首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
兼具SOD和GPX活力的双功能酶的制备及性质研究   总被引:3,自引:0,他引:3  
用苯甲基磺酰氟(PMSF)和H2Se相继处理铜锌超氧化物歧化酶(Cu,Zn-SOD),将酶分子中的丝氨酸(Ser)转化为硒代半胱氨酸(SeCys),从而引入了谷胱甘肽过氧化物酶(GPX)的催化基因,使其在SOD酶活性大部分保留的情况下,具有GPX活性,其GPX活力是PZ51活力的30倍,研究了双功能酶的最佳制备条件,包括PMSF的剂量、反应最适温度及H2Se处理时间等,并用电子能谱、DTNB等方法  相似文献   

2.
用苯甲基磺酰氟(PMSF)和H_2Se相继处理铜锌超氧化物岐化酶(Cu,Zn-SOD),将酶分子中的丝氨酸(Ser)转化为硒代半胱氨酸(SeCys),从而引入了谷胱甘肽过氧化物酶(GPX)的催化基团,使其在SOD酶活性大部分保留的情况下,具有GPX活性,其GPX活力是PZ51活力的30倍。研究了双功能酶的最佳制备条件,包括PMSF的剂量、反应最适温度及H_2Se处理时间等,并用电子能谱、DTNB等方法测定了双功能酶的硒含量;测定了双功能酶对不同底物的米氏常数及双功能酶的荧光光谱、紫外吸收光谱及稳定性。  相似文献   

3.
超氧化物岐化酶(SOD)和过氧化物酶(POD)是机体内重要的抗氧化酶系之一,其作用在于消除体内的自由基,防止自由基对细胞结构的损伤。它们的活性随增龄而下降,因此自由基不断损伤细胞结构,累积最终导致细胞衰亡和动物机体衰老,老龄小鼠服用DNA一段时间后,其体内SOD和POD的活性均显著提高,因而其衰老速度可能得到一定程度的延缓。  相似文献   

4.
目的 探索新的抗氧化剂.方法 研究萝卜过氧化物酶(POD)对小鼠肝、脾和肾脏超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)、丙二醛(MDA)的影响.结果 用不同剂量的POD处理后,可以提高肝、脾和肾的SOD、GSH-Px的活性,减低丙二醛的含量.结论 萝卜过氧化物酶可以提高机体的抗氧化能力.  相似文献   

5.
萝卜苗期喷洒不同浓度(1、10、50 mg@L-1)的N-(1-萘乙酰基)-N′-(4-氨替吡啉基)硫脲(NAT)后,萝卜肉质根中可溶性蛋白含量及超氧化物歧化酶活性增加,过氧化物酶活性下降.  相似文献   

6.
抗生素是抵抗细菌感染的有力武器,然而抗生素的过量使用和滥用加速了细菌耐药性的发展,严重威胁人类健康。开发高效和广谱的无抗生素抗菌策略迫在眉睫。以过氧化氢(H2O2)为代表的活性氧(reactive oxygen species, ROS)能氧化多种生物分子,使其结构和活性改变而发挥广谱抗菌作用,是无抗生素抗菌策略之一。然而,临床常用的H2O2浓度较高(0.5%~3%),会刺激皮肤和延缓伤口愈合。利用过氧化物酶催化H2O2生成氧化性更强的羟自由基(·OH),可大幅提高ROS抗菌策略的性能。然而,天然酶生产成本高、稳定性低等缺点限制了该策略的推广。纳米酶是具有类似天然酶催化活性的纳米材料的统称。与天然酶相比,纳米酶具有制备简单、成本低和易储存等优势,是开发基于ROS的无抗生素抗菌策略的良好选择。贵金属、金属氧化物、金属硫化物、金属有机框架、碳基纳米材料等多种纳米材料具有过氧化物酶、氧化酶等的模拟催化活性,基于这些材料的纳米酶抗菌研究层出不穷,本文将对这些研究进...  相似文献   

