首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
基因工程蛋白和多肽药物是第一代基因工程药物的主体,已广泛应用于临床,但这类药物的血浆半衰期一般只有数十分钏至数小时,疾病治疗时往往需要反复频繁注射,  相似文献   

2.
利用重叠PCR技术拼接PTH和HSA基因,并将构建好的融合基因插入到载体pUC19测序后插入表达载体pPIC9K中,在启动子AOXⅠ和α交配因子信号肽的作用下,分泌表达融合蛋白PTH-HSA。重组质粒pPIC9K/PTH-HSA经SalⅠ线性化后,电击转化毕赤酵母KM71,经G418筛选得到的转化子。PCR鉴定后,用甲醇诱导表达,蛋白电泳分析表明融合基因得到表达; Western blot分析表明发酵液上清中表达的融合蛋白PTH-HSA具有HSA的抗原性:用酶标法测定发酵上清中融合蛋白的甲状旁腺激素活性为318IU/ml  相似文献   

3.
融合蛋白技术应用于生物制药行业已超过25年,其目的为改善原来天然蛋白的性质,从而具有新的理化特征和生物学功能,其中最为显著的特点是改善了小分子蛋白及多肽半衰期短的缺陷。基于该技术所诞生的融合蛋白类药物已成为当前生物药研发的热点。结合已上市融合蛋白类药物,通过与传统多肽蛋白类药物比较,重点突出融合蛋白类药物自身特点,主要从融合抗体Fc段和人血清白蛋白以延长小分子蛋白及多肽半衰期的角度对融合蛋白药物长效化策略进行评述;对融合蛋白类药物在体内的吸收、分布、代谢和排泄的显著特征进行概述;综述该类药物在体内的分析技术并指出当前分析技术的优缺点及发展方向,为长效化融合蛋白药物的设计、分析研究与开发提供依据和思路。  相似文献   

4.
细胞因子融合蛋白是近年来国内外研究的热门问题。因为融合蛋白可能具有除相关因子征稿 性以外的复合功能,所以被学术界看作为很有前途的第二代细胞因子。随着基因重组技术和蛋白质工程技术完善和发展,越来越多的有研究与应用价值的新的细胞因子融合蛋白将会被人们发现。  相似文献   

5.
人工合成人甲状旁腺激素1-34肽段 (PTH1-34)的cDNA序列,克隆到大肠杆菌蛋白表达载体pThioHis中,获得了高表达菌株。经发酵、破菌、金属鳌合层析、反相层析和凝胶层析后获得了纯度大于95%的hPTH1-34。hPTH1-34肽N端测序和质谱分子量测定结果与天然PTH1-34一致。生物学活性研究表明,hPTH1-34在体外具有刺激腺苷酸环化酶的作用。  相似文献   

6.
构建人甲状旁腺激素(1-34)二联体与人血清白蛋白融合蛋白的表达载体,并表达得到该融合蛋白.通过设计强特异性的引物,利用重叠PCR技术,定向定量的拼接得到hPTH(1-34)二联体-HSA融合蛋白的基因;将构建好的融合基因插入表达载体pPIC9K,大量扩增重组质粒,并用Sal I线性化,电击转化毕赤酵母GS115,经组氨酸缺陷和G418抗性双重筛选得到阳性转化子;挑选阳性转化子进行甲醇诱导表达.测序结果表明得到的重组质粒pPIC9K-hPTH(1-34)二联体-HSA与目标设计完全一致;基因组PCR鉴定结果证明成功构建了hPTH(1-34)二联体-HSA融合基因的毕赤酵母(GS115)表达系统;SDS-PAGE电泳表明融合蛋白获得了表达,尿微量白蛋白试剂盒测定甲醇诱导表达3d后融合蛋白的产量为127 mg/L.  相似文献   

