首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A computational model of the flow of activity in a vertically organized slab of cat primary visual cortex (area 17) has been developed. The membrane potential of each cell in the model, as a function of time, is given by the solution of a system of first order, coupled, non-linear differential equations. When firing threshold is exceeded, an action potential waveform is pasted in. The behavior of the model following a brief simulated stimulus to afferents from the dorsal lateral geniculate nucleus (dLGN) is explored. Excitatory and inhibitory post-synaptic potential (E and IPSP) latencies, as a function of cortical depth, were generated by the model. These data were compared with the experimental literature. In general, good agreement was found for EPSPs. Many disynaptic inhibitory inputs were found to be masked by the firing of action potentials in the model. To our knowledge this phenomenon has not been reported in the experimental literature. The model demonstrates that whether a cell exhibits disynaptic or polysynaptic PSP latencies is not a fixed consequence of anatomical connectivity, but rather, can be influenced by connection strengths, and may be influenced by the ongoing pattern of activity in the cortex.Supported by a grant from Cray Research Inc.  相似文献   

2.
We propose a computational model of mating strategies for controlled animal breeding programs. A mating strategy in a controlled breeding program is a heuristic with some optimization criteria as a goal. Thus, it is appropriate to use the computational tools available for analysis of optimization heuristics. In this paper, we propose the first discrete model of the controlled animal breeding problem and analyse heuristics for two possible objectives: (1) breeding for maximum diversity and (2) breeding a target individual. These two goals are representative of conservation biology and agricultural livestock management, respectively. We evaluate several mating strategies and provide upper and lower bounds for the expected number of matings. While the population parameters may vary and can change the actual number of matings for a particular strategy, the order of magnitude of the number of expected matings and the relative competitiveness of the mating heuristics remains the same. Thus, our simple discrete model of the animal breeding problem provides a novel viable and robust approach to designing and comparing breeding strategies in captive populations.  相似文献   

3.
4.
Over the past decade there has been a growing acknowledgement that a large proportion of proteins within most proteomes contain disordered regions. Disordered regions are segments of the protein chain which do not adopt a stable structure. Recognition of disordered regions in a protein is of great importance for protein structure prediction, protein structure determination and function annotation as these regions have a close relationship with protein expression and functionality. As a result, a great many protein disorder prediction methods have been developed so far. Here, we present an overview of current protein disorder prediction methods including an analysis of their advantages and shortcomings. In order to help users to select alternative tools under different circumstances, we also evaluate 23 disorder predictors on the benchmark data of the most recent round of the Critical Assessment of protein Structure Prediction (CASP) and assess their accuracy using several complementary measures.  相似文献   

5.
Thermal interaction between animal and microclimate: a comprehensive model   总被引:1,自引:0,他引:1  
An equation based on heat transfer theory is developed to predict the rate of heat loss from a homeothermic vertebrate to the environment, specified by the air temperature, humidity, windspeed and radiation receipt. The analysis incorporates the animal's thermoregulatory responses--sweating ability, vasomotor action, and regulation of body-core temperature, metabolic and respiratory rate. The loss of heat and water vapour from cattle is used as an illustration, and particular attention is given to their heat balance in hot environments. The predicted rates of heat loss from cattle indoors at various air temperatures and humidities are consistent with experiments. Outdoors, intercepted solar radiation can reduce substantially heat loss through the body tissue when the air temperature is low. In contrast, at high air temperatures the heat dissipation may not be sensitive to the radiation load, although body-core temperature is. Increased rates of air movement can aggravate strain at low air temperatures, but mitigate strain in a hot environment.  相似文献   

6.
Visual anisotropy has been demonstrated in multiple tasks where performance differs between vertical, horizontal, and oblique orientations of the stimuli. We explain some principles of visual anisotropy by anisotropic smoothing, which is based on a variation on Koenderink's approach in [1]. We tested the theory by presenting gaussian elongated luminance profiles and measuring the perceived orientations by means of an adjustment task. Our framework is based on the smoothing of the image with elliptical gaussian kernels and it correctly predicted an illusory orientation bias towards the vertical axis. We discuss the scope of the theory in the context of other anisotropies in perception.  相似文献   

7.

