首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new coumarin, (?)-cis-(3′R,4′R)-4′-O-angeloylkhellactone-3′-O-β-d-glucopyranoside (1) and two new chalcones, 3′-[(2E)-5-carboxy-3-methyl-2-pentenyl]-4,2′,4′-trihydroxychalcone (4) and (±)-4,2′,4′-trihydroxy-3′-{2-hydroxy-2-[tetrahydro-2-methyl-5-(1-methylethenyl)-2-furanyl]ethyl}chalcone (5) were isolated from the aerial parts of Angelica keiskei (Umbelliferae), together with six known compounds: (R)-O-isobutyroyllomatin (2), 3′-O-methylvaginol (3), (?)-jejuchalcone F (6), isoliquiritigenin (7), davidigenin (8), and (±)-liquiritigenin (9). The structures of the new compounds were determined by interpretation of their spectroscopic data including 1D and 2D NMR data. All known compounds (2, 3, and 69) were isolated as constituents of A. keiskei for the first time. To identify novel hepatocyte proliferation inducer for liver regeneration, 19 were evaluated for their cell proliferative effects using a Hep3B human hepatoma cell line. All isolates exhibited cell proliferative effects compared to untreated control (DMSO). Cytoprotective effects against oxidative stress induced by glucose oxidase were also examined on Hep3B cells and mouse fibroblast NIH3T3 cells and all compounds showed significant dose-dependent protection against oxidative stress.  相似文献   

2.
The methanol extract of dried roots of Euphorbia kansui, known as “Gan Sui” in oriental medicine, showed pesticidal activity against brown plant hopper (Nilaparvata lugens Stal) and two-spotted spider mite (Tetranychus urticae Koch). Bioassay-guided fractionation led to the isolation of two active compounds from the dried roots of E. kansui. The substances were identified as 3-O-(2,3-dimethylbutanoyl)-13-O-dodecanoylingenol (1) and 3-O-(2′E,4′Z-decadienoyl)-ingenol (2) by MS and NMR spectral data. Both compounds exhibited insecticidal activity against the brown plant hopper and compound 1 was active against the two-spotted spider mite. Compared to anise oil and eugenol, the two ingenane diterpenes showed greater activity against brown plant hopper. The results suggest that 3-O-(2,3-dimethylbutanoyl)-13-O-dodecanoylingenol and 3-O-(2′E,4′Z-decadienoyl)-ingenol could be used directly as natural pesticides or as lead principles for the control of brown plant hopper and two-spotted spider mite.  相似文献   

3.
Extensive screening for the antiproliferative activity of different compounds found in trees was performed by extracting the leaves of Aphananthe aspera (Thunb.) Planch and then using chromatographic separation to afford 2 new compounds, (2S,4R)-2-carboxy-4-(E)-p-caffeoyl-1-methyl-hydroxyproline (1) and 5-O-caffeoyl quinic acid-(7′R,8′S,7′′E)-3′,4′,3′′-dihydroxy-4′′,7′-epoxy-8′,5′′-neolign-7′-ene-9- carboxyl (2). In addition, 6 known compounds were discovered from the leaves of this plant. The structural determination of all compounds, including their absolute configurations, was established by UV, IR, HRESIMS, 1D and 2D NMR, and CD spectroscopy. The novel compound 1 showed strong antiproliferative activity against human breast adenocarcinoma cells MCF-7 and MDA-MB-231.  相似文献   