7.
融合蛋白连接肽的研究进展   总被引:3,自引:0,他引:3  
融合蛋白是将两个或多个基因的编码区首尾连接,由同一调控序列控制构成的基因表达产物。对于有连接肽的融合蛋白,连接肽的设计在其中起着决定性的作用。该文从连接肽的设计、构建、分类、功能以及用连接肽构建融合蛋白时出现的问题和问题的解决等几个方面作了综述。  相似文献   

8.
目的:探讨甲状旁腺全切术后PTH的监测对于预测手术后是否复发的临床价值,确定具有预测价值的术后PTH的监测时间以及下降率。方法:选取本中心2009年5月至2014年8月收治的338例继发性甲状旁腺机能亢进症(secondary hyperparathyroidism,SHPT)患者作为研究对象,所有患者手术方式均为甲状旁腺全部切除术(total parathyroidectomy,t-PTX)。分别在手术前、术后1小时、术后24小时采集患者的血液标本检测血清PTH水平,并随访至术后一年,观察PTH的下降率与复发的相关性。结果:338名例患者术前、术后1小时和术后24小时的血清PTH水平分别是(1623.2±903.2 pg/m L)、(63.4±80.8 pg/m L)、(20.9±97.0pg/m L)。所有患者术后1小时和术后24小时PTH下降率均大于50%,平均值分别为95.9±5.1%和98.8±4.8%。未复发组术后1小时PTH的下降率中位数为97.1%(63.6-99.9%),复发组术后1小时PTH下降率中位数为79.6%(48.0-96.7%),两组间术后1小时和术后24小时PTH下降率比较差异具有统计学意义(P0.01)。术后1小时及术后24小时PTH下降率的受试者工作特征曲线显示曲线下面积分别为0.907和0.897(P值均0.001)。当PTH下降率为90%时,诊断手术成功的敏感性为87.23%,特异性为88.89%。且术后1小时和术后24小时的PTH下降率基本一致,对于术后复发的临床价值无统计学差异。结论:甲状旁腺全切术后1小时血清PTH的下降率预测术后复发与术后24小时血清PTH的下降率预测手术复发的临床价值相当。  相似文献   

9.
部分重组蛋白药物存在半衰期短的缺陷,临床给药频率高,且大多为注射给药,严重影响患者使用依从性。长效重组蛋白药物是近年来生物技术药物发展的重要趋势之一。对蛋白分子进行改造或修饰,延长重组蛋白药物的半衰期,实现长效以减少给药频率主要通过4种方式:化学修饰、构建突变体、蛋白融合、糖基化修饰。针对上述4种长效化方式及已上市相关产品进行了综述。展望未来,紧跟国外先进技术和质量标准发展,进一步提高国产长效重组蛋白药物质量水平,推进国内相关产品标准升级,推动创新长效重组蛋白药物开发及专利布局是未来几年国内该领域的发展方向。  相似文献   

10.
用一株基因工程菌E.coli2426/pMN表达了麦芽糖结合蛋白-人神经生长因子融合蛋白,菌体超声破碎后,上清液经直链淀粉亲和柱一步即可获SDS-PAGE纯融合蛋白,为麦芽糖结合蛋白与人神经生长因子的络合物,产率约10%。产物用鸡胚背根神经节检测生物活性,1BU不大于10ng,与小鼠颌下腺β神经生长因子具有类似生物活性。  相似文献   

11.
用重叠PCR技术将PTH(parathyroid hormone, 甲状旁腺激素)基因与TFN(transferrin N_terminal half_molecule, 转铁蛋白N端半分子)基因在体外融合,融合基因克隆至真核表达载体pPIC9中,转化毕赤酵母GS115。转化子经甲醇诱导后,融合蛋白得到了表达并分泌到发酵上清液中。经 SP Sepharose F F阳离子交换层析、Phenyl Sepharose Fast Flow疏水层析纯化获得了纯度大于95%的PTH_TFN样品。Western blot分析及腺苷酸环化酶实验证明融合蛋白中的PTH具有与抗PTH抗体结合能力及刺激腺苷酸环化酶的活性,铁饱和实验证明融合蛋白中的TFN和单独的TFN具有相同铁结合能力。因而TFN可望作为PTH的天然运输载体。  相似文献   

