首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Accurate sex identification is crucial for elucidating the biology of a species. In the absence of directly observable sexual characteristics, sex identification of wild fauna can be challenging, if not impossible. Molecular sexing offers a powerful alternative to morphological sexing approaches. Here, we present SeXY, a novel sex‐identification pipeline, for very low‐coverage shotgun sequencing data from a single individual. SeXY was designed to utilize low‐effort screening data for sex identification and does not require a conspecific sex‐chromosome assembly as reference. We assess the accuracy of our pipeline to data quantity by downsampling sequencing data from 100,000 to 1000 mapped reads and to reference genome selection by mapping to a variety of reference genomes of various qualities and phylogenetic distance. We show that our method is 100% accurate when mapping to a high‐quality (highly contiguous N50 > 30 Mb) conspecific genome, even down to 1000 mapped reads. For lower‐quality reference assemblies (N50 < 30 Mb), our method is 100% accurate with 50,000 mapped reads, regardless of reference assembly quality or phylogenetic distance. The SeXY pipeline provides several advantages over previously implemented methods; SeXY (i) requires sequencing data from only a single individual, (ii) does not require assembled conspecific sex chromosomes, or even a conspecific reference assembly, (iii) takes into account variation in coverage across the genome, and (iv) is accurate with only 1000 mapped reads in many cases.  相似文献   

4.
This study aims at supporting the maintenance of representative functional habitat networks as green infrastructure for biodiversity conservation through transdisciplinary macroecological analyses of wet grassland landscapes and their stewardship systems. We chose ten north European wet grassland case study landscapes from Iceland and the Netherlands in the west to Lithuania and Belarus in the east. We combine expert experiences for 20–30 years, comparative studies made 2011–2017, and longitudinal analyses spanning >70 years. Wader, or shorebird, (Charadrii) assemblages were chosen as a focal species group. We used evidence‐based knowledge and practical experience generated in three steps. (1) Experts from 8 wet grassland landscapes in northern Europe''s west and east mapped factors linked to patterns and processes, and management and governance, in social‐ecological systems that affect states and trends of wet grasslands as green infrastructures for wader birds. (2) To understand wader conservation problems and their dynamic in wet grassland landscapes, and to identify key issues for successful conservation, we applied group modeling using causal loop diagram mapping. (3) Validation was made using the historic development in two additional wet grassland landscapes. Wader conservation was dependent on ten dynamically interacting ecological and social system factors as leverage points for management. Re‐wetting and grazing were common drivers for the ecological and social system, and long‐term economic support for securing farmers’ interest in wader bird conservation. Financial public incentives at higher levels of governance of wetland management are needed to stimulate private income loops. Systems analysis based on contrasting landscape case studies in space and over time can support (1) understanding of complex interactions in social‐ecological systems, (2) collaborative learning in individual wet grassland landscapes, and (3) formulation of priorities for conservation, management, and restoration.  相似文献   

5.
The aphid Schlechtendalia chinensis is an economically important insect that can induce horned galls, which are valuable for the medicinal and chemical industries. Up to now, more than twenty aphid genomes have been reported. Most of the sequenced genomes are derived from free‐living aphids. Here, we generated a high‐quality genome assembly from a galling aphid. The final genome assembly is 271.52 Mb, representing one of the smallest sequenced genomes of aphids. The genome assembly is based on contig and scaffold N50 values of the genome sequence are 3.77 Mb and 20.41 Mb, respectively. Nine‐seven percent of the assembled sequences was anchored onto 13 chromosomes. Based on BUSCO analysis, the assembly involved 96.9% of conserved arthropod and 98.5% of the conserved Hemiptera single‐copy orthologous genes. A total of 14,089 protein‐coding genes were predicted. Phylogenetic analysis revealed that S. chinensis diverged from the common ancestor of Eriosoma lanigerum approximately 57 million years ago (MYA). In addition, 35 genes encoding salivary gland proteins showed differentially when S. chinensis forms a gall, suggesting they have potential roles in gall formation and plant defense suppression. Taken together, this high‐quality S. chinensis genome assembly and annotation provide a solid genetic foundation for future research to reveal the mechanism of gall formation and to explore the interaction between aphids and their host plants.  相似文献   

