首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In multipredator systems, group sizes of social carnivores are shaped by the asymmetric intraguild interactions. Subordinate social carnivores experience low recruitment rates as an outcome of predation pressure. In South and Southeast Asia, the Tiger (Panthera tigris), Dhole (Cuon alpinus), and Leopard (Panthera pardus) form a widely distributed sympatric guild of large carnivores, wherein tigers are the apex predators followed by dhole and leopard. In this study, we attempted to understand the variation in pack size of a social carnivore, the dhole, at two neighboring sites in the Central Indian landscape. We further evaluated local‐scale patterns of variation in pack size at a larger scale by doing a distribution‐wide assessment across the dhole ranging countries. At the local scale, we found an inverse relationship between the density of tiger and pack size of dhole while accounting for variability in resources and habitat heterogeneity. Larger dhole packs (16.8 ± 3.1) were observed at the site where the tiger density was low (0.46/100 km2), whereas a smaller pack size (6.4 ± 1.3) was observed in the site with high tiger density (5.36/100 km2). Our results for the distribution‐wide assessment were concordant with local‐scale results, showing a negative association of pack size with the tiger densities (effect size −0.77) and a positive association with the prey abundance (effect size 0.64). The study advances our understanding to answer the age‐old question of “what drives the pack size of social predators in a multipredator system?” This study also highlights the importance of understanding demographic responses of subordinate predator for varying competitor densities, often helpful in making informed decisions for conservation and management strategies such as population recovery and translocation of species.  相似文献   

2.
Effective conservation management requires an understanding of the spatiotemporal dynamics driving large carnivore density and resource partitioning. In African ecosystems, reduced prey populations and the loss of competing guild members, most notably lion (Panthera leo), are expected to increase the levels of competition between remaining carnivores. Consequently, intraguild relationships can be altered, potentially increasing the risk of further population decline. Kasungu National Park (KNP), Malawi, is an example of a conservation area that has experienced large‐scale reductions in both carnivore and prey populations, leaving a resident large carnivore guild consisting of only leopard (Panthera pardus) and spotted hyena (Crocuta crocuta). Here, we quantify the spatiotemporal dynamics of these two species and their degree of association, using a combination of co‐detection modeling, time‐to‐event analyses, and temporal activity patterns from camera trap data. The detection of leopard and spotted hyena was significantly associated with the detection of preferred prey and competing carnivores, increasing the likelihood of species interaction. Temporal analyses revealed sex‐specific differences in temporal activity, with female leopard activity patterns significantly different to those of spotted hyena and male conspecifics. Heightened risk of interaction with interspecific competitors and male conspecifics may have resulted in female leopards adopting temporal avoidance strategies to facilitate coexistence. Female leopard behavioral adaptations increased overall activity levels and diurnal activity rates, with potential consequences for overall fitness and exposure to sources of mortality. As both species are currently found at low densities in KNP, increased risk of competitive interactions, which infer a reduction in fitness, could have significant implications for large carnivore demographics. The protection of remaining prey populations is necessary to mitigate interspecific competition and avoid further alterations to the large carnivore guild.  相似文献   

3.
Intraguild interactions have important implications for carnivore demography and conservation. Differences in how predators respond to different forms of disturbance might alter their interaction patterns. We sought to understand how human and livestock disturbance impact co-occurrence of sympatric large carnivores such as tiger (Panthera tigris) and leopard (P. pardus) and thereby mediate the intraguild interaction pattern to enable coexistence of the species in a human-dominated landscape. We surveyed 361 locations in Chitwan National Park, Nepal, to examine how prey abundance and disturbance factors such as human and livestock presence might influence habitat use by tigers and leopards independently and when co-occurring. Single-species single-season models and two-species single-season models were developed to examine hypotheses on unconditional detection and occupancy and species interaction respectively. Pervasive human use of the park had negative impacts on tiger occupancy while the abundance of prey had a positive influence. Despite significant prey overlap between tigers and leopards, none of the native prey species predicted leopard habitat occupancy. However, habitats used extensively by livestock were also used by leopards. Further, we found strong evidence of intraguild competition. For instance tiger occupancy was higher in prey-rich areas and leopard occupancy was low in the sites where tigers were present. These findings, and a species interaction factor of < 1 clearly indicate that leopards avoid tigers, but their use of areas of disturbance enables them to persist in fringe habitats. We provide empirical evidence of how intraguild interaction may result in habitat segregation between competing carnivores, while also showing that human and livestock use of the landscape create disturbance patterns that facilitate co-occurrence of the predators. Thus, because large carnivores compete, some disturbance may mediate coexistence in small protected areas. Understanding such interactions can help address important conservation challenges associated with maintaining diverse carnivore communities in small or disturbed landscapes.  相似文献   