12.
甲状旁腺素相关蛋白及其临床意义张莉王学卢圣栋(审阅)*(中国科学院微生物研究所,北京100080)(*中国医学科学院基础医学研究所,北京100005)甲状旁腺素相关蛋白(ParathyroidHor-mone-RelatedProtein,PTHrP)最早发现于恶性肿瘤致体液性高钙血症(HumoralHypercal-cemiaofMalignancy,HHM)患者的血浆中[1],具有与甲状...  相似文献   

13.
Fc 融合蛋白是指利用基因工程等技术将某种具有生物活性的功能蛋白分子与Fc 片段融合而产生的新型重组蛋白,其不仅保留了功能蛋白分子的生物学活性,还具有一些抗体的性质,如通过结合相关Fc 受体延长半衰期和引发抗体依赖细胞介导的细胞毒性效应等。对Fc融合蛋白及其在药学领域的研究进展进行了综述。  相似文献   

14.
Parathyroid hormone (PTH) and PTH-related protein (PTHrP) are two related peptides that control calcium/phosphate homeostasis and bone development, respectively, through activation of the PTH/PTHrP receptor (PTH1R), a class B G protein-coupled receptor. Both peptides hold clinical interest for their capacities to stimulate bone formation. PTH and PTHrP display different selectivity for two distinct PTH1R conformations, but how their binding to the receptor differs is unclear. The high resolution crystal structure of PTHrP bound to the extracellular domain (ECD) of PTH1R reveals that PTHrP binds as an amphipathic α-helix to the same hydrophobic groove in the ECD as occupied by PTH, but in contrast to a straight, continuous PTH helix, the PTHrP helix is gently curved and C-terminally “unwound.” The receptor accommodates the altered binding modes by shifting the side chain conformations of two residues within the binding groove: Leu-41 and Ile-115, the former acting as a rotamer toggle switch to accommodate PTH/PTHrP sequence divergence, and the latter adapting to the PTHrP curvature. Binding studies performed with PTH/PTHrP hybrid ligands having reciprocal exchanges of residues involved in different contacts confirmed functional consequences for the altered interactions and enabled the design of altered PTH and PTHrP peptides that adopt the ECD-binding mode of the opposite peptide. Hybrid peptides that bound the ECD poorly were selective for the G protein-coupled PTH1R conformation. These results establish a molecular model for better understanding of how two biologically distinct ligands can act through a single receptor and provide a template for designing better PTH/PTHrP therapeutics.The parathyroid hormone receptor (PTH1R)3 is a class B G protein-coupled receptor (GPCR) that transduces signals from two related signaling molecules that have distinct functions in biology: parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP) (Ref. 1; reviewed in Ref. 2). PTH is an 84-amino acid polypeptide endocrine hormone that is produced by the parathyroid glands and secreted into the circulation in response to low calcium levels (reviewed in Refs. 35), to act on bone and kidney cells and thus restore blood calcium to normal levels. In bone, PTH directly stimulates osteoblasts, resulting in bone formation (reviewed in Ref. 6), which in turn activate osteoclasts to induce bone resorption. In the kidney, PTH stimulates the reabsorption of filtered calcium, inhibits the reabsorption of phosphate, and stimulates the synthesis of 1,25-dihydroxyvitamin D3. The paradoxical anabolic/catabolic actions of PTH on bone can be modulated by exogenous PTH, and provide the molecular basis for the clinical use of PTH as an anabolic therapy for osteoporosis (7). Anabolic PTH therapy requires intermittent administration to minimize bone-resorptive effects, which predominate with sustained administration of PTH. PTHrP is a 141-amino acid polypeptide that was originally isolated as the factor responsible for humoral hypercalcemia of malignancy (811) and was subsequently shown to be a critical developmental paracrine factor that controls endochondral bone formation (Refs. 12, 13; reviewed in Ref. 14). PTHrP can also mediate bone-anabolic effects when administered to osteoporosis