4.
Addition of 5-bromo-2′,3′-O-isopropylidene-5′-O-trityluridine (2) in pyridine to an excess of 2-lithio-1,3-dithiane (3) in oxolane at 78° gave (6R)-5,6-dihydro-(1,3-dithian-2-yl)-2′,3′-O-isopropylidene -5′-O-trityluridine (4), (5S,6S)-5-bromo-5,6-dihydro-(1,3-dithian-2-yl)-2′,3′-O-isopropylidene-5′-O-trityluridine (5), and its (5R) isomer 6 in yields of 37, 35, and 10%, respectively. The structure of 4 was proved by Raney nickel desulphurization to (6S)-5,6-dihydro-2′,3′-O-isopropylidene-6-methyl-5′-O-trityluridine (7) and by acid hydrolysis to give D-ribose and (6R)-5,6-dihydro-6-(1,3-dithian-2-yl)uracil (9). Treatment of 4 with methyl iodide in aqueous acetone gave a 30&%; yield of (R,S)-5,6-dihydro-6-formyl-2′,3′-O-isopropylidene-5′-O-trityl-uridine (10), characterized as its semicarbazone 11. Both 5 and 6 gave 4 upon brief treatment with Raney nickel. Both 5 and 6 also gave 6-formyl-2′,3′-O-isopropylidene-5′- O-trityluridine (12) in ~41%; yield when treated with methyl iodide in aqueous acetone containin- 10%; dimethyl sulfoxide. A by-product, identified as the N-methyl derivative (13) of 12 was also formed in yields which varied with the amount of dimethyl sulfoxide used. Reduction of 12 with sodium borohydride, followed by deprotection, afforded 6-(hydroxymethyl)uridine (17), characterized by hydrolysis to the known 6-(hydroxymethyl)uracil (18). Knoevenagel condensation of a mixture of the aldehydes 12 and 13 with ethyl cyanoacetate yielded 38%; of E- (or Z-)6-[(2-cyano-2-ethoxycarbonyl)ethylidene]-2′,3′-O-isopropylidene-5′-O-trityluridine (19) and 10%; of its N-methyl derivative 20. Hydrogenation of 19 over platinum oxide in acetic anhydride followed by deprotection gave R (or S)-6-(3-amino-2-carboxypropyl)uridine (23).  相似文献   

5.
Three new compounds, 4-{erythro-2-[3-(4-hydroxyl-3-methoxyphenyl)-3-O-β-d-glucopyranosyl-propan-1-ol]}-O-medioresinol (1), (7⿳E,9⿳E,1⿳R*,3⿳S*,5⿳R*,6⿳S*)-5-O-caffeoyl-3-O-dihydrophaseicoylquinic acid (2), and (7⿳E,9⿳E,1⿳R*,3⿳S*,5⿳R*,6⿳S*)-5-O-caffeoyl-4-O-dihydrophaseicoylquinic acid (3), were isolated from Chinese folk herb Erycibe obtusifolia together with six known compounds (4⿿9). Their structures were elucidated on the basis of comparisons of literatures and extensive spectroscopic analysis, including UV, IR, HRMS, and 1D and 2D NMR techniques. Further, the cytotoxicities of these compounds were evaluated against five cell lines (HCT-8, Bel-7402, BGC-823, A549, and A2780), but they were inactive against these tumor cell lines (IC50 > 10 μmol/L).  相似文献   

6.
One new bithiophenes, 5-(but-3-yne-1,2-diol)-5′-hydroxy-methyl-2,2′-bithiophene (2), two new polyacetylenic glucosides, 3-O-β-d-glucopyranosyloxy-1-hydroxy-4E,6E-tetradecene-8,10,12-triyne (8), (5E)-trideca-1,5-dien-7,9,11-triyne-3,4-diol-4-O-β-d-glucopyranoside (9), six new terpenoid glycosides, rel-(1S,2S,3S,4R,6R)-1,6-epoxy-menthane-2,3-diol-3-O-β-d-glucopyranoside (10), rel-(1S,2S,3S,4R,6R)-3-O-(6-O-caffeoyl-β-d-glucopyranosyl)-1,6-epoxy menthane-2,3-diol (11), (2E,6E)-2,6,10-trimethyl-2,6,11-dodecatriene-1,10-diol-1-O-β-d-glucopyranoside (12), 3β,16β,29-trihydroxy oleanane-12-ene-3-O-β-d-glucopyranoside (13), 3,28-di-O-β-d-glucopyranosyl-3β,16β-dihydroxy oleanane-12-ene-28-oleanlic acid (14), 3-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranosyl oleanlic-18-ene acid-28-O-β-d-glucopyranoside (15), along with fifteen known compounds (1, 37, and 1624), were isolated from the aerial parts of Eclipta prostrata. Their structures were established by analysis of the spectroscopic data. The isolated compounds 19 were tested for activities against dipeptidyl peptidase IV (DPP-IV), compound 7 showed significant antihyperglycemic activities by inhibitory effects on DPP-IV in human plasma in vitro, with IC50 value of 0.51 μM. Compounds 1024 were tested in vitro against NF-κB-luc 293 cell line induced by LPS. Compounds 12, 15, 16, 19, 21, and 23 exhibited moderate anti-inflammatory activities.  相似文献   