6.
Paleogenomics is the nascent discipline concerned with sequencing and analysis of genome‐scale information from historic, ancient, and even extinct samples. While once inconceivable due to the challenges of DNA damage, contamination, and the technical limitations of PCR‐based Sanger sequencing, following the dawn of the second‐generation sequencing revolution, it has rapidly become a reality. However, a significant challenge facing ancient DNA studies on extinct species is the lack of closely related reference genomes against which to map the sequencing reads from ancient samples. Although bioinformatic efforts to improve the assemblies have focused mainly in mapping algorithms, in this article we explore the potential of an alternative approach, namely using reconstructed ancestral genome as reference for mapping DNA sequences of ancient samples. Specifically, we present a preliminary proof of concept for a general framework and demonstrate how under certain evolutionary divergence thresholds, considerable mapping improvements can be easily obtained.  相似文献   

7.
High‐throughput DNA sequencing technologies make it possible now to sequence entire genomes relatively easily. Complete genomic information obtained by whole‐genome resequencing (WGS) can aid in identifying and delineating species even if they are extremely young, cryptic, or morphologically difficult to discern and closely related. Yet, for taxonomic or conservation biology purposes, WGS can remain cost‐prohibitive, too time‐consuming, and often constitute a “data overkill.” Rapid and reliable identification of species (and populations) that is also cost‐effective is made possible by species‐specific markers that can be discovered by WGS. Based on WGS data, we designed a PCR restriction fragment length polymorphism (PCR‐RFLP) assay for 19 Neotropical Midas cichlid populations (Amphilophus cf. citrinellus), that includes all 13 described species of this species complex. Our work illustrates that identification of species and populations (i.e., fish from different lakes) can be greatly improved by designing genetic markers using available “high resolution” genomic information. Yet, our work also shows that even in the best‐case scenario, when whole‐genome resequencing information is available, unequivocal assignments remain challenging when species or populations diverged very recently, or gene flow persists. In summary, we provide a comprehensive workflow on how to design RFPL markers based on genome resequencing data, how to test and evaluate their reliability, and discuss the benefits and pitfalls of our approach.  相似文献   

8.
Heme‐nitric oxide/oxygen binding (H‐NOX) domains bind gaseous ligands for signal transduction in organisms spanning prokaryotic and eukaryotic kingdoms. In the bioluminescent marine bacterium Shewanella woodyi (Sw), H‐NOX proteins regulate quorum sensing and biofilm formation. In higher animals, soluble guanylyl cyclase (sGC) binds nitric oxide with an H‐NOX domain to induce cyclase activity and regulate vascular tone, wound healing and memory formation. sGC also binds stimulator compounds targeting cardiovascular disease. The molecular details of stimulator binding to sGC remain obscure but involve a binding pocket near an interface between H‐NOX and coiled‐coil domains. Here, we report the full NMR structure for CO‐ligated Sw H‐NOX in the presence and absence of stimulator compound IWP‐051, and its backbone dynamics. Nonplanar heme geometry was retained using a semi‐empirical quantum potential energy approach. Although IWP‐051 binding is weak, a single binding conformation was found at the interface of the two H‐NOX subdomains, near but not overlapping with sites identified in sGC. Binding leads to rotation of the subdomains and closure of the binding pocket. Backbone dynamics are similar across both domains except for two helix‐connecting loops, which display increased dynamics that are further enhanced by compound binding. Structure‐based sequence analyses indicate high sequence diversity in the binding pocket, but the pocket itself appears conserved among H‐NOX proteins. The largest dynamical loop lies at the interface between Sw H‐NOX and its binding partner as well as in the interface with the coiled coil in sGC, suggesting a critical role for the loop in signal transduction.  相似文献   

9.
The emergence of SARS‐CoV‐2 variants has exacerbated the COVID‐19 global health crisis. Thus far, all variants carry mutations in the spike glycoprotein, which is a critical determinant of viral transmission being responsible for attachment, receptor engagement and membrane fusion, and an important target of immunity. Variants frequently bear truncations of flexible loops in the N‐terminal domain (NTD) of spike; the functional importance of these modifications has remained poorly characterised. We demonstrate that NTD deletions are important for efficient entry by the Alpha and Omicron variants and that this correlates with spike stability. Phylogenetic analysis reveals extensive NTD loop length polymorphisms across the sarbecoviruses, setting an evolutionary precedent for loop remodelling. Guided by these analyses, we demonstrate that variations in NTD loop length, alone, are sufficient to modulate virus entry. We propose that variations in NTD loop length act to fine‐tune spike; this may provide a mechanism for SARS‐CoV‐2 to navigate a complex selection landscape encompassing optimisation of essential functionality, immune‐driven antigenic variation and ongoing adaptation to a new host.  相似文献   