7.
锌胁迫对小球藻抗氧化酶和类金属硫蛋白的影响   总被引:2,自引:0,他引:2  
杨洪  黄志勇 《生态学报》2012,32(22):7117-7123
通过对抗氧化酶活性和类金属硫蛋白的测定,考察在0、5、10、20、50和100 μmol/L Zn2+(氯化锌)胁迫下锌对普通海洋小球藻的生物学影响。结果表明:不同浓度Zn2+均能抑制小球藻的生长,当Zn2+浓度大于10 μmol/L时,小球藻生物量随培养时间延长而迅速下降;过氧化物歧化酶 (SOD)活性随Zn2+胁迫浓度的增加而增加,当Zn2+浓度为50 μmol/L时SOD活性达到最大,但继续增加Zn2+胁迫浓度反而导致SOD活性下降;而过氧化物酶 (POD)活性则随着Zn2+胁迫浓度的增加而降低。同时,实验发现藻细胞内有两种主要的锌结合形态,其中Zn结合类金属硫蛋白(Zn-MT-like)与兔肝金属硫蛋白(MT)的分子量相近,且随着Zn2+胁迫浓度的增加而出现规律性地增多。因此,藻细胞内Zn-MT-like蛋白的诱导量可作为小球藻受Zn2+胁迫的响应指标。  相似文献   

8.
抗生素类药物的发现和使用给人类提供了抗击细菌感染的强大武器。但是,抗生素长期使用导致的细菌耐药问题限制了其在临床上的应用。开发新型的基于纳米酶(Nano-Enzyme)的新型抗菌剂为解决上述问题提供了新思路。将纳米酶可以归为两大类:一类是酶和纳米材料的复合材料;另一类是纳米材料本身具有类酶活性。因为银(Ag)纳米粒子是历史最悠久且研究最广泛的纳米抗菌剂,而且其抗菌机制多样化,因此将Ag纳米粒子的抗菌机制和最新进展单独论述。纳米抗菌剂可以组合多种抗菌机制协同抗菌,从而提高其抗菌性能。因此,在这篇综述中系统介绍了Ag纳米粒子和上述2种类型纳米抗菌剂的最新研究进展和抗菌机制,重点介绍了纳米材料的物理性质对抗菌活性和生物安全性的影响。最后,该综述还强调了该领域目前面临的问题和挑战,并对该领域的发展前景进行了展望。  相似文献   

9.
本文对马占相思(Acacia mangium)Q家系(QLD1983S)、P家系(PLD1983S)的过氧化物酶(POD)、多酚氧化酶(PPO)活性及其同工酶进行比较分析。结果表明,同一家系的不同器官,POD、PPO活性均呈现极显著差异;不同家系同一器官的POD和PPO活性也有极显著差异。通过对POD、PPO同工酶酶谱比较发现,P、Q两家系的根、茎、叶状柄各器官既有着明显的相同特征谱带,又有各自的特殊谱带。  相似文献   

10.
实验以一株耐热耐碱放线菌--绿色糖单孢菌(Saccharomonospora viridis)为研究对象,从其液体发酵产物中提取木素过氧化物酶(Lignin Peroxidases / LiP),粗酶液经硫酸铵分级沉淀、透析浓缩,最后经过Sephadex G-75柱色谱得到单一的LiP,酶纯度提高了11.06 倍;经SDS-聚丙烯酰胺凝胶电泳测定该酶的分子量约为28.8kD.同时对纯酶的酶学性质进行了初步研究,发现LiP 酶的最适反应温度为50℃,最适反应为7.0 ;在75℃下具有良好的热稳定性,在pH7 ~ 10 范围内有较强的耐受力,保温30min 时酶的半衰期温度为75℃ ;该酶在高温、偏碱性的造纸工业中具有一定应用潜力.金属离子Cu2+、Fe2+、Co2+ 对酶具有明显促进作用,Ca2+、SDS 具有抑制作用;糖含量测定发现该酶为小分子量的糖基化蛋白,含有6.59% 的糖;酶动力学反应测定发现该酶对底物2,4-二氯苯酚(2,4-DCP)的Km 值为0.1057mmol/L.  相似文献   