4.
Human–wildlife conflict, habitat loss, and prey hunting are the main threats to carnivore species worldwide. Forest conversion as consequence of deforestation and agricultural expansion increases the proximity between carnivores and humans, thereby escalating conflicts. Knowledge about carnivore species in data-poor countries, such as Colombia, is scarce which has the potential to result in poor landscape planning decisions. For many species, the only existing spatial information resides in expert-driven approaches which result in coarse-resolution ‘extent-of-occurrence’ maps. There is an increasing need for the development of methodologies to identify conservation and management areas at appropriate scales. Multi-criteria approaches will allow the inclusion of diverse species attributes enabling environmental institutions to address complex landscape decisions that result in conservation and management of carnivore habitat. We present a multi-criteria spatial identification tool for conservation and management areas, focused on Jaguars (Panthera onca) in the Sierra Nevada de Santa Marta, in northern Colombia. Our approach identifies areas based on the relationship between three spatial criteria: (1) suitable habitat patches, (2) habitat connectivity, and (3) zones of higher likelihood of human–jaguar conflict. We identified areas with the presence of at least one spatial criteria in 32% of the study area. Only 16.28% of these occur within protected areas (PAs) and the remaining fall on private lands (83.72%), either within (35.68%) or outside (48.04%) buffer zones of PAs. Our results highlight the need for multi-stakeholder collaborative approaches given that most proposed conservation areas fall on private rather than public lands.  相似文献   

5.
Unique to South-east Asia, Lao People's Democratic Republic contains extensive habitat for tigers and their prey within a multiple-use protected area system covering 13% of the country. Although human population density is the lowest in the region, the impact of human occurrence in protected areas on tiger Panthera tigris and prey populations was unknown. We examined the effects of human–carnivore conflict on tiger and prey abundance and distribution in the Nam Et-Phou Louey National Protected Area on the Lao–Vietnam border. We conducted intensive camera-trap sampling of large carnivores and prey at varying levels of human population and monitored carnivore depredation of livestock across the protected area. The relative abundance of large ungulates was low throughout whereas that of small prey was significantly higher where human density was lower. The estimated tiger density for the sample area ranged from 0.2 to 0.7 per 100 km2. Tiger abundance was significantly lower where human population and disturbance were greater. Three factors, commercial poaching associated with livestock grazing followed by prey depletion and competition between large carnivores, are likely responsible for tiger abundance and distribution. Maintaining tigers in the country's protected areas will be dependent on the spatial separation of large carnivores and humans by modifying livestock husbandry practices and enforcing zoning.  相似文献   

6.
Fostering local community tolerance for endangered carnivores, such as tigers (Panthera tigris), is a core component of many conservation strategies. Identification of antecedents of tolerance will facilitate the development of effective tolerance-building conservation action and secure local community support for, and involvement in, conservation initiatives. We use a stated preference approach for measuring tolerance, based on the ‘Wildlife Stakeholder Acceptance Capacity’ concept, to explore villagers’ tolerance levels for tigers in the Bangladesh Sundarbans, an area where, at the time of the research, human-tiger conflict was severe. We apply structural equation modeling to test an a priori defined theoretical model of tolerance and identify the experiential and psychological basis of tolerance in this community. Our results indicate that beliefs about tigers and about the perceived current tiger population trend are predictors of tolerance for tigers. Positive beliefs about tigers and a belief that the tiger population is not currently increasing are both associated with greater stated tolerance for the species. Contrary to commonly-held notions, negative experiences with tigers do not directly affect tolerance levels; instead, their effect is mediated by villagers’ beliefs about tigers and risk perceptions concerning human-tiger conflict incidents. These findings highlight a need to explore and understand the socio-psychological factors that encourage tolerance towards endangered species. Our research also demonstrates the applicability of this approach to tolerance research to a wide range of socio-economic and cultural contexts and reveals its capacity to enhance carnivore conservation efforts worldwide.  相似文献   