1. 1.The bahavioural paradigm in which cold-exposed animals can work for pulses of infrared radiation has been extensively used in the literature, but a formula to calculate the amount of heat obtained has not been advanced.

2. 2.This paper describes a computational formula for heat influx in rats: E = 3.64 · 10−6 · n · d · I · M0.6 where E is heat influx (kJ), n is number of rewards, d is reward duration (sec), I is irradiance (mW/cm2), and M is body mass (g).

Author Keywords: Heat influx; behavioural thermoregulation; thermal radiation; whole body heating; heat transfer; rat  相似文献   


8.
In this article, we present a neurologically motivated computational architecture for visual information processing. The computational architecture’s focus lies in multiple strategies: hierarchical processing, parallel and concurrent processing, and modularity. The architecture is modular and expandable in both hardware and software, so that it can also cope with multisensory integrations – making it an ideal tool for validating and applying computational neuroscience models in real time under real-world conditions. We apply our architecture in real time to validate a long-standing biologically inspired visual object recognition model, HMAX. In this context, the overall aim is to supply a humanoid robot with the ability to perceive and understand its environment with a focus on the active aspect of real-time spatiotemporal visual processing. We show that our approach is capable of simulating information processing in the visual cortex in real time and that our entropy-adaptive modification of HMAX has a higher efficiency and classification performance than the standard model (up to \(\sim \!+6\,\% \) ).  相似文献   

9.
The receptive fields of cells in the lateral geniculate nucleus (LGN) are shaped by their diverse set of impinging inputs: feedforward synaptic inputs stemming from retina, and feedback inputs stemming from the visual cortex and the thalamic reticular nucleus. To probe the possible roles of these feedforward and feedback inputs in shaping the temporal receptive-field structure of LGN relay cells, we here present and investigate a minimal mechanistic firing-rate model tailored to elucidate their disparate features. The model for LGN relay ON cells includes feedforward excitation and inhibition (via interneurons) from retinal ON cells and excitatory and inhibitory (via thalamic reticular nucleus cells and interneurons) feedback from cortical ON and OFF cells. From a general firing-rate model formulated in terms of Volterra integral equations, we derive a single delay differential equation with absolute delay governing the dynamics of the system. A freely available and easy-to-use GUI-based MATLAB version of this minimal mechanistic LGN circuit model is provided. We particularly investigate the LGN relay-cell impulse response and find through thorough explorations of the model’s parameter space that both purely feedforward models and feedback models with feedforward excitation only, can account quantitatively for previously reported experimental results. We find, however, that the purely feedforward model predicts two impulse response measures, the time to first peak and the biphasic index (measuring the relative weight of the rebound phase) to be anticorrelated. In contrast, the models with feedback predict different correlations between these two measures. This suggests an experimental test assessing the relative importance of feedforward and feedback connections in shaping the impulse response of LGN relay cells.  相似文献   

10.
The human visual system uses texture information to automatically, or pre-attentively, segregate parts of the visual scene. We investigate the neural substrate underlying human texture processing using a computational model that consists of a hierarchy of bi-directionally linked model areas. The model builds upon two key hypotheses, namely that (i) texture segregation is based on boundary detection--rather than clustering of homogeneous items--and (ii) texture boundaries are detected mainly on the basis of a large scenic context that is analyzed by higher cortical areas within the ventral visual pathway, such as area V4. Here, we focus on the interpretation of key results from psychophysical studies on human texture segmentation. In psychophysical studies, texture patterns were varied along several feature dimensions to systematically characterize human performance. We use simulations to demonstrate that the activation patterns of our model directly correlate with the psychophysical results. This allows us to identify the putative neural mechanisms and cortical key areas which underlie human behavior. In particular, we investigate (i) the effects of varying texture density on target saliency, and the impact of (ii) element alignment and (iii) orientation noise on the detectability of a pop-out bar. As a result, we demonstrate that the dependency of target saliency on texture density is linked to a putative receptive field organization of orientation-selective neurons in V4. The effect of texture element alignment is related to grouping mechanisms in early visual areas. Finally, the modulation of cell activity by feedback activation from higher model areas, interacting with mechanisms of intra-areal center-surround competition, is shown to result in the specific suppression of noise-related cell activities and to improve the overall model capabilities in texture segmentation. In particular, feedback interaction is crucial to raise the model performance to the level of human observers.  相似文献   