11.
A simple single-pot hydrothermal method was used to fabricate a Fe, N, and S co-doped carbon dots (Fe-CDs) nanozyme using ferric chloride and sunset yellow as precursors. The fabricated Fe-CDs exhibited intense green fluorescence at 460 nm with excitation-independent properties and a high quantum yield of 40.23%. This nanozyme mimics peroxidase by catalyzing the oxidation of tetramethylbenzidine (TMB) by H2O2 to yield a blue-coloured TMBox product at 652 nm. Dual detection methods were established for determining levodopa (l -dopa) by taking advantage of the high nanozyme activity and the distinct fluorescence aspect. Both determination methods are based on the oxidation of l -dopa by H2O2 in the presence of Fe-CDs and fading of the blue colour of the TMBox. The colorimetric method monitors the amount of colour fading of TMBox. In the fluorometric method, the formed blue TMBox absorbs the emission light of the Fe-CDs; when l -dopa is present, this effect decreases and the intensity of the emission light increases. The nanozyme-based detection procedures exhibit good linearity in the ranges 2.17 × 10−3 to 34.78 × 10−3 mM [limit of detection (LOD) = 0.84 × 10−3 mM] and 0.85 × 103 to 16.95 × 103 nM (LOD = 0.102 × 103 nM) for colorimetric and fluorometric methods, respectively.  相似文献   

12.
《Free radical research》2013,47(1):195-204
Oxygen free radicals are the final or intermediate products of many metabolic reactions. Of greatest significance to the organism are superoxide anion radical (O2-), hydrogen peroxide (H2O2), hydroxyl radical (OH). singlet oxygen (lO2) etc. A proper ratio between both production and breakdown of oxy-radicals is essential for the maintenance of a dynamic equilibrium of vital processes. The superoxide dismutases protect cells against toxic influence of the superoxide. In addition, some square-pyramidally pentacoordinated copper(II) complexes, derived from tridentate Schiff bases of the N-salicylideneaminoal-canoate type, show remarkable SOD-like activity. A selected set of complexes of this type have been tested: potassium [aqua-(N-salicylideneglutamato) cuprate] (L-and D,L-form). potassium [(isothiocyanato)-(N-salicylideneglycinato) cuprate], potassium [(isothiocyanato)-(N-salicylidene-D,L-alaninato) cuprate]. potassium ((isothiocyanato)-(N-salicylidene-β-alaninato) cuprate] and potassium [(isocyanate)-(N-salicylideneglycinato) cuprate]. Our results suggest that the copper complexes are not only antioxidants, but may also possess anti-inflammatory, cytostatic and radioprotective properties.  相似文献   

13.
自2007年发现四氧化三铁纳米材料具有类似辣根过氧化物酶的催化特性以来,纳米酶研究领域迅速崛起.不同形貌、尺度和材料各异的纳米酶相继出现,同时其催化机制逐渐被认识.由于纳米酶具有催化效率高、稳定、经济和规模化制备的特点,它在医学、化工、食品、农业和环境等领域的应用研究便应运而生.纳米酶的发现,不仅推动了纳米科技的基础研究,还拓展了纳米材料的应用.本文将介绍纳米酶研究领域的最新研究进展.  相似文献   

14.
The known action of Cu, Zn superoxide dismutase (holo SOD) that converts O2 to O2 and H2O2 plays a crucial role in protecting cells from toxicity of oxidative stress. However, the overproduction of holo SOD does not result in increased protection but rather creates a variety of unfavorable effects, suggesting that too much holo SOD may be injurious to the cells. In the in vitro study, we report a finding that the holo SOD from bovine erythrocytes and its apo form possess a divalent-metal-dependent nucleolytic activity, which was confirmed by UV–vis absorption titration of calf thymus DNA (ctDNA) with the holo SOD, quenching of holo SOD intrinsic fluorescence by ctDNA, and by gel electrophoresis monitoring conversion of DNA from the supercoiled DNA to nicked and linear forms, and fragmentation of a linear λDNA. Moreover, the DNA cleavage activity was examined in detail under certain reaction conditions. The steady-state study indicates that DNA cleavage supported by both forms of SOD obeys Michaelis–Menten kinetics. On the other hand, the assays with some other proteins indicate that this new function is specific to some proteins including the holo SOD. Therefore, this study reveals that the divalent-metal-dependent DNA cleavage activity is an intrinsic property of the holo SOD, which is independent of its natural metal (copper and zinc) sites, and may provide an alternative insight into the link between SOD enzymes and neurodegenerative disorders.  相似文献   