patients (15) and has been suggested to be more anabolic than PTH due to a differential effect on the coupled bone formation and resorptive responses (16).PTH and PTHrP are encoded by separate genes, each of which is found in vertebrate species ranging from fish to man. How PTH and PTHrP evolved to mediate distinct biological activities: calcium/phosphate homeostasis and tissue development, respectively, via actions upon a single receptor, remains unclear. Amino acid sequence homology is most apparent in the first 34-residue segments of the proteins, and N-terminal 34-residue peptide fragments of PTH and PTHrP are sufficient for high affinity binding to the PTH1R and are generally found to be equally potent for stimulating cAMP formation in PTH1R-expressing cells (1). The interaction of the (1–34)-length ligand with the PTH1R has been postulated to follow a “two-domain” model: residues within the approximate (1–14) segment interact with the 7-transmembrane (7-TM) helical domain embedded in the membrane, and residues within the approximate (15–34) segment interact with the N-terminal extracellular domain (ECD) of the receptor (17, 18). The 1–14 domains of PTH and PTHrP share eight amino acid sequence identities, reflecting a critical role in activating the receptor (18), while the 15–34 domains share only three amino acid identities, despite a critical role in imparting high affinity binding to the receptor.Recent studies suggest that PTH and PTHrP differ in their relative capacities to bind to two pharmacologically distinguishable high-affinity PTH1R conformations (1922). One conformation, termed R0, is stable in the presence of GTPγS, but presumably in the absence of G protein coupling, correlates with prolonged signaling responses in vitro and in vivo, and is bound preferentially by PTH-(1–34). The other conformation, termed RG, is sensitive to GTPγS addition, promoted by the overexpression of a high affinity variant of Gαs, and bound preferentially by PTHrP-(1–36). A mechanistic basis for the differing capacities of PTH and PTHrP ligands to bind to these altered PTH1R conformations is not clear at present, although, both the (1–14) and (15–34) portions of PTH contribute importantly to the capacity to bind stably to the proposed R0 conformation (19, 21, 22).We previously developed a method that allowed us to determine the high resolution crystal structure of recombinant PTH1R ECD in complex with the 15–34 synthetic fragment of PTH (23). The PTH1R ECD adopts a tertiary fold that is conserved among class B GPCR ECDs (2426), and the PTH(15–34)NH2 domain binds as a continuous and straight amphipathic α-helix to a hydrophobic groove in the ECD. Here we present the high resolution crystal structure of the PTHrP 12–34 fragment in complex with the PTH1R ECD, which reveals a distinct docking conformation toward the C terminus of the PTHrP peptide. Based on the structural differences, we designed hybrid PTH/PTHrP peptides exchanged for residues involved in altered ECD contacts; functional analyses of these peptides confirmed that the altered modes of binding indeed translate into functional consequences in terms of receptor affinity. These results provide critical insights into how PTH and PTHrP can act through a single receptor, and a structural model for designing better PTH/PTHrP analogs for treating osteoporosis.  相似文献   

15.
16.
生长激素受体的研究进展   总被引:10,自引:0,他引:10  
生长激素(GH)在促进动物生长、发育等代谢过程中起着重要作用,GH发挥生理作用的第一步是与靶细胞膜表面的生长激素受体(CHR)结合。现已基本阐明了CHR的结构及由CHR介导的信号转导途径,对GHR基因表达调节的机制也有了一定的了解。GHR是由约620个氨基酸组成的单链跨膜糖蛋白,其胞外区、跨膜区及胞区内分别由约245、25及350个氨基酸组成。由GHR介导的信号转导途径主要有:①酪氨酸激酶系统;②蛋白激酶C途径;③胰岛素受体底物途径。营养状况及GH等内分泌因子对GHR的表达也有调节作用。  相似文献   