10.
Engineering recombinant viruses is a pre‐eminent tool for deciphering the biology of emerging viral pathogens such as the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2). However, the large size of coronavirus genomes renders the current reverse genetics methods challenging. Here, we describe a simple method based on “infectious subgenomic amplicons” (ISA) technology to generate recombinant infectious coronaviruses with no need for reconstruction of the complete genomic cDNA and apply this method to SARS‐CoV‐2 and also to the feline enteric coronavirus. In both cases we rescue wild‐type viruses with biological characteristics similar to original strains. Specific mutations and fluorescent red reporter genes can be readily incorporated into the SARS‐CoV‐2 genome enabling the generation of a genomic variants and fluorescent reporter strains for in vivo experiments, serological diagnosis, and antiviral assays. The swiftness and simplicity of the ISA method has the potential to facilitate the advance of coronavirus reverse genetics studies, to explore the molecular biological properties of the SARS‐CoV‐2 variants, and to accelerate the development of effective therapeutic reagents.  相似文献   

11.
Sexual reproduction requires genome haploidization by the two divisions of meiosis and a differentiation program to generate gametes. Here, we have investigated how sporulation, the yeast equivalent of gamete differentiation, is coordinated with progression through meiosis. Spore differentiation is initiated at metaphase II when a membrane‐nucleating structure, called the meiotic plaque, is assembled at the centrosome. While all components of this structure accumulate already at entry into meiosis I, they cannot assemble because centrosomes are occupied by Spc72, the receptor of the γ‐tubulin complex. Spc72 is removed from centrosomes by a pathway that depends on the polo‐like kinase Cdc5 and the meiosis‐specific kinase Ime2, which is unleashed by the degradation of Spo13/Meikin upon activation of the anaphase‐promoting complex at anaphase I. Meiotic plaques are finally assembled upon reactivation of Cdk1 at entry into metaphase II. This unblocking‐activation mechanism ensures that only single‐copy genomes are packaged into spores and might serve as a paradigm for the regulation of other meiosis II‐specific processes.  相似文献   

12.
  • Metagenomics – shotgun sequencing of all DNA fragments from a community DNA extract – is routinely used to describe the composition, structure, and function of microorganism communities. Advances in DNA sequencing and the availability of genome databases increasingly allow the use of shotgun metagenomics on eukaryotic communities. Metagenomics offers major advances in the recovery of biomass relationships in a sample, in comparison to taxonomic marker gene‐based approaches (metabarcoding). However, little is known about the factors which influence metagenomics data from eukaryotic communities, such as differences among organism groups, the properties of reference genomes, and genome assemblies.
  • We evaluated how shotgun metagenomics records composition and biomass in artificial soil invertebrate communities at different sequencing efforts. We generated mock communities of controlled biomass ratios from 28 species from all major soil mesofauna groups: mites, springtails, nematodes, tardigrades, and potworms. We shotgun sequenced these communities and taxonomically assigned them with a database of over 270 soil invertebrate genomes.
  • We recovered over 95% of the species, and observed relatively high false‐positive detection rates. We found strong differences in reads assigned to different taxa, with some groups (e.g., springtails) consistently attracting more hits than others (e.g., enchytraeids). Original biomass could be predicted from read counts after considering these taxon‐specific differences. Species with larger genomes, and with more complete assemblies, consistently attracted more reads than species with smaller genomes. The GC content of the genome assemblies had no effect on the biomass–read relationships. Results were similar among different sequencing efforts.
  • The results show considerable differences in taxon recovery and taxon specificity of biomass recovery from metagenomic sequence data. The properties of reference genomes and genome assemblies also influence biomass recovery, and they should be considered in metagenomic studies of eukaryotes. We show that low‐ and high‐sequencing efforts yield similar results, suggesting high cost‐efficiency of metagenomics for eukaryotic communities. We provide a brief roadmap for investigating factors which influence metagenomics‐based eukaryotic community reconstructions. Understanding these factors is timely as accessibility of DNA sequencing and momentum for reference genomes projects show a future where the taxonomic assignment of DNA from any community sample becomes a reality.
  相似文献   