15.
It is well known that the wild type Cu,Zn superoxide dismutase (holo SOD) catalyzes the conversion of superoxide anion to peroxide hydrogen and dioxygen. However, a new function of holo SOD, i.e., nucleolytic activity has been found [W. Jiang, T. Shen, Y. Han, Q. Pan, C. Liu, J. Biol. Inorg. Chem. 11 (2006) 835-848], which is linked to the incorporation of exogenous divalent metals into the enzyme-DNA complex. In this study, the roles of exogenous divalent metals in the nucleolytic activity were explored in detail by a series of biochemical experiments. Based on a non-equivalent multi-site binding model, affinity of a divalent metal for the enzyme-DNA complex was determined by absorption titration, indicating that the complex can provide at least a high and a low affinity site for the metal ion. These mean that the holo SOD may use a "two exogenous metal ion pathway" as a mechanism in which both metal ions are directly involved in the catalytic process of DNA cleavage. In addition, the pH versus DNA cleavage rate profiles can be fitted to two ionizing-group models, indicating the presence of a general acid and a general base in catalysis. A model that requires histidine residues, metal-bound water molecules and two hydrated metal ions to operate in concert could be used to interpret the catalysis of DNA hydrolysis, supported by the dependences of loss of the nucleolytic activity on time and on the concentration of the specific chemical modifier to the histidine residues on the enzyme.  相似文献   

16.
A superoxide dismutase has been purified to apparent homogeneity from the muscular tissue of the ark shell, Scapharca broughtonii, by ammonium sulfate fractionation, and consecutive column chromatographies using DEAE-Sephadex and Sephadex G-100. This enzyme has a molecular weight of 71,700 and is composed of two identical subunits of M r 35,800, which are joined by noncovalent interactions. The purified enzyme was stable over the range of pH 5.0-10.0 at 4°C for 24 h and at temperatures below 45°C. Cyanide at 0.1 and 1 mM inhibited the activity of the superoxide dismutase 56 and 100%, but 5 mM azide caused 8% inhibition. The optical spectrum of this enzyme had a maximum at 265 nm, and the amino acid composition of the enzyme was similar to that of the other Cu, Zn superoxide dismutases except for the contents of threonine, serine, proline, and leucine. Atomic absorption spectroscopy showed that this enzyme has approximately 2 atoms of Cu2+ and Zn2+ per mole of enzyme. These results indicate that the purified enzyme from ark shell, Scapharca broughtonii, is a Cu, Zn superoxide dismutase.  相似文献   

