似文献   

7.
While changes in intracellular calcium are well known to influence muscle contraction through excitation contraction coupling, little is understood of the calcium signaling events regulating gene expression through the calcineurin/NFAT pathway in muscle. Here, we demonstrate that Ca(+2) released via the inositol trisphosphate receptor (IP3R) increases nuclear entry of NFAT in undifferentiated skeletal myoblasts, but the IP3R Ca(+2) pool in differentiated myotubes promotes nuclear exit of NFAT despite a comparable quantitative change in [Ca(+2)]i. In contrast, Ca(+2) released via ryanodine receptors (RYR) increases NFAT nuclear entry in myotubes. The scaffolding protein Homer, known to interact with both IP3R and RYR, is expressed as part of the myogenic differentiation program and enhances NFAT-dependent signaling by increasing RYR Ca(+2) release. These results demonstrate that differentiated skeletal myotubes employ discrete pools of intracellular calcium to restrain (IP3R pool) or activate (RYR pool) NFAT-dependent signaling, in a manner distinct from undifferentiated myoblasts. The selective expression of Homer proteins contributes to these differentiation-dependent features of calcium signaling.  相似文献   

8.
Injection of a porcine cytosolic sperm factor (SF) or of a porcine testicular extract into mammalian eggs triggers oscillations of intracellular free calcium ([Ca(2+)](i)) similar to those initiated by fertilization. To elucidate whether SF activates the phosphoinositide (PI) pathway, mouse eggs or SF were incubated with U73122, an inhibitor of events leading to phospholipase C (PLC) activation and/or of PLC itself. In both cases, U73122 blocked the ability of SF to induce [Ca(2+)](i) oscillations, although it did not inhibit Ca(2+) release caused by injection of inositol 1,4,5-triphosphate (IP(3)). The inactive analogue, U73343, had no effect on SF-induced Ca(2+) responses. To determine at the single cell level whether SF triggers IP(3) production concomitantly with a [Ca(2+)](i) rise, SF was injected into Xenopus oocytes and IP(3) concentration was determined using a biological detector cell combined with capillary electrophoresis. Injection of SF induced a significant increase in [Ca(2+)](i) and IP(3) production in these oocytes. Using ammonium sulfate precipitation, chromatographic fractionation, and Western blotting, we determined whether PLCgamma1, PLCgamma2, or PLCdelta4 and/or its splice variants, which are present in sperm and testis, are responsible for the Ca(2+) activity in the extracts. Our results revealed that active fractions do not contain PLCgamma1, PLCgamma2, or PLCdelta4 and/or its splice variants, which were present in inactive fractions. We also tested whether IP(3) could be the sensitizing stimulus of the Ca(2+)-induced Ca(2+) release mechanism, which is an important feature of fertilized and SF-injected eggs. Eggs injected with adenophostin A, an IP(3) receptor agonist, showed enhanced Ca(2+) responses to CaCl(2) injections. Thus, SF, and probably sperm, induces [Ca(2+)](i) rises by persistently stimulating IP(3) production, which in turn results in long-lasting sensitization of Ca(2+)-induced Ca(2+) release. Whether SF is itself a PLC or whether it acts upstream of the egg's PLCs remains to be elucidated.  相似文献   

9.
In HEK 293 cells stably expressing type 1 parathyroid (PTH) receptors, PTH stimulated release of intracellular Ca(2+) stores in only 27% of cells, whereas 96% of cells responded to carbachol. However, in almost all cells PTH potentiated the response to carbachol by about 3-fold. Responses to carbachol did not desensitize, but only the first challenge in Ca(2+)-free medium caused an increase in [Ca(2+)](i), indicating that the carbachol-sensitive Ca(2+) stores had been emptied. Subsequent addition of PTH also failed to increase [Ca(2+)](i), but when it was followed by carbachol there was a substantial increase in [Ca(2+)](i). A similar potentiation was observed between ATP and PTH but not between carbachol and ATP. Intracellular heparin inhibited responses to carbachol and PTH, and pretreatment with ATP and carbachol abolished responses to PTH, suggesting that the effects of PTH involve inositol trisphosphate (IP(3)) receptors. PTH neither stimulated detectable IP(3) formation nor affected the amount formed in response to ATP or carbachol. PTH stimulated cyclic AMP formation, but this was not the means whereby PTH potentiated Ca(2+) signals. We suggest that PTH may regulate Ca(2+) mobilization by facilitating translocation of Ca(2+) between discrete intracellular stores and that it thereby regulates the size of the Ca(2+) pool available to receptors linked to IP(3) formation.  相似文献   