7.
8.
Understanding the patterns of gene flow of an endangered species metapopulation occupying a fragmented habitat is crucial for landscape-level conservation planning and devising effective conservation strategies. Tigers (Panthera tigris) are globally endangered and their populations are highly fragmented and exist in a few isolated metapopulations across their range. We used multi-locus genotypic data from 273 individual tigers (Panthera tigris tigris) from four tiger populations of the Satpura–Maikal landscape of central India to determine whether the corridors in this landscape are functional. This 45 000 km2 landscape contains 17% of India''s tiger population and 12% of its tiger habitat. We applied Bayesian and coalescent-based analyses to estimate contemporary and historical gene flow among these populations and to infer their evolutionary history. We found that the tiger metapopulation in central India has high rates of historical and contemporary gene flow. The tests for population history reveal that tigers populated central India about 10 000 years ago. Their population subdivision began about 1000 years ago and accelerated about 200 years ago owing to habitat fragmentation, leading to four spatially separated populations. These four populations have been in migration–drift equilibrium maintained by high gene flow. We found the highest rates of contemporary gene flow in populations that are connected by forest corridors. This information is highly relevant to conservation practitioners and policy makers, because deforestation, road widening and mining are imminent threats to these corridors.  相似文献   

9.
For large carnivores persisting in human-dominated landscapes, conservation planning is often hindered by the large spatial requirements of these species, availability of protected areas, and human land uses. Protected areas are usually too small to support viable populations, and scattered across a human land-use matrix. Therefore, large carnivore conservation should be planned at large spatial scales under a land-sharing approach (allowing the coexistence between large carnivores and people in the same landscape), which means increasing the focus on the human-dominated matrix. Most of the critical factors determining large carnivore persistence (i.e., those related to food availability and vulnerability to humans) interact synergistically in space and time during the breeding season. Here, using as a case study a wolf population in NW Iberia, we studied fine-scale breeding site selection patterns (1 and 9 km2) in relation to human pressure, and the availability of food and refuge. The selection of wolf breeding sites in this human-dominated landscape was not determined by potential availability of prey biomass in the immediate vicinity (1 km2). However, wolves selected breeding sites with high availability of refuge (concealing vegetation), and low human accessibility and activity levels. Paved roads showed the highest proportion of independent contribution to explaining breeding site selection patterns (negative influence), being followed by refuge availability (positive influence) and the remoteness of breeding sites in relation to the surrounding spatial context (positive influence). Refuge availability, even at very small spatial scales taking into account the spatial requirements of wolves, may compensate for moderate levels of human activities in the vicinity of breeding sites. The strength of breeding selection patterns varied along a hierarchical process at different spatial scales. Under a landscape-sharing approach, integrating key processes observed in the human-dominated matrix, such as breeding site selection patterns, into landscape planning is of paramount importance for carnivore conservation. By temporally restricting human use on breeding sites and small portions of surrounding lands (~ 1 km2), and by maintaining several small refuge areas interspersed within the human-dominated matrix, we could favor wolf persistence without reducing land availability for other uses, improving the conditions for coexistence between wolves and humans.  相似文献   

10.
Biodiversity in southern Africa is globally extraordinary but threatened by human activities. Although there are considerable biodiversity conservation initiatives within the region, no one has yet assessed the potential use of large carnivores in such actions. Surrogate approaches have often been suggested as one such way of capitalizing on large carnivores. Here we review the suitability of the large carnivore guild (i.e., brown hyaena Hyaena hyaena, spotted hyaena Crocuta crocutta, cheetah Acinonyx jubatus, leopard Panthera pardus, lion Panthea leo and African wild dog Lycaon pictus) to act as surrogate species for biodiversity conservation in southern Africa. We suggest that the guild must be complete for the large carnivores to fully provide their role as ecological keystones. The potential for large carnivores to act as umbrella and indicator species seems limited. However, self-sustaining populations of large carnivores may be useful indicators of unfragmented landscapes. Moreover, diversity within the large carnivore guild may reflect overall biodiversity. Although the global appeal of the large African carnivores makes them important international flagships, we stress that international conservation funding must be linked to local communities for them to be important also locally. In summary, we suggest that the flagship value of these large carnivores should be used to promote biodiversity conservation in the region, and that the suggested relationship between large carnivore diversity and overall biodiversity is empirically tested. Finally we suggest that direct conservation activities should focus on enhancing the keystone values of large carnivores through complete guild conservation and restoration.  相似文献   