11.
Evolutionary studies of communication can benefit from classification procedures that allow individual animals to be assigned to groups (e.g. species) on the basis of high-dimension data representing their signals. Prior to classification, signals are usually transformed by a signal processing procedure into structural features. Applications of these signal processing procedures to animal communication have been largely restricted to the manual or semi-automated identification of landmark features from graphical representations of signals. Nonetheless, theory predicts that automated time-frequency-based digital signal processing (DSP) procedures can represent signals more efficiently (using fewer features) than can landmark procedures or frequency-based DSP – allowing more accurate classification. Moreover, DSP procedures are objective in that they require little previous knowledge of signal diversity, and are relatively free from potentially ungrounded assumptions of cross-taxon homology. Using a model data set of electric organ discharge waveforms from five sympatric species of the electric fish Gymnotus, we adopted an exhaustive simulation approach to investigate the classificatory performance of different signal processing procedures. We considered a landmark procedure, a frequency-based DSP procedure (the fast Fourier transform), and two kinds of time-frequency-based DSP procedures (a short-time Fourier transform, and several implementations of the discrete wavelet transform -DWT). The features derived from each of these signal processing procedures were then subjected to dimension reduction procedures to separate those features which permit the most effective discrimination among groups of signalers. We considered four alternative dimension reduction methods. Finally, each combination of reduced data was submitted to classification by linear discriminant analysis. Our results support theoretical predictions that time-frequency DSP procedures (especially DWT) permit more efficient discrimination of groups. The performance of signal processing was found to depend largely upon the dimension reduction procedure employed, and upon the number of resulting features. Because the best combinations of procedures are dataset-dependent and difficult to predict, we conclude that simulations of the kind described here, or at least simplified versions of them, should be routinely executed before classification of animal signals - especially unfamiliar ones.  相似文献   

12.
Even though Helicobacter pylori infection was the most causative factor of gastric cancer, numerous in vivo studies failed to induce gastric cancer using Hpylori infection only. The utilization of established animal studies in cancer research is crucial as they aim to investigate the coincidental association between suspected oncogenes and pathogenesis as well as generate models for the development and testing of potential treatments. The methods to establish gastric cancer using infected animal models remain limited, diverse in methods, and showed different results. This study investigates the differences in animal models, which highlight different pathological results in gaster by literature research. Electronic databases searched were performed in PubMed, Science Direct, and Cochrane, without a period filter. A total of 135 articles were used in this study after a full-text assessment was conducted. The most frequent animal models used for gastric cancer were Mice, while Mongolian gerbils and Transgenic mice were the most susceptible model for gastric cancer associated with Hpylori infection. Additionally, transgenic mice showed that the susceptibility to gastric cancer progression was due to genetic and epigenetic factors. These studies showed that in Mongolian gerbil models, Hpylori could function as a single agent to trigger stomach cancer. However, most gastric cancer susceptibilities were not solely relying on Hpylori infection, and numerous factors are involved in cancer progression. Further study using Mongolian gerbils and Transgenic mice is crucial to conduct and establish the best models for gastric cancer associated Hpylori.  相似文献   

13.
In this paper, we present a word set generating mechanism, called cell-differentiation system, inspired by the tissue process formation in multicellular organisms, which might model some properties of evolving communities of living cells at the syntactical level. The tools utilized to model these biological phenomena belong to the formal language theory. In this context chromosomal mutations are defined as operations on strings and the differentiation according to the control of gene expression is represented by some random-context conditions in formal languages.In the presented formal framework we prove that in a simplified form of this formalism, with only one cell-type which is regular, one single cell and no mitosis involved, the problem of establishing whether or not the set of vectors of integers indicating the number of cells in each population, is finite, linear or semilinear, is recursively undecidable. However, one can algorithmically decide whether or not a cell-differentiation system of finite cell-type can produce a specific generation of cells.  相似文献   