10.
Many cellular functions are driven by changes in the intracellular Ca(2+) concentration ([Ca(2+)](i)) that are highly organized in time and space. Ca(2+) oscillations are particularly important in this respect and are based on positive and negative [Ca(2+)](i) feedback on inositol 1,4,5-trisphosphate receptors (InsP(3)Rs). Connexin hemichannels are Ca(2+)-permeable plasma membrane channels that are also controlled by [Ca(2+)](i). We aimed to investigate how hemichannels may contribute to Ca(2+) oscillations. Madin-Darby canine kidney cells expressing connexin-32 (Cx32) and Cx43 were exposed to bradykinin (BK) or ATP to induce Ca(2+) oscillations. BK-induced oscillations were rapidly (minutes) and reversibly inhibited by the connexin-mimetic peptides (32)Gap27/(43)Gap26, whereas ATP-induced oscillations were unaffected. Furthermore, these peptides inhibited the BK-triggered release of calcein, a hemichannel-permeable dye. BK-induced oscillations, but not those induced by ATP, were dependent on extracellular Ca(2+). Alleviating the negative feedback of [Ca(2+)](i) on InsP(3)Rs using cytochrome c inhibited BK- and ATP-induced oscillations. Cx32 and Cx43 hemichannels are activated by <500 nm [Ca(2+)](i) but inhibited by higher concentrations and CT9 peptide (last 9 amino acids of the Cx43 C terminus) removes this high [Ca(2+)](i) inhibition. Unlike interfering with the bell-shaped dependence of InsP(3)Rs to [Ca(2+)](i), CT9 peptide prevented BK-induced oscillations but not those triggered by ATP. Collectively, these data indicate that connexin hemichannels contribute to BK-induced oscillations by allowing Ca(2+) entry during the rising phase of the Ca(2+) spikes and by providing an OFF mechanism during the falling phase of the spikes. Hemichannels were not sufficient to ignite oscillations by themselves; however, their contribution was crucial as hemichannel inhibition stopped the oscillations.  相似文献   

11.
This study was undertaken to examine the role of K(+) channels on cytosolic Ca(2+) ([Ca(2+)](i)) in insulin secreting cells. [Ca(2+)](i) was measured in single glucose-responsive INS-1 cells using the fluorescent Ca(2+) indicator Fura-2. Glucose, tolbutamide and forskolin elevated [Ca(2+)](i) and induced [Ca(2+)] oscillations. Whereas the glucose effect was delayed and observed in 60% and 93% of the cells, in a poorly and a highly glucose-responsive INS-1 cell clone, respectively, tolbutamide and forskolin increased [Ca(2+)](i) in all cells tested. In the latter clone, glucose induced [Ca(2+)](i) oscillations in 77% of the cells. In 16% of the cells a sustained rise of [Ca(2+)](i) was observed. The increase in [Ca(2+)](i) was reversed by verapamil, an L-type Ca(2+) channel inhibitor. Adrenaline decreased [Ca(2+)](i) in oscillating cells in the presence of low glucose and in cells stimulated by glucose alone or in combination with tolbutamide and forskolin. Adrenaline did not lower [Ca(2+)](i) in the presence of 30mM extracellular K(+), indicating that adrenaline does not exert a direct effect on Ca(2+) channels but increases K(+) channel activity. As for primary b-cells, [Ca(2+)](i) oscillations persisted in the presence of closed K(ATP) channels; these also persisted in the presence of thapsigargin, which blocks Ca(2+) uptake into Ca(2+) stores. In contrast, in voltage-clamped cells and in the presence of diazoxide (50mM), which hyperpolarizes the cells by opening K(ATP) channels, [Ca(2+)](i) oscillations were abolished. These results support the hypothesis that [Ca(2+)](i) oscillations depend on functional voltage-dependent Ca(2+) and K(+) channels and are interrupted by a hyperpolarization in insulin-secreting cells.  相似文献   

