首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four types of prosoplasmatic galls induced by Daphnephila midges are found on leaves of Machilus zuihoensis, a species endemic to Taiwan: urn- and small urn-shaped, obovate, and hairy oblong galls. In addition to containing nutritive tissues, these galls are lined with fungal hyphae. The objective of this study was to describe and compare the structural organization of the various gall morphologies and to examine the ultrastructure of the nutritive and fungal cells lining the gall chambers. The morphology and ultrastructure of mature-stage galls were examined by light, scanning electron, and transmission electron microscopy. Diverse epidermal cell shapes and wax textures were observed in the leaves and galls of M. zuihoensis. In small urn-shaped, obovate, and hairy oblong galls vascular bundles extend from the gall base to near the centre of the gall top. In contrast, vascular bundles in urn-shaped galls are distributed in the gall wall and extend to close to the outer gall top. Trichomes were present only abaxially on leaves and on hairy oblong gall surfaces. Starch granules, tannins, and mucilage were distributed differently among the four gall types. Further, fungal mycelia spread in the interior gall wall and partially passed through the intercellular spaces of nutritive cells and reached the sclerenchyma. Histological analyses revealed that the surface structure of galls differs from that of the leaf and that the epidermal organization differs among the four gall types. Different types of leaf galls on the same plant have different patterns of tissue stratification and contain different ergastic substances. The results of this study will contribute to the understanding of tritrophic relationships and the complex interactions among parasitic gall-inducing insects, mutualistic fungi, and host plants.  相似文献   

2.
Foliar endophytic fungi are present in almost all vascular plants. The composition of endophyte communities varies among plant individuals. Likely, but understudied, sources of this variation are the species composition of the plant community and initial attacks by insect herbivores. We addressed these issues by characterizing fungal endophyte communities on leaves of chestnut (Castanea sativa) grown in pure vs. mixed stands. We used ITS metabarcoding methods to identify endophytic fungi associated with galls caused by the invasive gall wasp, Dryocosmus kuriphilus, and with surrounding chestnut leaf tissues. We found 1378 different OTUs. The richness, diversity and composition of endophyte communities differed between galls and surrounding leaf tissues but were independent of forest stand composition. Fungal endophyte richness was lower in galls than in surrounding leaf tissues. Most differences in the composition of fungal endophyte communities between galls and foliar tissues were due to OTU turnover. These results suggest that insect-induced galls provide a particular habitat condition for endophytic microorganisms, regardless of forest species composition. A better understanding of endophyte biology is important to improve their use as biocontrol agents of galling insects.  相似文献   

3.
Dennis Wilson 《Oecologia》1995,103(2):255-260
Fungi are frequently found within insect galls. However, the origin of these fungi, whether they are acting as pathogens, saprophytes invading already dead galls, or fungal inquilines which invade the gall but kill the gall maker by indirect means, is rarely investigated. A pathogenic role for these fungi is usually inferred but never tested. I chose the following leaf-galling-insect/host-plant pairs (1) a cynipid which forms two-chambered galls on the veins of Oregon white oak, (2) a cynipid which forms single-chambered galls on California coast live oak, and (3) an aphid which forms galls on narrowleaf cottonwood leaves. All pairs were reported to have fungi associated with dead insects inside the gall. These fungi were cultured and identified. For the two cynipids, all fungi found inside the galls were also present in the leaves as fungal endophytes. The cottonwood leaves examined did not harbor fungal endophytes. For the cynipid on Oregon white oak, the fungal endophyte grows from the leaf into the gall and infects all gall tissue but does not directly kill the gall maker. The insect dies as a result of the gall tissue dying from fungal infection. Therefore, the fungus acts as an inquiline. Approximately 12.5% of these galls die as a result of invasion by the fungal endophyte.  相似文献   

4.
Galls produced by the cecidomynd Lastoptera ephedncola on Ephedia trifurca always have a black ring associated with them while galls produced by the congener L ephedrae never do Black ring material after microscopic examination and culture proved to be Aureobasidium pullulans In addition to lacking black ring material neither L ephedrae galls nor healthy stems consistently yielded Aureobasidium on culture Gall and larva size measurements indicated that continued larval presence is not necessary for gall development, suggesting fungus initiated gall formation However inoculation of healthy stems with Aureobasidium caused lesions hut not galls The mycelium m galls did not appear grazed and neither larvae nor pupae contained Aureobasidium propagules suggesting that larvae do not feed directly on fungi These data also suggest that there is no trans-pupal passage of fungus from larvae or pupae to adults Newly emerged females do not carry fungal propagules suggesting that thcy are not inoculated upon exiting the gall Gall position leaf culture and stem culture data suggest that the fungus is picked up from leaves prior to oviposition  相似文献   