11.
Tanzania''s Ruaha landscape is an international priority area for large carnivores, supporting over 10% of the world''s lions and important populations of leopards and spotted hyaenas. However, lack of ecological data on large carnivore distribution and habitat use hinders the development of effective carnivore conservation strategies in this critical landscape. Therefore, the study aimed to (i) identify the most significant ecogeographical variables influencing the potential distribution of lions, leopards and spotted hyaenas across the Ruaha landscape; (ii) identify zones with highest suitability for harbouring those species; and (iii) use species distribution modelling algorithms (SDMs) to define important areas for conservation of large carnivores. Habitat suitability was calculated based on environmental features from georeferenced presence-only carnivore location data. Potential distribution of large carnivores appeared to be strongly influenced by water availability; highly suitable areas were situated close to rivers and experienced above average annual precipitation. Net primary productivity and tree cover also exerted some influence on habitat suitability. All three species showed relatively narrow niche breadth and low tolerance to changes in habitat characteristics. From 21,050 km2 assessed, 8.1% (1,702 km2) emerged as highly suitable for all three large carnivores collectively. Of that area, 95.4% (1,624 km2) was located within 30 km of the Park-village border, raising concerns about human-carnivore conflict. This was of particular concern for spotted hyaenas, as they were located significantly closer to the Park boundary than lions and leopards. This study provides the first map of potential carnivore distribution across the globally important Ruaha landscape, and demonstrates that SDMs can be effective for understanding large carnivore habitat requirements in poorly sampled areas. This approach could have relevance for many other important wildlife areas that only have limited, haphazard presence-only data, but which urgently require strategic conservation planning.  相似文献   

12.
Large carnivore feeding ecology plays a crucial role for management and conservation for predators and their prey. One of the keys to this kind of research is to identify the species composition in the predator diet, for example, prey determination from scat content. DNA‐based methods applied to detect prey in predators’ scats are viable alternatives to traditional macroscopic approaches, showing an increased reliability and higher prey detection rate. Here, we developed a molecular method for prey species identification in wolf (Canis lupus) scats using multiple species‐specific marker loci on the cytochrome b gene for 18 target species. The final panel consisted of 80 assays, with a minimum of four markers per target species, and that amplified specifically when using a high‐throughput Nanofluidic array technology (Fluidigm Inc.). As a practical example, we applied the method to identify target prey species DNA in 80 wolf scats collected in Sweden. Depending on the number of amplifying markers required to obtain a positive species call in a scat, the success in determining at least one prey species from the scats ranged from 44% to 92%. Although we highlight the need to evaluate the optimal number of markers for sensitive target species detection, the developed method is a fast and cost‐efficient tool for prey identification in wolf scats and it also has the potential to be further developed and applied to other areas and large carnivores as well.  相似文献   