7.
Treatment of (Z)-3-deoxy-1,2:5,6-di-O-isopropylidine-3-C-(methoxycarbonyl)-methylene-α-d-ribo-hexofuranose (1) with diazomethane in ether afforded the unstable Δ1- and Δ2-pyrazolines 2 and 2a. High-pressure hydrogenation of the latter compounds over Raney nickel afforded a mixture of amines 3, 5, 7, and 9 (in 80% yield), which were separated by chromatography. Acetylation of these compounds yielded the N-acetyl derivatives 4, 6, 8, and 10. X-Ray analysis of compounds 8 and 10 showed them to be spiro-3,4′-(R)-(3-deoxy-1,2:5,6-di-O-isopropylidine-α-d-ribo-hexofuranose)-3′-(R)-[and 3′-(S)]-acetamido-2′-pyrrolidinone, respectively. The structures of compounds 4 and 6 (determined by chemical means) were the corresponding spiro-3,4′-(S)-3′-(R)-acetamido-2′-pyrrolidinone and 3′-(S)-acetamido-2′-pyrrolidinone, respectively.  相似文献   

8.
Two new chromone acyl glucosides, 5-hydroxy-7-O-(6-O-p-cis-coumaroyl-β-D-glucopyranosyl)-chromone (1) and 5-hydroxy-7-O-(6-O-p-trans-coumaroyl-β-D-glucopyranosyl)-chromone (2), and a new flavonoid glucoside, ayanin 3′-O-β-D-glucopyranoside (3) were isolated from aerial parts of Dasiphora parvifolia, together with flavonoid glycosides (410), catechins (11, 12), and hydrolysable tannins (13, 14). The chemical structures of these compounds were elucidated on the basis of spectroscopic data. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity and the hyaluronidase inhibitory activity of these compounds were evaluated.  相似文献   

9.
Chemical investigation of polar lipids from the marine eustigmatophyte microalga Nannochloropsis granulata led to the isolation of six betaine lipid diacylglyceryltrimethylhomoserine (DGTS), namely, (2S)-1,2-bis-O-eicosapentaenoylglyceryl-3-O-4′-(N,N,N-trimethyl)-homoserine (1), (2S)-1-O-eicosapentaenoyl-2-O-arachidonoylglyceryl-3-O-4′-(N,N,N-trimethyl)-homoserine (2), (2S)-1-O-eicosapentaenoyl-2-O-myristoylglyceryl-3-O-4′-(N,N,N-trimethyl)-homoserine (3), (2S)-1-O-eicosapentaenoyl-2-O-palmitoylglyceryl-3-O-4′-(N,N,N-trimethyl)-homoserine (4), (2S)-1-O-eicosapentaenoyl-2-O-palmitoleoylglyceryl-3-O-4′-(N,N,N-trimethyl)-homoserine (5), and (2S)-1-O-eicosapentaenoyl-2-O-linoleoylglyceryl-3-O-4′-(N,N,N-trimethyl)-homoserine (6). Structures of the isolated DGTSs were elucidated based on both spectroscopic technique and degradation methods. This is the first report of isolation of 1 in pure state, and 26 are all new compounds. The isolated betaine lipids showed dose-dependent nitric oxide (NO) inhibitory activity against lipopolysaccharide-induced nitric oxide production in RAW264.7 macrophage cells. Further study suggested that these betaine lipids (16) inhibit NO production in RAW264.7 macrophage cells through downregulation of inducible nitric oxide synthase expression, indicating the possible use as an anti-inflammatory agent. This is the first report of DGTS with anti-inflammatory activity.  相似文献   