13.
The viability of wild bee populations and the pollination services that they provide are driven by the availability of food resources during their activity period and within the surroundings of their nesting sites. Changes in climate and land use influence the availability of these resources and are major threats to declining bee populations. Because wild bees may be vulnerable to interactions between these threats, spatially explicit models of population dynamics that capture how bee populations jointly respond to land use at a landscape scale and weather are needed. Here, we developed a spatially and temporally explicit theoretical model of wild bee populations aiming for a middle ground between the existing mapping of visitation rates using foraging equations and more refined agent‐based modeling. The model is developed for Bombus sp. and captures within‐season colony dynamics. The model describes mechanistically foraging at the colony level and temporal population dynamics for an average colony at the landscape level. Stages in population dynamics are temperature‐dependent triggered by a theoretical generalized seasonal progression, which can be informed by growing degree days. The purpose of the LandscapePhenoBee model is to evaluate the impact of system changes and within‐season variability in resources on bee population sizes and crop visitation rates. In a simulation study, we used the model to evaluate the impact of the shortage of food resources in the landscape arising from extreme drought events in different types of landscapes (ranging from different proportions of semi‐natural habitats and early and late flowering crops) on bumblebee populations.  相似文献   

14.
A better understanding of the molecular mechanisms underlying disease is key for expediting the development of novel therapeutic interventions. Disease mechanisms are often mediated by interactions between proteins. Insights into the physical rewiring of protein–protein interactions in response to mutations, pathological conditions, or pathogen infection can advance our understanding of disease etiology, progression, and pathogenesis and can lead to the identification of potential druggable targets. Advances in quantitative mass spectrometry (MS)‐based approaches have allowed unbiased mapping of these disease‐mediated changes in protein–protein interactions on a global scale. Here, we review MS techniques that have been instrumental for the identification of protein–protein interactions at a system‐level, and we discuss the challenges associated with these methodologies as well as novel MS advancements that aim to address these challenges. An overview of examples from diverse disease contexts illustrates the potential of MS‐based protein–protein interaction mapping approaches for revealing disease mechanisms, pinpointing new therapeutic targets, and eventually moving toward personalized applications.  相似文献   

15.
The use of animals in neuroscience and biomedical research remains controversial. Policy is built around the “3R” principle of “Refining, Reducing and Replacing” animal experiments, and across the globe, different initiatives stimulate the use of animal‐free methods. Based on an extensive literature screen to map the development and adoption of animal‐free methods in Alzheimer''s and Parkinson''s disease research, we find that at least two in three examined studies rely on animals or on animal‐derived models. Among the animal‐free studies, the relative contribution of innovative models that may replace animal experiments is limited. We argue that the distinction between animal research and alternative models presents a false dichotomy, as the role and scientific value of both animal and animal‐free approaches are intertwined. Calls to halt all animal experiments appear premature, as insufficient non‐animal‐based alternatives are available and their development lags behind. In light of this, we highlight the need for objective, unprejudiced monitoring, and more robust performance indicators of animal‐free approaches.  相似文献   

16.
GFP‐like chromoproteins (CPs) with non‐fluorescence ability have been used as bioimaging probes. Existing CPs have voids in the optical absorption window which limits their extensibility. The development of new CP color is therefore ongoing. Here, we cloned CPs from the jellyfish, Olindias formosa, and developed a completely non‐fluorescent monomeric red CP, R‐Velour, with an absorption peak at 528 nm. To analyze the photophysical properties from a structural aspect, we determined the crystal structure of R‐Velour at a 2.1 Å resolution. R‐Velour has a trans‐chromophore similar to the green fluorescence protein, Gamillus, derived from the same jellyfish. However, in contrast to the two coplanar chromophoric rings in Gamillus, R‐Velour has a large torsion inducing non‐fluorescence property. Through site‐directed mutagenesis, we surveyed residues surrounding the chromophore and found a key residue, Ser155, which contributes to the generation of four‐color variants with the bathochromic and hypsochromic shift of the absorption peak, ranging from 506 to 554 nm. The recently proposed spectrum shift theory, based on the Marcus–Hush model, supports the spectrum shift of these mutants. These findings may support further development of R‐Velour variants with useful absorption characteristics for bioimaging, including fluorescence lifetime imaging and photoacoustic imaging.  相似文献   