13.
Intraguild interactions among carnivores have long held the fascination of ecologists. Ranging from competition to facilitation and coexistence, these interactions and their complex interplay influence everything from species persistence to ecosystem functioning. Yet, the patterns and pathways of such interactions are far from understood in tropical forest systems, particularly across countries in the Global South. Here, we examined the determinants and consequences of competitive interactions between dholes Cuon alpinus and the two large felids (leopards Panthera pardus and tigers Panthera tigris) with which they most commonly co-occur across Asia. Using a combination of traditional and novel data sources (N = 118), we integrate information from spatial, temporal, and dietary niche dimensions. These three species have faced catastrophic declines in their extent of co-occurrence over the past century; most of their source populations are now confined to Protected Areas. Analysis of dyadic interactions between species pairs showed a clear social hierarchy. Tigers were dominant over dholes, although pack strength in dholes helped ameliorate some of these effects; leopards were subordinate to dholes. Population-level spatio-temporal interactions assessed at 25 locations across Asia did not show a clear pattern of overlap or avoidance between species pairs. Diet-profile assessments indicated that wild ungulate biomass consumption by tigers was highest, while leopards consumed more primate and livestock prey as compared to their co-predators. In terms of prey offtake (ratio of wild prey biomass consumed to biomass available), the three species together harvested 0.4–30.2% of available prey, with the highest offtake recorded from the location where the carnivores reach very high densities. When re-examined in the context of prey availability and offtake, locations with low wild prey availability showed spatial avoidance and temporal overlap among the carnivore pairs, and locations with high wild prey availability showed spatial overlap and temporal segregation. Based on these observations, we make predictions for 40 Protected Areas in India where temporally synchronous estimates of predator and prey densities are available. We expect that low prey availability will lead to higher competition, and in extreme cases, to the complete exclusion of one or more species. In Protected Areas with high prey availability, we expect intraguild coexistence and conspecific competition among carnivores, with spill-over to forest-edge habitats and subsequent prey-switching to livestock. We stress that dhole–leopard–tiger co-occurrence across their range is facilitated through an intricate yet fragile balance between prey availability, and intraguild and conspecific competition. Data gaps and limitations notwithstanding, our study shows how insights from fundamental ecology can be of immense utility for applied aspects like large predator conservation and management of human–carnivore interactions. Our findings also highlight potential avenues for future research on tropical carnivores that can broaden current understanding of intraguild competition in forest systems of Asia and beyond.  相似文献   

14.
Large carnivores inhabiting human-dominated landscapes often interact with people and their properties, leading to conflict scenarios that can mislead carnivore management and, ultimately, jeopardize conservation. In northwest Spain, brown bears Ursus arctos are strictly protected, whereas sympatric wolves Canis lupus are subject to lethal control. We explored ecological, economic and societal components of conflict scenarios involving large carnivores and damages to human properties. We analyzed the relation between complaints of depredations by bears and wolves on beehives and livestock, respectively, and bear and wolf abundance, livestock heads, number of culled wolves, amount of paid compensations, and media coverage. We also evaluated the efficiency of wolf culling to reduce depredations on livestock. Bear damages to beehives correlated positively to the number of female bears with cubs of the year. Complaints of wolf predation on livestock were unrelated to livestock numbers; instead, they correlated positively to the number of wild ungulates harvested during the previous season, the number of wolf packs, and to wolves culled during the previous season. Compensations for wolf complaints were fivefold higher than for bears, but media coverage of wolf damages was thirtyfold higher. Media coverage of wolf damages was unrelated to the actual costs of wolf damages, but the amount of news correlated positively to wolf culling. However, wolf culling was followed by an increase in compensated damages. Our results show that culling of the wolf population failed in its goal of reducing damages, and suggest that management decisions are at least partly mediated by press coverage. We suggest that our results provide insight to similar scenarios, where several species of large carnivores share the landscape with humans, and management may be reactive to perceived conflicts.  相似文献   

15.
Across Asia protected areas serve as refuges for carnivores inside human-dominated landscapes. However, the creation of hard edges around reserve boundaries where conflicts with humans arise and disturbance from human activities inside the reserves may affect carnivore behaviour and ecology. Thailand’s largest protected area, Kaeng Krachan National Park (2915 km2) receives >100,000 visitors annually while maintaining an intact assemblage of prey species for large carnivores, making it a potentially important site for population recovery of leopards (Panthera pardus), tigers (Panthera tigris) and dholes (Cuon alpinus). We assessed the abundance of leopards and their prey base, and their response to changes in levels of human activity after an unexpected flooding event that resulted in the park being closed to visitors for >6 months. Using camera-traps, we identified 6 individual leopards and used spatially explicit capture-recapture (SECR) methods, incorporating humans and prey as covariates, to test for factors affecting the detection probability of leopards before and after the park closure. Leopard density was unchanged between the two periods, however the movement and activity patterns were clearly different. In the absence of tourist activity, leopards tended to move more frequently, leopard detection rates increased by 70% and activity shifted towards being more diurnal. The consequences of these changes in behaviour may include improved health, reproduction and survival. A management strategy involving seasonal closure of parks may serve to alleviate pressure on leopards and other carnivores. We recommend using information on abundance of large carnivores and their prey species, and human disturbance as the key indicators for long-term monitoring and management of protected areas in Southeast Asia.  相似文献   