10.
Twenty-two known compounds were isolated from the 95% alcohol extract of the fruits of Illicium simonsii Maxim, including seven sesquiterpenoids (1622) and fifteen lignans (115). In the present research, compounds 3 ((7S,8R,8′S)-3,3′-dimethoxy-4,4′,9-trihydroxy-7,9′-epoxylignan-7′-one), 4 ((−)-(7′S,8S,8′R)-4,4′-dihydroxy-3,3′,5,5′-tetramethoxy-7′,9-epoxylignan-9′-ol-7-one), 5 ((+)-8-hydroxypinoresinol), 6 ((+)-8-hydroxymedioresinol), 8 ((2R,3R)-2β-(4″-hydroxy-3″-methoxybenzyl)-3α-(4′-hydroxy-3′-methoxybenzyl)-γ-butyrolactone 2-O-(β-D-glucopyranoside), 12 ((+)-8-methoxyisolariciresinol), 13 (α-conidendrin), 14 (boehmenan) and 15 (7R,8R,7′E-7′,8′-didehydro-4,7,9,9′- tetrahydroxy-3-methoxy-8-O-4′-neolignan) were reported from the Illicium genus for the first time, and compounds 1 (simulanol), 7 ((+)-secoisolariciresinol monoglucoside), 10 ((+)-9-O-β-D-glucopyranosyl lyoniresinol), 11 ((+)-isolariciresinol), 18 (neoanisatin), 19 (veranisatin A), 20 (4,5-d2-8′-oxo-dihydrophaseic acid) and 22 (Oligandrumin A) were firstly isolated from the plant. Their structures were elucidated on the basis of NMR spectroscopic and mass spectrometric data. Moreover, the chemotaxonomic significance of the isolated compounds is discussed.  相似文献   

11.
Chemical investigation of Chrozophora tinctoria (L.) A. Juss. growing in Saudi Arabia revealed the isolation of two new acylated flavonoids identified as acacetin-7-O-β-d-[α-l-rhamnosyl(1  6)]3″-E-p-coumaroyl glucopyranoside (4) and apigenin-7-O-(6″-Z-p-coumaroyl)-β-d-glucopyranoside (5), in addition to amentoflavone (1), apigenin-7-O-β-d-glucopyranoside (2), apigenin-7-O-6″-E-p-coumaroyl-β-d-glucopyranoside (3) and rutin (6). The structures of isolated compounds were established by 1D, 2D NMR and HRESIMS spectral data, in addition to comparison with literature data. The anti-inflammatory activities of isolated compounds were assessed by measuring the levels of IL-1β, IL-6, TNF-α and PGE2 in the supernatant media of human peripheral blood mononuclear cells (PBMCs) stimulated by phytohaemagglutinin (PHA). At a concentration of 100 μM, compounds 1, 2, 4 and 6 significantly decreased Il-1β, Il-6 and PGE2 to nearly normal values. All tested compounds caused a dose-dependent decrease in TNF-α level but failed to reach that of the control values.  相似文献   

12.
Chemical investigation of an acidic methanol extract of the whole plants of Datura metel resulted in the isolation of two new guainane sesquiterpenes, 1β,5α,7β-guaiane-4β,10α,11-triol (1) and 1α,5α,7α-11-guaiene-2α,3β,4α,10α,13-pentaol (2), along with eight known compounds: pterodontriol B (3), disciferitriol (4), scopolamine (5), kaempferol 3-O-β-d-glucosyl(1  2)-β-d-galactoside 7-O-β-d-glucoside (6), kaempferol 3-O-β-glucopyranosyl(1  2)-β-glucopyranoside-7-O-α-rhamnopyranoside (7), pinoresinol 4′′-O-β-d-glucopyranoside (8), (7R,8S,7′S,8′R)-4,9,4′,7′-tetrahydroxy-3,3′-dimethoxy-7,9′-epoxy-lignan-4-O-β-d-glucopyranoside (9), and (7S,8R,7′S,8′S)-4,9,4′,7′-tetrahydroxy-3,3′-dimethoxy-7,9′-epoxylignan-4-O-β-d-glucopyranoside (10). Their structures were elucidated by extensive spectroscopic methods, including 1D and 2D NMR and MS spectra. Compounds 2-4 and 6-10 were shown to have modest anti-inflammatory effects through inhibition of NO production in LPS-stimulated BV cells.  相似文献   