12.
The multiplicity of mechanisms involved in regulation of intracellular Ca(2+) concentration ([Ca(2+)](i)) in smooth muscle results in both intra- and intercellular heterogeneities in [Ca(2+)](i). Heterogeneity in [Ca(2+)](i) regulation is reflected by the presence of spontaneous, localized [Ca(2+)](i) transients (Ca(2+) sparks) representing Ca(2+) release through ryanodine receptor (RyR) channels. Ca(2+) sparks display variable spatial Ca(2+) distributions with every occurrence within and across cellular regions. Individual sparks are often grouped, and fusion of sparks produces large local elevations in [Ca(2+)](i) that occasionally trigger propagating [Ca(2+)](i) waves. Ca(2+) sparks may modulate membrane potential and thus smooth muscle contractility. Sparks may also be the target of other regulatory factors in smooth muscle. Agonists induce propagating [Ca(2+)](i) oscillations that originate from foci with high spark incidence and also represent Ca(2+) release through RyR channels. With increasing agonist concentration, the peak of regional [Ca(2+)](i) oscillations remains relatively constant, whereas both frequency and propagation velocity increase. In contrast, the global cellular response appears as a concentration-dependent increase in peak as well as mean cellular [Ca(2+)](i), representing a spatial and temporal integration of the oscillations. The significance of agonist-induced [Ca(2+)](i) oscillations lies in the establishment of a global [Ca(2+)](i) level for slower Ca(2+)-dependent physiological processes.  相似文献   

13.
Transient increases, or oscillations, of cytoplasmic free Ca(2+) concentration, [Ca(2+)](i), occur during fertilization of animal egg cells. In sea urchin eggs, the increased Ca(2+) is derived from intracellular stores, but the principal signaling and release system involved has not yet been agreed upon. Possible candidates are the inositol 1,4,5-trisphosphate receptor/channel (IP(3)R) and the ryanodine receptor/channel (RyR) which is activated by cGMP or cyclic ADP-ribose (cADPR). Thus, it seemed that direct measurements of the likely second messenger candidates during sea urchin fertilization would be essential to an understanding of the Ca(2+) signaling pathway. We therefore measured the cGMP, cADPR and inositol 1,4,5-trisphosphate (IP(3)) contents of sea urchin eggs during the early stages of fertilization and compared these with the [Ca(2+)](i) rise in the presence or absence of an inhibitor against soluble guanylate cyclase. We obtained three major experimental results: (1) cytosolic cGMP levels began to rise first, followed by cADPR and IP(3) levels, all almost doubling before the explosive increase of [Ca(2+)](i); (2) most of the rise in IP(3) occurred after the Ca(2+) peak; IP(3) production could also be induced by the artificial elevation of [Ca(2+)](i), suggesting the large increase in IP(3) is a consequence, rather than a cause, of the Ca(2+) transient; (3) the measured increase in cGMP was produced by the soluble guanylate cyclase of eggs, and inhibition of soluble guanylate cyclase of eggs diminished the production of both cADPR and IP(3) and the [Ca(2+)](i) increase without the delay of Ca(2+) transients. Taken together, these results suggest that the RyR pathway involving cGMP and cADPR is not solely responsible for the initiating event, but contributes to the Ca(2+) transients by stimulating IP(3) production during fertilization of sea urchin eggs.  相似文献   

14.
15.
In PC-Cl3 rat thyroid cell line, ATP and UTP provoked a transient increase in [Ca(2+)](i), followed by a lower sustained phase. Removal of extracellular Ca(2+) reduced the initial transient response and completely abolished the plateau phase. Thapsigargin (TG) caused a rapid rise in [Ca(2+)](i) and subsequent addition of ATP was without effect. The transitory activation of [Ca(2+)](i) was dose-dependently attenuated in cells pretreated with the specific inhibitor of phospholipase C (PLC), U73122. These data suggest that the ATP-stimulated increment of [Ca(2+)](i) required InsP(3) formation and binding to its specific receptors in Ca(2+) stores. Desensitisation was demonstrated with respect to the calcium response to ATP and UTP in Fura 2-loaded cells. Further studies were performed to investigate whether the effect of ATP on Ca(2+) entry into PC-Cl3 cells was via L-type voltage-dependent Ca(2+) channels (L-VDCC) and/or by the capacitative pathway. Nifedipine decreased ATP-induced increase on [Ca(2+)](i). Addition of 2 mM Ca(2+) induced a [Ca(2+)](i) rise after pretreatment of the cells with TG or with 100 microM ATP in Ca(2+)-free medium. These data indicate that Ca(2+) entry into PC-Cl3 stimulated with ATP occurs through both an L-VDCC and through a capacitative pathway. Using buffers with differing Na(+) concentrations, we found that the effects of ATP were dependent of extracellular Na(+), suggesting that a Na(+)/Ca(2+) exchange mechanism is also operative. These data suggest the existence, in PC-Cl3 cell line, of a P2Y purinergic receptor able to increase the [Ca(2+)](i) via PLC activation, Ca(2+) store depletion, capacitative Ca(2+) entry and L-VDCC activation.  相似文献   