16.
Knowledge of competition dynamics among Africa’s large carnivores is important for conservation. However, investigating carnivore behaviour in the field can be challenging especially for species that are difficult to access. Methods that enable remote collection of data provide a means of recording natural behaviour and are therefore useful for studying elusive species such as leopards (Panthera pardus). Camera traps and Global Positioning System (GPS) collars are powerful tools often used independently to study animal behaviour but where their data are combined, the interpretation of a species’ behaviours is improved. In this study we used data from baited camera trap stations to investigate the feeding habits of leopards at Malilangwe Wildlife Reserve, Zimbabwe. We investigated the influence of spotted hyenas, lions and other competing leopards on the feeding duration of leopards using Generalized Linear Mixed Effects Modelling. To test the influence of competing predators on resting distances from bait sites, eight leopards were fitted with GPS collars. Results showed that leopards spent the shortest time feeding on the baits in the presence of competing male leopards compared to other predators while lion presence caused animals to rest farthest from bait sites. Interaction analysis indicated that small‐bodied leopards spent significantly shorter durations feeding when spotted hyenas were present. Our findings demonstrate that competition from guild carnivores has negative impacts on the food intake of leopards, which may have implications for fitness and survival. This study provides a snapshot of the competition dynamics at bait sites which may give insight to ecosystem level interactions among large carnivores in savanna ecosystems.  相似文献   

17.
Even with global support for tiger (Panthera tigris) conservation their survival is threatened by poaching, habitat loss and isolation. Currently about 3,000 wild tigers persist in small fragmented populations within seven percent of their historic range. Identifying and securing habitat linkages that connect source populations for maintaining landscape-level gene flow is an important long-term conservation strategy for endangered carnivores. However, habitat corridors that link regional tiger populations are often lost to development projects due to lack of objective evidence on their importance. Here, we use individual based genetic analysis in combination with landscape permeability models to identify and prioritize movement corridors across seven tiger populations within the Central Indian Landscape. By using a panel of 11 microsatellites we identified 169 individual tigers from 587 scat and 17 tissue samples. We detected four genetic clusters within Central India with limited gene flow among three of them. Bayesian and likelihood analyses identified 17 tigers as having recent immigrant ancestry. Spatially explicit tiger occupancy obtained from extensive landscape-scale surveys across 76,913 km2 of forest habitat was found to be only 21,290 km2. After accounting for detection bias, the covariates that best explained tiger occupancy were large, remote, dense forest patches; large ungulate abundance, and low human footprint. We used tiger occupancy probability to parameterize habitat permeability for modeling habitat linkages using least-cost and circuit theory pathway analyses. Pairwise genetic differences (F ST) between populations were better explained by modeled linkage costs (r>0.5, p<0.05) compared to Euclidean distances, which was in consonance with observed habitat fragmentation. The results of our study highlight that many corridors may still be functional as there is evidence of contemporary migration. Conservation efforts should provide legal status to corridors, use smart green infrastructure to mitigate development impacts, and restore habitats where connectivity has been lost.  相似文献   