14.
A computational model for expiratory flow   总被引:2,自引:0,他引:2  
  相似文献   

15.
The "Binding Problem" is an important problem across many disciplines, including psychology, neuroscience, computational modeling, and even philosophy. In this work, we proposed a novel computational model, Bayesian Linking Field Model, for feature binding in visual perception, by combining the idea of noisy neuron model, Bayesian method, Linking Field Network and competitive mechanism. Simulation Experiments demonstrated that our model perfectly fulfilled the task of feature binding in visual perception and provided us some enlightening idea for future research.  相似文献   

16.
Aneuploidy, the gain or loss of large regions of the genome, is a common feature in cancer cells. Irregularities in chromosomal copy number caused by missegregations of chromosomes during mitosis can be visualized by cytogenetic techniques including fluorescence in situ hybridization (FISH), spectral karyotyping (SKY) and comparative genomic hybridization (CGH). In the current work, we consider the propagation of irregular copy numbers throughout a cell population as the individual cells progress through ordinary mitotic cell cycles. We use an algebraic model to track the different copy numbers as states in a stochastic process, based on the model of chromosome instability of Gusev, Kagansky, and Dooley, and consider the average copy number of a particular chromosome within a cell population as a function of the cell division rate. We review a number of mathematical models for determining the length of the cell cycle, including the Smith-Martin transition probability model and the 'sloppy size' model of Wheals, Tyson and Diekmann. The program MITOSIM simulates the growth of a population of cells using the aforementioned models of the cell cycle. MITOSIM allows the cell population to grow, with occasional resampling, until the average copy number of a given chromosome in the population reaches a preset threshold signifying a positive copy number alteration in this region. MITOSIM calculates the relationship between the missegregation rate and the growth rate of the cell population. This allows the user to test hypotheses regarding the effect chromosomal aberrations have upon the cell cycle, cell growth rates, and time to population dominance.  相似文献   

17.
18.
The presented work describes a structural model for integrin homooligomerization, focusing on the transmembrane domains. The two noncovalently linked integrin subunits, alpha and beta, were previously shown to homodimerize or homotrimerize, respectively. Our work is based on published mutational work that induced homotrimerization of beta3 integrins. The mutations provided structural restraints for the creation of a structural model of the beta3 homotrimer by a computational search of the conformational space of homomeric interactions of the beta3 integrin. Additionally, we explored possible conformations of the alphaIIb integrin homodimer, for which no unique solution was found. Two possible models of signal transduction, involving two different alphaIIb conformations, are discussed. One of the possible homodimeric alphaIIb conformations is GpA like, which is in line with experimental evidence. Based on our here-presented structural models and on recent experiments, we will argue that most probably the heteromeric alpha/beta transmembrane complex separates in the course of clustering.  相似文献   

19.
The thyroid, the largest gland in the endocrine system, secretes hormones that help promote bodily growth and development. This gland regulates hormonal secretion rate in spite of changes in dietary iodine which is a key ingredient in the hormone's biosynthesis. The thyroid relies on several feedback mechanisms for this regulation, and in this paper we use recent molecular-level and clinical observations to engineer a computational thyroid model. We use simulation and analysis to show that this models captures known aspects of thyroid physiology. We identify features in the model that are responsible for hormonal regulation, and use the model to identify and evaluate competing hypotheses associated with Wolff-Chaikoff escape.  相似文献   

20.
We present a computational model that successfully captures the cell behaviors that play important roles in 2-D cell aggregation. A virtual cell in our model is designed as an independent, discrete unit with a set of parameters and actions. Each cell is defined by its location, size, rates of chemoattractant emission and response, age, life cycle stage, proliferation rate and number of attached cells. All cells are capable of emitting and sensing a chemoattractant chemical, moving, attaching to other cells, dividing, aging and dying. We validated and fine-tuned our in silico model by comparing simulated 24-h aggregation experiments with data derived from in vitro experiments using PC12 pheochromocytoma cells. Quantitative comparisons of the aggregate size distributions from the two experiments are produced using the Earth Mover's Distance (EMD) metric. We compared the two size distributions produced after 24 h of in vitro cell aggregation and the corresponding computer simulated process. Iteratively modifying the model's parameter values and measuring the difference between the in silico and in vitro results allow us to determine the optimal values that produce simulated aggregation outcomes closely matched to the PC12 experiments. Simulation results demonstrate the ability of the model to recreate large-scale aggregation behaviors seen in live cell experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号