5.
The histological study of galls may provide information on the evolution of the organisms that induce them. The walls of two aphid-induced galls on leaves of Ulmus minor were therefore studied histologically: a globose gall induced by Tetraneura ulmi and a pseudogall induced by Eriosoma ulmi. Galls are regarded as extended phenotypes of aphids, and therefore, they can be used as tools for phylogenetic studies. The walls of the galls induced by T. ulmi are not reminiscent of the ungalled leaf structure of U. minor in any area, showing both cellular hypertrophy and hyperplasia. Galls induced by E. ulmi resemble the leaf structure of U. minor in certain aspects, but in most aspects they do not, showing only cellular hypertrophy. Processes of growth and differentiation are observed in both galls. Based on the findings of this study and other recent publications, we propose to categorize the galls induced by aphids into four types: (1) pseudogalls; (2) closed galls with a “door”; (3) closed galls determined by active processes of growth and differentiation of the lamina of the leaf; and (4) closed galls determined by active processes of growth and differentiation of the midvein.  相似文献   

6.
Gall-site selection by the aphid Kaltenbachiella japonica was evaluated in relation to leaf position in a shoot, and gall positions within a leaf. First-instar fundatrices induce closed galls on the midribs of host leaves, and several galls were often induced on one leaf. Leaves with many galls were often withered before emergence of sexuparae from the galls. Within a leaf, gall volume was positively correlated with the sum of lateral-vein length in the leaf segment at which the gall was induced. The observed pattern in gall volume among the leaf segments corresponded with that in the lateral-vein length. These results show that a foundatrix selects the most vigorous position within a leaf to produce more offspring. Although distal leaves grew faster than did basal leaves, gall density was highest on leaves at the middle order when a shoot has more than seven leaves. Optimal gall-site selection seems to be constrained by the asynchrony in timing between the hatching of fundatrices and leaf growth within a shoot. These results suggest that the observed gall distribution is affected by both the distribution of suitable galling sites within a leaf and the synchrony with leaf phenology of the host plant.  相似文献   

7.
Different gall inducers belonging to distinct insect orders are rarely known to induce similarly shaped galls on the same host plant organs. We report that Asphondylia tojoi Elsayed & Tokuda sp. nov. (Diptera: Cecidomyiidae) and Ceratoneura sp. (Hymenoptera: Eulophidae) induce galls on leaf buds of Schoepfia jasminodora Sieb. et Zucc. (Schoepfiaceae). We describe the gall midge species as new to science and report a phylogenetic analysis for known Japanese Asphondylia species. We also describe life histories of the two species, based on monthly surveys during 2015–2017: although both species are multivoltine, A. tojoi overwinters as first instars in galls, whereas Ceratoneura sp. possibly does so as adults outside the galls. In addition, the internal structure of galls differed between the two species. Galls containing A. tojoi consist of a single chamber with inner walls clearly covered with whitish fungal mycelia after the gall midges develop into second instars. Those containing the Ceratoneura sp. have multiple chambers with hard black inner walls. Although some eulophids are known to be inquilines of galls induced by Asphondylia species, we consider that the Ceratoneura sp. is probably a true gall inducer because of the different gall structure and absence of fungal mycelia in their galls. This is the first report detailing the annual life history of a Ceratoneura species. Asphondylia tojoi represents the first example of monophagous Asphondylia species with a multivoltine life history on a deciduous tree.  相似文献   

8.
Taper  Mark L.  Zimmerman  Eric M.  Case  Ted J. 《Oecologia》1986,68(3):437-445
Summary Emergence success was determined for 1300 galls of the cynipid waspDryocosmus dubiosus. Galls were collected throughout a single host tree (a California coast live oakQuercus agrifolia). Each gall was reared individually in small gelatin capsules. For each gall data was recorded on 17 parameters characterizing hyperparasitism, fungal infestation, leaf tannin levels, inter- and intraspecific competition, and spatial position within the tree. Using contingency table analysis and logistic regression, we determined that the most significant factors influencing the success ofD. dubiosus galls are 1) fungal infestation and 2) chalcid hyperparasitism, both having negative effects. Of the factors investigated we found that leaf tannin level had the strongest influence on the degree of fungal infestation. Fungal infestation, in turn, is lowest in regions of high leaf tannins.  相似文献   