16.
Changes in intracellular Ca(2+) concentration ([Ca(2+)](i)) control the setting up of the neuro-muscular synapse in vitro and probably in vivo. Dissociated cultures of purified embryonic (E15) rat motoneurons were used to explore the molecular mechanisms by which endoplasmic reticulum Ca(2+) stores, via both ryanodine-sensitive and IP(3)-sensitive intracellular Ca(2+) channels control [Ca(2+)](i) homeostasis in these neurons during ontogenesis. Fura-2 microspectrofluorimetry monitorings in single neurons showed that caffeine-induced responses of [Ca(2+)](i) increased progressively from days 1-7 in culture. These responses were blocked by ryanodine and nicardipine but not by omega-conotoxin-GVIA or omega-conotoxin-MVIIC suggesting a close functional relationship between ryanodine-sensitive and L-type Ca(v)1 Ca(2+) channels. Moreover, after 6 days in vitro, neurons exhibited spontaneous or caffeine-induced Ca(2+) oscillations that were attenuated by nicardipine. In 1-day-old neurons, both thapsigargin or CPA, which deplete Ca(2+) stores from the endoplasmic reticulum, induced an increase in [Ca(2+)](i) in 75% of the neurons tested. The number of responding motoneurons declined to 25% at 5-6 days in vitro. Xestospongin-C, a membrane-permeable IP(3) receptor inhibitor blocked the CPA-induced [Ca(2+)](i) response in all stages. RT-PCR studies investigating the expression pattern of RYR and IP(3) Ca(2+) channels isoforms confirmed the presence of their different isoforms and provided evidence for a specific pattern of development for RYR channels during the first week in vitro. Taken together, present results show that the control of motoneuronal [Ca(2+)](i) homeostasis is developmentally regulated and suggest the presence of an intracellular ryanodine-sensitive Ca(2+) channel responsible for a Ca(2+)-induced Ca(2+) release in embryonic motoneurons following voltage-dependent Ca(2+) entry via L-type Ca(2+) channels.  相似文献   

17.
18.
Using dual excitation and fixed emission fluorescence microscopy, we were able to measure changes in cytoplasmic free Ca(2+) concentration ([Ca(2+)](i)) and mitochondrial membrane potential simultaneously in the pancreatic beta-cell. The beta-cells were exposed to a combination of the Ca(2+) indicator fura-2/AM and the indicator of mitochondrial membrane potential, rhodamine 123 (Rh123). Using simultaneous measurements of mitochondrial membrane potential and [Ca(2+)](i) during glucose stimulation, it was possible to measure the time lag between the onset of mitochondrial hyperpolarization and changes in [Ca(2+)](i). Glucose-induced oscillations in [Ca(2+)](i) were followed by transient depolarizations of mitochondrial membrane potential. These results are compatible with a model in which nadirs in [Ca(2+)](i) oscillations are generated by a transient, Ca(2+)-induced inhibition of mitochondrial metabolism resulting in a temporary fall in the cytoplasmic ATP/ADP ratio, opening of plasma membrane K(ATP) channels, repolarization of the plasma membrane, and thus transient closure of voltage-gated L-type Ca(2+) channels.  相似文献   

19.
SNI-2011 induces the long-lasting increase in the amount of aquaporin-5 (AQP5) in apical plasma membranes (APMs) of rat parotid acini in a concentration-dependent manner. This induction was inhibited by p-F-HHSiD, U73122, TMB-8, or dantrolene but not by bisindolmaleimide or H-7, indicating that SNI-2011 acting at M(3) muscarinic receptors induced translocation of AQP5 via [Ca(2+)](i) elevation but not via the activation of protein kinase C. In contrast, acetylcholine induced a transient translocation of AQP5 to APMs. SNI-2011 induces long-lasting oscillations of [Ca(2+)](i) in the presence of extracellular Ca(2+). Thus, SNI-2011 induces a long-lasting translocation of AQP5 to APMs coupled with persistent [Ca(2+)](i) oscillations.  相似文献   

20.
The calcium ([Ca(2+)](i)) oscillations associated with mammalian fertilization and required to induce egg activation occur during M-phase stages of the cell cycle. The molecular mechanisms underlying this regulation remain unproven and may be multi-layered. Type 1 inositol 1,4,5-trisphosphate receptors (IP(3)R-1), which mediate [Ca(2+)](i) release during fertilization, have emerged as key regulatory units because they contain multiple phosphorylation consensus sites and undergo changes in cellular location and mass prior to and following fertilization. Hence, control of IP(3)R-1 function together with regulation of PLCzeta activity, the putative sperm factor, may combine to impart cell cycle and species-specific [Ca(2+)](i) oscillations characteristic of mammalian fertilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号