13.
Ibicella lutea and Proboscidea louisiana, both of the Martyniaceae family, are known for rich glandular trichomes on their leaves and stems. Chemical investigations of the glandular trichome exudates on leaves of the two plants furnished three types of secondary metabolites, glycosylated fatty acids, glycerides (2-O-(3,6-diacetyloxyfattyacyl)glycerols and 2-O-(3-acetyloxyfattyacyl)glycerols) and dammarane triterpenes. The glycosylated fatty acids from I. lutea were determined to be 6(S)-(6-O-acetyl-β-d-glucopyranosyloxy)-octadecanoic acid (1A), -eicosanoic acid (1B) and -docosanoic acid (1C), as well as their respective deacetyl congeners (2A, 2B and 2C), whereas P. louisiana furnished 8(S)-(6-O-acetyl-β-d-glucopyranosyloxy)-eicosanoic acid (3A) and -docosanoic acid (3B) and their respective deacetyl congeners (4A and 4B), together with 2B. Both plants contained 12 identical 2-O-[(3R,6S)-3,6-diacetyloxyfattyacyl]glycerols (5A-L), in which the fatty acyl moieties contained between 17 and 21 carbon atoms. The corresponding mono-acetyloxy compounds, 2-O-[(3R)-3-acetyloxyfattyacyl]glycerols (6AL) were detected in both plants. Among these glycerides, ten compounds (5A, 5C, 5F, 5H, 5K, 6A, 6C, 6F, 6H and 6K) had iso-fattyacyl structures and four (5E, 5J, 6E and 6J) had anteiso-fattyacyl structures. A previously unknown dammarane triterpene, betulatriterpene C 3-acetate (7), was isolated together with three known dammarane triterpenes, 24-epi-polacandrin 1,3-diacetate (8), betulatriterpene C (9) and 24-epi-polacandrin 3-acetate (10) from I. lutea, whereas 12 dammarane triterpenes, named probosciderols A–L (1223), and the known compound betulafolienetriol (11) were isolated from P. louisiana. The structures of these compounds were elucidated by spectroscopic analysis including 2D-NMR techniques and chemical transformations. The 6-O-acetylglucosyloxy-fatty acids 1AC (42%) and the dammarane triterpenes 710 (31%) were the two most abundant constituents in the glandular trichome exudate of I. lutea, whereas the dammarane triterpenes 1123 (47%) and the glucosyloxy-fatty acids (4A, 4B and 2B) (38%) were the most abundant constituents in the glandular trichome exudate of P. louisiana.  相似文献   

14.
Chemical investigation of the aerial parts of Oncocalyx glabratus resulted in the isolation of three new flavan derivatives, 5,3′,4′-trihydroxyflavan 7-O-gallate (1), 5,4′-dihydroxyflavan 7-3′-O-digallate (2) and 5,3′-dihydroxyflavan 7-4′-O-digallate (3), named oncoglabrinol A, B and C, respectively, together with four known flavonols, (+)-catechin (4), (+)-catechin-7-O-gallate (5), catechin-7-4′-O-digallate (6A) and catechin-7-3′-O-digallate (6B). The structures of the compounds were established by 1D, 2D NMR and ESI-HRMS spectral analyses. The biological activity of the compounds was tested through a series of in vitro assays designed for determining cytotoxicity, antiviral activity against hepatitis B virus, and antidiabetic activity. All compounds were found non-toxic and showed moderate anti-HBV activity. Compounds 3 and 6 showed dual PPAR agonistic activity while others were not effective.  相似文献   