9.
Patterns of galling by the gall midge Lopesia brasiliensis (Diptera: Cecidomyiidae) were studied in Ossaea confertiflora (Melastomataceae) in an Atlantic forest site at Ilha Grande, RJ. Out of the 81 plants surveyed, 55 (67.9%) bore galls. The number of galls per galled individual ranged from 1 to 261 and 94.4% of the galls were in leaves. The number of galls per galled leaf varied from 1 to 25. Total gall number was positively correlated with plant height. Larger and more ramified plants tended to have a smaller percentage of their leaves with galls and a lower density of galls per leaf than smaller plants. Plants that were close to other individuals of the same species tended to have more galls per leaf than relatively isolated plants. The observed patterns may be linked to strategies of optimization in the use of resources (i.e. oviposition sites) and predation avoidance by the gall midges.  相似文献   

10.
Summary The galls of the agamic generation of the cynipid gall-wasp Cynips divisa were studied; these galls are found only on the main veins of the leaf. Galls are concentrated on the middle veins of leaves, and generally occur closer to the midrib than to the edge of the leaf. Survival of the gall-maker and fecundity of the energing wasp depend on wasp size and position of the gall. There is a striking pattern in gall size according to the number of galls on the vein. The number of galls on a vein appears therefore to have a strong effect on potential fecundity.  相似文献   

11.
Galls develop in different plant organs and are induced by the activity of various organisms. Some studies have investigated the ecological interactions between species of Clusia and gall-inducing insects. The goal of our study is to characterise changes in leaf anatomy caused by the activity of gall insects in Clusia lanceolata. Additionally, we also investigated the chemical composition of volatile compounds of normal leaves and those with galls to detect possible effects on the host plants. For anatomical studies, we used botanical material fixed in FAA50. Transversal sections of the leaf blade were obtained from samples of leaves located on the third and fourth nodes from both male and female individuals. Material was studied from both sexes both with unaffected leaves and leaves containing galls. Fresh leaves of C. lanceolata were used for the extraction of volatile compounds, which were submitted to stem distillation using a modified Clevenger apparatus determining the oil yields subsequently (w/w). The unaffected leaves of female and male individuals of C. lanceolata exhibit similar anatomical structures. However, galls on leaves of both sexes show anatomical differences. The activity of the gall insect Clusiamyia nitida induces several changes in the foliar anatomy and the distribution of metabolic compounds in new tissues during gall development. However, the larvae are not able to induce significant changes in the volatile compounds of inflected leaves from male and female individuals.  相似文献   

12.
Abstract.  1. The sex determination mechanism in gall midges is little understood, although it is known that the females of several species primarily or exclusively produce unisexual broods throughout their lifetime.
2. The gall midge Izeniola obesula Dorchin is a multivoltine species, inducing multi-chambered stem galls on the salt-marsh plant Suaeda monoica . Each gall contains 5–70 individuals, all being the progeny of a single female. Sampling of more than 450 galls, from which adult midges were reared, suggested that I .  obesula exhibits strict monogeny, resulting in galls that contain either all female or all male progeny.
3. Characterisation of the growth pattern of young S .  monoica shoots revealed that shoots in apical positions grew more rapidly than shoots in more basal positions. Galls that were induced on such shoots were larger and yielded more adult midges.
4. No difference in the site of gall induction was found between male and female galls, with galls of either sex being mainly induced on more rapidly growing shoots. It is concluded that I .  obesula females cannot control the sex of their progeny, and that both female-producers and male-producers strive to maximise their reproductive success by choosing the faster-growing shoots for gall induction.
5. Female galls were larger and more abundant than male galls at almost all times. The sex ratio among galls fluctuated throughout the year, ranging from 4:1 in spring to 1:1 in winter. The skewed sex ratio among galls possibly results from greater mortality rates among male galls than among female galls, due to either primary or secondary factors. Alternatively, it is possible that the number or fitness of male-producers in the population is reduced relative to female-producers.  相似文献   