17.
Molecular identification of mixed‐species pollen samples has a range of applications in various fields of research. To date, such molecular identification has primarily been carried out via amplicon sequencing, but whole‐genome shotgun (WGS) sequencing of pollen DNA has potential advantages, including (1) more genetic information per sample and (2) the potential for better quantitative matching. In this study, we tested the performance of WGS sequencing methodology and publicly available reference sequences in identifying species and quantifying their relative abundance in pollen mock communities. Using mock communities previously analyzed with DNA metabarcoding, we sequenced approximately 200Mbp for each sample using Illumina HiSeq and MiSeq. Taxonomic identifications were based on the Kraken k‐mer identification method with reference libraries constructed from full‐genome and short read archive data from the NCBI database. We found WGS to be a reliable method for taxonomic identification of pollen with near 100% identification of species in mixtures but generating higher rates of false positives (reads not identified to the correct taxon at the required taxonomic level) relative to rbcL and ITS2 amplicon sequencing. For quantification of relative species abundance, WGS data provided a stronger correlation between pollen grain proportion and sequence read proportion, but diverged more from a 1:1 relationship, likely due to the higher rate of false positives. Currently, a limitation of WGS‐based pollen identification is the lack of representation of plant diversity in publicly available genome databases. As databases improve and costs drop, we expect that eventually genomics methods will become the methods of choice for species identification and quantification of mixed‐species pollen samples.  相似文献   

18.
Genome synthesis endows scientists the ability of de novo creating genomes absent in nature, by thorough redesigning DNA sequences and introducing numerous custom features. However, the genome synthesis is a labor‐ and time‐consuming work, and thus it is a challenge to verify and quantify the synthetic genome rapidly and precisely. Thus, specific DNA sequences different from native genomic sequences are designed into synthetic genomes during synthesis, namely genomic markers. Genomic markers can be easily detected by PCR reaction, whole‐genome sequencing (WGS) and a variety of methods to identify the synthetic genome from native one. Here, we review types and applications of genomic markers utilized in synthetic genomes, with the hope of providing a guidance for future works.  相似文献   

19.
We present improvements to the hydropathy scale (HPS) coarse‐grained (CG) model for simulating sequence‐specific behavior of intrinsically disordered proteins (IDPs), including their liquid–liquid phase separation (LLPS). The previous model based on an atomistic hydropathy scale by Kapcha and Rossky (KR scale) is not able to capture some well‐known LLPS trends such as reduced phase separation propensity upon mutations (R‐to‐K and Y‐to‐F). Here, we propose to use the Urry hydropathy scale instead, which was derived from the inverse temperature transitions in a model polypeptide with guest residues X. We introduce two free parameters to shift (Δ) and scale (µ) the overall interaction strengths for the new model (HPS‐Urry) and use the experimental radius of gyration for a diverse group of IDPs to find their optimal values. Interestingly, many possible (Δ, µ) combinations can be used for typical IDPs, but the phase behavior of a low‐complexity (LC) sequence FUS is only well described by one of these models, which highlights the need for a careful validation strategy based on multiple proteins. The CG HPS‐Urry model should enable accurate simulations of protein LLPS and provide a microscopically detailed view of molecular interactions.  相似文献   

20.
Speciation is the process through which reproductive isolation develops between distinct populations. Because this process takes time, speciation studies often necessarily examine populations within a species that are at various stages of divergence. The fall armyworm, Spodoptera frugiperda (J.E. Smith), is comprised of two strains (R = Rice & C = Corn) that serve as a novel system to explore population divergence in sympatry. Here, we use ddRADSeq data to show that fall armyworm strains in the field are largely genetically distinct, but some interstrain hybridization occurs. Although we detected F1 hybrids of both R‐ and C‐strain maternal origin, only hybrids with R‐strain mtDNA were found to contribute to subsequent generations, possibly indicating a unidirectional barrier to gene flow. Although these strains have been previously defined as “host plant‐associated,” we recovered an equal proportion of R‐ and C‐strain moths in fields dominated by C‐strain host plants. As an alternative to host‐associated divergence, we tested the hypothesis that differences in nightly activity patterns could account for reproductive isolation by genotyping temporally collected moths. Our data indicates that strains exhibit a significant shift in the timing of their nightly activities in the field. This divergence in phenology creates a prezygotic reproductive barrier that likely maintains the genetic isolation between strains. Thus, we conclude that it may be ecologically inaccurate to refer to the C‐ and R‐ strain as “host‐associated” and they should more appropriately be considered “allochronic strains.”  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号