15.
Phytochemical investigations on the roots of Fallopia multiflora var. Ciliinerve led to the isolation of eighteen compounds, including six chromones [2-methyl-5- carboxymethyl-7-hydroxychromone (1), 2-methyl-5-methylcarboxymethyl-7- hydroxychromone (2), 2,5-dimethyl-7-hydroxychromone (3), 2-methyl-5-hydroxymeth-yl-7-hydroxychromone (4), 2-methyl-5-carboxylicacid-7-hydroxy-chromone (5), and 2,5-dimethyl-7-hydroxychromone-7-O-β-D-glucopyranoside (6)], three lignans [Isolariciresinol (8), 5-[4-(3,4-dimethoxyphenyl)-2,3-dimethylbutyl]-1,3-benzodioxole (9), and isolariciresinol-9-O-β-D-xylopyranoside (10)], four anthraquinones [physcion-8-O-β-D-glucopyranoside (11), emodin-8-O-β-D-glucopyranoside (12), Rhein (13), and Chrysophanol (14)], three isobenzofurans [5,7-dihydroxy-isobenzofuran (15), 5-methoxy-7-hydroxy-isobenzofuran (16), and 5-methoxy-isobenzofuran-7-O-β-D-glucoside (17)], one phenolic acid [2,5-diacethylhy-droquinone (7)], and one pyran [Zanthopyranone (18)]. Among them, compounds 1, 3, 6, 13 and 14 were reported from F. multiflora var. Ciliinerve for the first time, compounds 2, 8, 10 and 15–17 were isolated from the genus Fallopia for the first time, and compounds 4, 9 and 18 were isolated for the first time from Polygonaceae family. Furthermore, the isolation of compounds 5 and 7 were reported for the first time in plants. Their structures were identified by spectroscopic methods and compared with those previously published. The chemotaxonomic significance of these isolated compounds has also been discussed.  相似文献   

16.
Two new pterosin glycosides, (2S,3S)-pterosin C 3-O-β-d-(4′-(E)-caffeoyl)-glucopyranoside (1) and (2S,3S)-pterosin C 3-O-β-d-(6′-(E)-p-coumaroyl)-glucopyranoside (2), were isolated from Pteris multifida (Pteridaceae) roots along with ten known pterosin compounds (312). The chemical structures of the isolated compounds were elucidated by extensive analysis of the 1D, 2D NMR, HRESIMS, and CD spectroscopic data. The cytotoxicities of 112 against HCT116 human colorectal cancer cell line were evaluated. Among the isolates, compound 1 showed moderate antiproliferative activity in HCT116 cells with an IC50 value of 8.0 ± 1.7 μM. Additionally, 1 induced the upregulation of the caspase-9 and procaspase-9 levels in Western blots and increased the annexin V/propidium iodide (PI)-positive cell population in flow cytometry.  相似文献   

17.
Boerhaavia diffusa L. is used in the traditional medicine of several Asian countries. The isolation and identification of five new compounds, together with 11 known compounds, from the ethyl acetate extract of the aerial part of B. diffusa grown Vietnam is reported. The structure of the new compounds was established by 1D and 2D NMR spectroscopy, and high resolution ESI-MS analysis. New compounds are two rotenoids: 9,11-dihydroxy-6,10-dimethoxy[1]benzopyrano[3,4-b][1]benzopyran-12(6H)-one (boeravinone P, 3) and 3-[2-(β-d-glucopyranosyloxy)-3-hydroxyphenyl]-5-hydroxy-2-hydroxymethyl-7-methoxy-6-methyl-4H-1-benzopyran-4-one (boeravinone Q, 9), an atropisomeric mixture of two rotenoid glycosides (3′,5-dihydroxy-2-hydroxymethyl-7-methoxy-6-methylisoflavone 2′-O-β-d-glucopyranoside, 11), a sesquiterpene lactone (4,10-dihydroxy-8-methoxyguai-7(11)-en-8,12-olide, 5) and a new phenylpropanoid glycoside (boerhaavic acid, 15).  相似文献   