13.
Many parasitic organisms have an ability to manipulate their hosts to increase their own fitness. In parasitoids, behavioral changes of mobile hosts to avoid or protect against predation and hyperparasitism have been intensively studied, but host manipulation by parasitoids associated with endophytic or immobile hosts has seldom been investigated. We examined the interactions between a gall inducer Masakimyia pustulae (Diptera: Cecidomyiidae) and its parasitoids. This gall midge induces dimorphic leaf galls, thick and thin types, on Euonymus japonicus (Celastraceae). Platygaster sp. was the most common primary parasitoid of M. pustulae. In galls attacked by Platygaster sp., whole gall thickness as well as thicknesses of upper and lower gall wall was significantly larger than unparasitized galls, regardless of the gall types, in many localities. In addition, localities and tree individuals significantly affected the thickness of gall. Galls attacked by Platygaster sp. were seldom hyperparasitized in the two gall types. These results strongly suggest that Platygaster sp. manipulates the host plant''s development to avoid hyperparasitism by thickening galls.  相似文献   

14.
In contrast to most insect guilds, gall-forming insects are thought to reach highest diversity on sclerophyllous vegetation, such as Neotropical savannas and Mediterranean vegetation types. The water and nutrient stress endured by meristems of canopy trees in tall wet tropical rainforests may cause leaf sclerophylly. Hence, the upper canopies of such ecosystems may represent a suitable habitat for gall-forming insects. At the San Lorenzo Protected Area, Panama, we estimated free-feeding herbivory and gall densities within five sites in 2003 and 2004, by surveying leaves in vertical and horizontal transects. In each sample, we recorded leaf density (mature and young foliage), free-feeding herbivore damage and number of galls, including the presence of live larvae, parasitoids or fungi. We surveyed 43 994 leaves, including 231 plants and 73 tree and liana species. We collected 5014 galls from 17 host-plant species, including 32 gall species of which 59% were restricted to the canopy (overall infestation rates: 2.4% in 2003, 5.5% in 2004). In 2003, 16% of the galls were occupied by live larvae, against 5% in 2004. About 17–20% of leaves surveyed suffered from free-feeding herbivory. Leaf sclerophylly increased significantly with sampling height, while free-feeding herbivory decreased inversely. Conversely, the number of live galls collected in the canopy was 13–16 times higher than in the understorey, a pattern consistent across sites and years. Hence, the probability of gall survivorship increased with increasing leaf sclerophylly as death by fungi, parasitoids or accidental chewing were greater in the understorey. Increasing harsh ecophysiological conditions towards the upper canopy appear favourable to galls-forming population maintenance, in support of the hypothesis of harsh environment. Hence, gall diversity and abundance in the upper canopy of tall tropical forests are perhaps among the highest in the world.  相似文献   

15.
One of the galling herbivores associated to the superhost Schinus polygamus (Cav.) Cabrera (Anacardiaceae) is Calophya duvauae Scott (Hemiptera: Calophyidae). The galls are located on the adaxial surface of leaves and vary from red to green. The levels of their pigments were herein investigated in relation to age. Samples were collected between June 2008 and March 2009, in a population of S. polygamus at Canguçu municipality, Rio Grande do Sul, Brazil. Galls were separated by color, measured, dissected, and the instar of the inducer was determined. The levels of photosynthetic (chlorophyll a and b, total chlorophylls, and carotenoids) and protective pigments (anthocyanins) were also evaluated. Red galls were more numerous than the green ones, and the induction should occur preferentially on young leaves, but may also occur on mature leaves. Immature stages of C. duvauae were observed in all samples throughout the year, characterizing its life cycle as multivoltine. There was a significant correlation between the instar of the inducer and the size of the gall (r = 0.675, p < 0.001), with larger galls corresponding to more advanced instars. The ratio between red and green galls varied over the samples, with the highest (96%) and lowest (38%) frequency of red galls observed in September, and December 2008, respectively. The average amounts of chlorophyll b and total chlorophylls were 70% lower in the gall tissues when compared to non-galled portions of galled leaves. There is a notable reduction in the contents of all pigments in the galls when compared to non-galled leaves, especially for total anthocyanins in green galls. The red galls presumably had the constant stimuli of healthy gall inducers, whereas in green galls they died prematurely, due to the interference of parasitoids and inquilines. The alterations in gall structure and color were related to the gradual decreasing in galling stimuli.  相似文献   