17.
18.
甲状旁腺素相关蛋白cDNA的克隆及其在大肠杆菌中的表达   总被引:1,自引:0,他引:1  
采用RTPCR方法从中国人肾癌细胞株中克隆到甲状旁腺素相关蛋白(Parathyroidhormnoerelatedprotein,PTHrP)cDNA,其核苷酸序列与国外发表资料相比,有6个核苷酸不同,其中仅92位密码子的不同导致氨基酸变异,即由脯氨酸变为丝氨酸。将克隆的PTHrPcDNA插到原核表达载体pET3a的T7噬菌体启动子下游,转化大肠杆菌后得到高效表达,并经Westernblot和生物学活性检测对表达产物作了鉴定。  相似文献   

19.
Immunoreactive Parathyroid Hormone in Circulation of Man   总被引:9,自引:0,他引:9  
WE have reported that parathyroid hormone (PTH) is secreted from the parathyroid in vivo as a polypeptide of eighty-four amino-acids, identical to the hormone stored in the glands (molecular weight of 9,500), but that the hormonal polypeptide is cleaved after it enters the general circulation1. A large hormonal fragment from this cleavage, with a molecular weight of approximately 7,500, has been identified in the circulation. The fragment differs immunologically from the hormone secreted and extracted from the glands1. To analyse the biological significance of the metabolism of the hormone and the chemical nature and hormonal activity of the large circulating fragment, we have developed radioimmunoassays that specifically measure the amino-terminal (N-assay) and carboxyl-terminal (C-assay) regions of the hormonal molecule. We now report that much higher concentrations of immunoreactive hormone are found in the general circulation by the C-assay than by the N-assay. The studies with the N-assay indicate that the large fragment has lost a portion of the amino-terminal sequence required for biological activity9. Since the fragment is present in much higher concentration than native uncleaved hormone, we must conclude that much of the immunoreactive PTH detected in the circulation is biologically inactive.  相似文献   

20.
《Endocrine practice》2007,13(7):785-789
ObjectiveTo describe an unusual case of pathologically confirmed primary hyperparathyroidism in a patient presenting with severe hypercalcemia and an undetectable parathyroid hormone (PTH) level.MethodsWe present a detailed case report and outline the serial laboratory findings. In addition, the possible causes of low serum PTH levels in the setting of primary hyperparathyroidism are discussed.ResultsA 16-year-old female patient presented with severe epigastric pain, found to be attributable to acute pancreatitis. At hospital admission, her serum calcium concentration was high (14.0 mg/dL); the patient also had a normal serum phosphorus level of 3.6 mg/dL and an undetectable PTH level (< 0.2 pmol/L). An evaluation for non-PTH-mediated causes of hypercalcemia revealed a partially suppressed thyroid-stimulating hormone concentration and a below normal 1,25-dihydroxyvitamin D level, consistent with her suppressed PTH. One week after the patient was dismissed from the hospital, repeated laboratory studies showed a serum calcium value of 11.1 mg/dL, a serum phosphorus level of 2.8 mg/dL, and an elevated PTH concentration of 11.0 pmol/L, consistent with primary hyperparathyroidism. A repeated 1,25-dihy-droxyvitamin D measurement was elevated. A parathyroid scan showed a parathyroid adenoma in the left lower neck area, and she subsequently underwent successful surgical resection of a pathologically confirmed parathyroid adenoma.ConclusionThis case demonstrates that the serum PTH level can be suppressed in patients with primary hyperparathyroidism. Moreover, it emphasizes the need for careful evaluation of the clinical context in which the PTH measurement is determined. Consideration should be given to repeating measurement of PTH and serum calcium levels when the initial laboratory evaluation of hypercalcemia is unclear because dynamic changes in calcium metabolism may occur in the presence of secondary contributing factors. (Endocr Pract. 2007;13:785-789)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号