18.
Innovative conservation tools are greatly needed to reduce livelihood losses and wildlife declines resulting from human–carnivore conflict. Spatial risk modeling is an emerging method for assessing the spatial patterns of predator–prey interactions, with applications for mitigating carnivore attacks on livestock. Large carnivores that ambush prey attack and kill over small areas, requiring models at fine spatial grains to predict livestock depredation hot spots. To detect the best resolution for predicting where carnivores access livestock, we examined the spatial attributes associated with livestock killed by tigers in Kanha Tiger Reserve, India, using risk models generated at 20, 100, and 200‐m spatial grains. We analyzed land‐use, human presence, and vegetation structure variables at 138 kill sites and 439 random sites to identify key landscape attributes where livestock were vulnerable to tigers. Land‐use and human presence variables contributed strongly to predation risk models, with most variables showing high relative importance (≥0.85) at all spatial grains. The risk of a tiger killing livestock increased near dense forests and near the boundary of the park core zone where human presence is restricted. Risk was nonlinearly related to human infrastructure and open vegetation, with the greatest risk occurring 1.2 km from roads, 1.1 km from villages, and 8.0 km from scrubland. Kill sites were characterized by denser, patchier, and more complex vegetation with lower visibility than random sites. Risk maps revealed high‐risk hot spots inside of the core zone boundary and in several patches in the human‐dominated buffer zone. Validation against known kills revealed predictive accuracy for only the 20 m model, the resolution best representing the kill stage of hunting for large carnivores that ambush prey, like the tiger. Results demonstrate that risk models developed at fine spatial grains can offer accurate guidance on landscape attributes livestock should avoid to minimize human–carnivore conflict.  相似文献   

19.
A Harihar  B Pandav 《PloS one》2012,7(7):e40105
Occupying only 7% of their historical range and confined to forested habitats interspersed in a matrix of human dominated landscapes, tigers (Panthera tigris) typify the problems faced by most large carnivores worldwide. With heads of governments of tiger range countries pledging to reverse the extinction process and setting a goal of doubling wild tiger numbers by 2022, achieving this target would require identifying existing breeding cores, potential breeding habitats and opportunities for dispersal. The Terai Arc Landscape (TAL) represents one region which has recently witnessed recovery of tiger populations following conservation efforts. In this study, we develop a spatially explicit tiger occupancy model with survey data from 2009–10 based on a priori knowledge of tiger biology and specific issues plaguing the western TAL (6,979 km2), which occurs in two disjunct units (Tiger Habitat Blocks; THBs). Although the overall occupancy of tigers was 0.588 (SE 0.071), our results clearly indicate that loss in functionality of a regional corridor has resulted in tigers now occupying 17.58% of the available habitat in THB I in comparison to 88.5% in THB II. The current patterns of occupancy were best explained by models incorporating the interactive effect of habitat blocks (AIC w = 0.883) on wild prey availability (AIC w = 0.742) and anthropogenic disturbances (AIC w = 0.143). Our analysis has helped identify areas of high tiger occupancy both within and outside existing protected areas, which highlights the need for a unified control of the landscape under a single conservation unit with the primary focus of managing tigers and associated wildlife. Finally, in the light of global conservation targets and recent legislations in India, our study assumes significance as we identify opportunities to secure (e.g. THB II) and increase (e.g. THB I) tiger populations in the landscape.  相似文献   

20.
Estimating the abundance of wild carnivores is of foremost importance for conservation and management. However, given their elusive habits, direct observations of these animals are difficult to obtain, so abundance is more commonly estimated from sign surveys or radio-marked individuals. These methods can be costly and difficult, particularly in large areas with heavy forest cover. As an alternative, recent research has suggested that wolf abundance can be estimated from occupancy–abundance curves derived from “virtual” surveys of simulated wolf track networks. Although potentially more cost-effective, the utility of this approach hinges on its robustness to violations of its assumptions. We assessed the sensitivity of the occupancy–abundance approach to four assumptions: variation in wolf movement rates, changes in pack cohesion, presence of lone wolves, and size of survey units. Our simulations showed that occupancy rates and wolf pack abundances were biased high if track surveys were conducted when wolves made long compared to short movements, wolf packs were moving as multiple hunting units as opposed to a cohesive pack, and lone wolves were moving throughout the surveyed landscape. We also found that larger survey units (400 and 576 km2) were more robust to changes in these factors than smaller survey units (36 and 144 km2). However, occupancy rates derived from large survey units rapidly reached an asymptote at 100% occupancy, suggesting that these large units are inappropriate for areas with moderate to high wolf densities (>15 wolves/1,000 km2). Virtually-derived occupancy–abundance relationships can be a useful method for monitoring wolves and other elusive wildlife if applied within certain constraints, in particular biological knowledge of the surveyed species needs to be incorporated into the design of the occupancy surveys. Further, we suggest that the applicability of this method could be extended by directly incorporating some of its assumptions into the modelling framework.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号