16.
The pectic composition of cell wall is altered during the processes of cell differentiation, plant growth, and development. These alterations may be time-dependent, and fluctuate in distinct regions of the same cell or tissue layer, due to the biotic stress caused by the activity of the gall inducer. Among the roles of the pectins in cell wall, elasticity, rigidity, porosity, and control of cell death may be crucial during gall development. Galls on Baccharis reticularia present species-specific patterns of development leading to related morphotypes where pectins were widely detected by Ruthenium red, and the pectic epitopes were labeled with specific monoclonal antibodies (LM1, LM2, LM5, LM6, JIM5, and JIM7) in distinct sites of the non-galled and the galled tissues. In the studied system B. reticularia, the epitopes for extensins were not labeled in the non-galled tissues, as well as in those of the rolling and kidney-shaped galls. The high methyl-esterified homogalacturonans (HGA) were labeled all over the tissues either of non-galled leaves or of the three gall morphotypes, while the intense labeling for arabinogalactans was obtained just in the rolling galls. The pectic composition of non-galled leaves denotes their maturity. The kidney-shaped gall was the most similar to the non-galled leaves. The pectic dynamics in the gall tissues was particularly altered in relation to low methyl-esterified HGA, which confers elasticity and expansion, as well as porosity and adhesion to cell walls, and are related to the homogenization and hypertrophy of gall cortex, and to translocation of solutes to the larval chamber. Herein, the importance of the pectic dynamics of cell walls to the new functional design established during gall development is discussed for the first time. The repetitive developmental patterns in galls are elegant models for studies on cell differentiation.  相似文献   

17.
The frequency of galls induced by Anisodiplosis waltheriae Maia, a recently described species, on Waltheria indica L. was studied. W indica is an invasive weed in regeneration areas of Atlantic Forest in southeastern Brazil. Plants were collected in May 2004 and above-ground biomass, main stem length, number of leaves, number of galls per leaf and leaf area of each individual were recorded. Nearly 90% of all plants and 25% of all leaves were attacked by the gall midge, with an average of 0.67 galls/leaf. Leaf area had a weak effect on gall abundance while the number of leaves had no effect on gall abundance. Only 31% of the variation in gall abundance was explained by plant biomass. Natural enemies killed one third of the sampled galls. Predation accounted for 22.9% of gall mortality, unknown factors killed 7.6%, microhymenopteran parasitoids killed 2.5% and fungi only 1%. Mortality factors were not influenced by leaf area or gall density.  相似文献   

18.
19.
Gall-formers are parasitic organisms that manipulate plant traits for their own benefit. Galls have been shown to protect their inhabitants from natural enemies such as predators and parasitoids by various chemical and mechanical means. Much less attention, however, has been given to the possibility of defense against microbial pathogens in the humid and nutrient-rich gall environment. We found that the large, cauliflower-shaped, galls induced by the aphid Slavum wertheimae on buds of Pistacia atlantica trees express antibacterial and antifungal activities distinct from those found in leaves. Antibacterial activity was especially profound against Bacillus spp (a genus of many known insect pathogen) and against Pseudomonas aeruginosa (a known plant pathogen). Antifungal activity was also demonstrated against multiple filamentous fungi. Our results provide evidence for the protective antimicrobial role of galls. This remarkable antibacterial and antifungal activity in the galls of S. wertheimae may be of agricultural and pharmaceutical value.  相似文献   

20.
《Journal of Asia》2014,17(2):151-154
Previous studies of the impacts of galls on host leaf photosynthesis do not suggest any general trends, with a reported range of effects from negative to positive. In this study, photosynthetic characteristics such as chlorophyll fluorescence (Fv/Fm), photosynthetic capacity, and stomata conductance were determined in two types of fruit-like galls (red ovoid and green obovate galls) induced by Daphnephila taiwanensis and Daphnephila sueyenae, respectively, in order to investigate whether the number of galls affects the photosynthesis of galled leaves of Machilus thunbergii. In 2008, chlorophyll fluorescence and photosynthetic capacity were negatively correlated with gall numbers, non-significantly and significantly, respectively, whereas stomata conductance was positively but non-significantly correlated with gall numbers. In 2009, photosynthesis capacity and stomata conductance were negatively, but non-significantly, correlated with gall numbers. Results imply that photosynthesis in M. thunbergii leaves is slightly affected by the number of cecidomyiid insect galls, and that the higher the gall number, the greater the negative effect that galls have on host leaf photosynthesis and subsequent infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号