17.
Superoxide dismutases (SODs) are a group of important antioxidant defense enzymes. In this study, a putative extracellular Cu/Zn superoxide dismutase (ecCuZnSOD) complementary DNA was cloned and characterized from the whitefly, Bemisia tabaci. Quantitative polymerase chain reaction analysis showed that the expression level of Bt‐ecCuZnSOD was more than 10‐fold higher in the invasive Middle East Asia Minor 1 (MEAM1) than in the native Asia II 3 species of the B. tabaci species complex. After exposure to low temperature (4 °C), the expression of Bt‐ecCuZnSOD gene was significantly up‐regulated in MEAM1 but not in Asia II 3. Furthermore, the expression level of B. tabaci intracellular CuZnSOD (Bt‐icCuZnSOD), Bt‐ecCuZnSOD and mitochondrial MnSOD (Bt‐mMnSOD) was compared after transferring MEAM1 and Asia II 3 whiteflies from favorable (cotton) to unfavorable host plants (tobacco). On cotton, both CuZnSOD genes were expressed at a higher level in MEAM1 compared with Asia II 3. Interestingly, after transferring onto tobacco, the expression of Bt‐ecCuZnSOD was significantly induced in Asia II 3 but not in MEAM1. On the other hand, while Bt‐mMnSOD was expressed equally in both species on cotton, Bt‐mMnSOD messenger RNA was up‐regulated in MEAM1 on tobacco. Consistently, enzymatic activity assays of CuZnSOD and MnSOD demonstrated that CuZnSOD might play an important protective role against oxidative stress in Asia II 3, whereas MnSOD activation was critical for MEAM1 whiteflies during host adaptation. Taken together, our results suggest that the successful invasion of MEAM1 is correlated with its constitutive high activity of CuZnSOD and inducible expression of MnSOD under stress conditions.  相似文献   

18.
The subcellular localization of Cu,Zn-type superoxide dismutase (Cu,Zn-SOD) was investigated in rat tissues and cultured human fibroblasts. Subcellular fractionation, Nycodenz gradient centrifugation, and immunoblot analysis using specific antibodies showed that Cu,Zn-SOD was localized in cytosol, mitochondria, and peroxisomes of rat liver and brain. Treatment of highly purified mitochondria from rat liver with either Chaps or Triton X-100 released the bound Cu,Zn-SOD into supernatant fraction. Depolarization of mitochondria by inorganic phosphate and Ca(2+) released both Cu,Zn-SOD and cytochrome c from mitochondria. Digitonin also released Cu,Zn-SOD but not cytochrome c from mitochondria. Confocal immunofluorescence microscopy revealed that anti-Cu,Zn-SOD antibody in cultured human fibroblasts was found to colocalize with antibodies to Mn-SOD and PMP-70, markers of mitochondria and peroxisomes, respectively. Incubation of human Cu,Zn-SOD with purified mitochondria resulted in their association. These results indicate that Cu,Zn-SOD associates with mitochondria and peroxisomes in various cell types such as those in brain, liver, and skin.  相似文献   

19.
A dominant mutation in the gene for copper-zinc superoxide dismutase (SOD1) is the most frequent cause of the inherited form of amyotrophic lateral sclerosis. Mutant SOD1 provokes progressive degeneration of motor neurons by an unidentified acquired toxicity. Exploiting both affinity purification and mass spectrometry, we identified a novel interaction between heat-shock protein 105 (Hsp105) and mutant SOD1. We detected this interaction both in spinal cord extracts of mutant SOD1(G93A) transgenic mice and in cultured neuroblastoma cells. Expression of Hsp105, which is found in mouse motor neurons, was depressed in the spinal cords of SOD1(G93A) mice as disease progressed, while levels of expression of two other heat-shock proteins, Hsp70 and Hsp27, were elevated. Moreover, Hsp105 suppressed the formation of mutant SOD1-containing aggregates in cultured cells. These results suggest that techniques that raise levels of Hsp105 might be promising tools for alleviation of the mutant SOD1 toxicity.  相似文献   

20.
Cu, Zn superoxide dismutase (SOD1) has been implicated in the familial form of the neurodegenerative disease amyotrophic lateral sclerosis (ALS). It has been suggested that mutant mediated SOD1 misfolding/aggregation is an integral part of the pathology of ALS. We study the folding thermodynamics and kinetics of SOD1 using a hybrid molecular dynamics approach. We reproduce the experimentally observed SOD1 folding thermodynamics and find that the residues which contribute the most to SOD1 thermal stability are also crucial for apparent two-state folding kinetics. Surprisingly, we find that these residues are located on the surface of the protein and not in the hydrophobic core. Mutations in some of the identified residues are found in patients with the disease. We argue that the identified residues may play an important role in aggregation. To further characterize the folding of SOD1, we study the role of cysteine residues in folding and find that non-native disulfide bond formation may significantly alter SOD1 folding dynamics and aggregation propensity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号