18.
Two new flavanone glycoside derivatives and one new sulfur-containing spiroacetal glycoside, (2R, 3R)-3-acetyl-7-methoxy-(−)-epicatechin 5-O-(6-isobutanoyl)-β-d-glucopyranoside (1), (2R, 3R)-3-acetyl-7-methoxy-(−)-epicatechin 5-O-[6-(2-methylbutanoyl)]-β-d-glucopyranoside (2) and 4-[(carboxymethyl)thio]-5′-hydroxy-phyllaemblic acid O-β-d-glucopyranosyl-(1  2)-β-d-glucopyranoside ester (3), along with twelve known flavonoids and one known sulfur-containing spiroacetal glycoside, were isolated from Breynia fruticosa. Their structures were elucidated by the use of extensive spectroscopic methods (UV, IR, HR-ESI-MS, 1D and 2D NMR, and CD). The in vitro inhibition of tyrosinase activity by all of these compounds was also evaluated, and we concluded that the flavanol-containing 5-O- and 7-O-sugar moieties possessed more potent effects than the other compounds examined herein.  相似文献   

19.
Populations of Primula auricula L. subsp. auricula from Austrian Alps were studied for flavonoid composition of both farinose exudates and tissue of leaves. The leaf exudate yielded Primula-type flavones, such as unsubstituted flavone and its derivatives, while tissue flavonoids largely consisted of flavonol 3-O-glycosides, based upon kaempferol (3, 4) and isorhamnetin (57). Kaempferol 3-O-(2″-O-β-xylopyranosyl-[6″-O-β-xylopyranosyl]-β-glucopyranoside) (3) and isorhamnetin 3-O-(2″-O-β-xylopyranosyl-[6″-O-β-xylopyranosyl]-β-glucopyranoside) (6) are newly reported as natural compounds. Remarkably, two Primula type flavones were also detected in tissues, namely 3′-hydroxyflavone 3′-O-β-glucoside (1) and 3′,4′-dihydroxyflavone 4′-O-β-glucoside (2), of which (1) is reported here for the first time as natural product. All structures were unambiguously identified by NMR and MS data. Earlier reports on the occurrence of 7,2′-dihydroxyflavone 7-O-glucoside (macrophylloside) in this species could not be confirmed. This structure was now shown to correspond to 3′,4′-dihydroxyflavone 4′-O-glucoside (2) by comparison of NMR data. Observed exudate variations might be specific for geographically separated populations. The structural diversification between tissue and exudate flavonoids is assumed to be indicative for different ecological roles in planta.  相似文献   

20.
Phytochemical investigation of the rhizomes of Smilax trinervula led to isolation and structure elucidation of eight lignan glycosides, including five new lignans, namely, (7S, 8R, 8′R)-4, 4′, 9-trihydroxy-3, 3′, 5, 5′-tetramethoxy-7, 9′-epoxylignan-7′-one 4′-O-β-d-glucopyranoside (1), (7S, 8R, 8′R)-4, 4′, 9-trihydroxy-3, 3′, 5, 5′-tetramethoxy-7, 9′-epoxylignan-7′-one 4-O-β-d- glucopyranoside (2) (7S, 8R)-4, 9, 9′-trihydroxy-3, 3′, 5-trimethoxy-4′, 7-epoxy-8, 5′-neolignan 9′-O-β-d-glucopyranoside (3), (7R, 8R)-4, 9, 9′-trihydroxy-3, 5-dimethoxy-7.O.4′, 8.O.3′- neolignan 9′-O-β-d-glucopyranoside (4), and (7S, 8R)-4, 9, 9′-trihydroxy-3, 3′, 5-trimethoxy-8, 4′-oxy-neolignan 4-O-β-d-glucopyranoside (5), along with three known compounds (6-8). Their structures were established mainly on the basis of 1D and 2D NMR spectral data, ESI–MS and comparison with the literature. Compounds 1-8 were tested in vitro for their cytotoxic activity against four human tumor cell lines (SH-SY5Y, SGC-7901, HCT-116, Lovo). Compounds 3 and 5 exhibited cytotoxic activity against Lovo cells, with IC50 value of 10.4 μM and 8.5 μM, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号