首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Californian Channel Islands are near–shore islands with high levels of endemism, but extensive habitat loss has contributed to the decline or extinction of several endemic taxa. A key parameter for understanding patterns of endemism and demography in island populations is the magnitude of inter–island dispersal. This paper estimates the extent of migration and genetic differentiation in three extant and two extinct populations of Channel Island song sparrows (Melospiza melodia graminea). Inter–island differentiation was substantial (G''''ST: 0.14–0.37), with San Miguel Island having the highest genetic divergence and lowest migration rates. Santa Rosa and Santa Cruz Island populations were less diverged with higher migration rates. Genetic signals of past population declines were detected in all of the extant populations. The Channel Island populations were significantly diverged from mainland populations of M. m. heermanni (G''''ST: 0.30–0.64). Ten mtDNA haplotypes were recovered across the extant and extinct Channel Island population samples. Two of the ten haplotypes were shared between the Northern and Southern Channel Islands, with one of these haplotypes being detected on the Californian mainland. Our results suggest that there is little contemporary migration between islands, consistent with early explanations of avian biogeography in the Channel Islands, and that song sparrow populations on the northern Channel Islands are demographically independent.  相似文献   

2.
The loggerhead shrike (Lanius ludovicianus), a songbird that hunts like a small raptor, maintains breeding populations on seven of the eight California Channel Islands. One of the two subspecies, L. l. anthonyi, was described as having breeding populations on six of the islands while a second subspecies, L. l. mearnsi, was described as being endemic to San Clemente Island. Previous genetic studies have demonstrated that the San Clemente Island loggerhead shrike is well differentiated genetically from both L. l. anthonyi and mainland populations, despite the fact that birds from outside the population are regular visitors to the island. Those studies, however, did not include a comparison between San Clemente Island shrikes and the breeding population on Santa Catalina Island, the closest island to San Clemente. Here we use mitochondrial control region sequences and nuclear microsatellites to investigate the population structure of loggerhead shrikes in the Channel Islands. We confirm the genetic distinctiveness of the San Clemente Island loggerhead shrike and, using Bayesian clustering analysis, demonstrate the presence and infer the source of the nonbreeding visitors. Our results indicate that Channel Island loggerhead shrikes comprise three distinct genetic clusters that inhabit: (i) San Clemente Island, (ii) Santa Catalina Island and (iii) the Northern Channel Islands and nearby mainland; they do not support a recent suggestion that all Channel Island loggerhead shrikes should be managed as a single entity.  相似文献   

3.
Based on limited research, the island loggerhead shrike, Lanius ludovicianus anthonyi has been considered a distinct subspecies endemic to the northern California Channel Islands. We used mtDNA control region sequences and microsatellite genotyping to compare loggerhead shrikes from the southern California mainland (L. l. gambeli), San Clemente Island (L. l. mearnsi), and the northern islands (L. l. anthonyi). Habitats on the islands are recovering due to the removal of non-native ungulates on the islands, but may be transitioning to habitats less supportive of loggerhead shrikes, so this evaluation comes at a critical time. We utilized 96 museum specimens that were collected over a century to evaluate both spatial and temporal genetic patterns. Analysis of multilocus microsatellite genotypes indicated that historical specimens of loggerhead shrikes (collected between 1897 and 1986) from the two northern islands of Santa Rosa and Santa Cruz are genetically distinct from adjacent mainland and island shrikes. Birds from Santa Catalina Island showed mixed ancestry and did not cluster with the northern island birds. Historical specimens of L. l. mearnsi from San Clemente Island also showed mixed ancestry. Our study provides evidence that a genetically distinct form of loggerhead shrikes, L. l. anthonyi, occurred on the islands of Santa Rosa and Santa Cruz.  相似文献   

4.
We have examined fine-scale genetic structure of the symbiotic ectomycorrhizal fungi Rhizopogon occidentalis and R. vulgaris on two of the California Channel Islands using five and six microsatellite loci, respectively. Both Rhizopogon species are sympatric on Santa Cruz and Santa Rosa Islands and are ectomycorrhizal with bishop pine (Pinus muricata) on both islands or Santa Rosa Island Torrey pine (P. torreyana ssp. insularis) on Santa Rosa. The combination of disjunct pine host distributions and geographic barriers within and among the islands have created highly structured Rhizopogon populations over very short distances (8.5 km on Santa Cruz Island; F(ST) = 0.258, F(ST) = 0.056, R. occidentalis and R. vulgaris, respectively). Both species show similar patterns of genetic differentiation as a result of limited dispersal between host populations as revealed by a significant isolation by distance relationship (r = 0.69, P < 0.04; r = 0.93, P < 0.001, R. occidentalis and R. vulgaris, respectively) and Bayesian clustering analyses, and is most likely a function of the small foraging range of the few mammals that disperse Rhizopogon on these islands and the enormous spore bank characteristic of Rhizopogon species.  相似文献   

5.
Southern California bays and harbors have been shown to contain high concentrations of a variety of contaminants, including polycyclic aromatic hydrocarbons (PAHs), metals, and pesticides. Conventional monitoring tools do not assess exposure to PAHs in fish, or sublethal effects, which can be more sensitive indicators of stress than traditional methods. This study was conducted to evaluate DNA damage (a sublethal effect) and PAH exposure in flatfish from southern California bays and harbors, and the Channel Islands. California halibut (Paralichthys californicus) were collected from eight bays and harbors (Ventura Harbor, Channel Islands Harbor, Marina del Rey, King Harbor, Alamitos Bay, Long Beach Harbor, Newport Bay, San Diego Bay), and a reference site off Camp Pendleton. Pacific sanddab (Citharichthys sordidus) were collected near four of the Channel Islands (San Miguel Island, Santa Cruz Island, Anacapa Island, Santa Barbara Island). Metabolites of high molecular weight PAHs in fish bile were characterized using a semi-quantitative technique that measures fluorescent aromatic compounds (FACs) in fish bile. DNA damage in fish blood cells was assessed by measuring the amount of single-strand breaks in stained DNA using the Comet assay. The concentration of FACs in fish from all bays and harbors was elevated, with average concentrations ranging from three to ten times greater than FACs in reference fish. FAC levels were elevated in Pacific sanddabs from a Channel Islands station located between Santa Cruz Island and Anacapa Island. DNA damage varied by a factor of five among California halibut from bays and harbors, with significant damage occurring in fish from Alamitos Bay. There was a significant association between FAC concentrations and DNA damage in California halibut at Marina del Rey and Ventura Harbor, but not at other locations, presumably due to contaminants other than PAHs.  相似文献   

6.
Silvetia compressa ( J. Agardh) Serrão et al. is a common member of the upper intertidal fucoid community on the Pacific coast of America from Humboldt County, California, to Punta Baja, Baja California, Mexico. A relatively narrow range of morphological variability is exhibited by most mainland populations, regardless of latitude, but some mainland populations and all insular populations participate in a complex pattern that we have attempted to analyze. A few populations on the Monterey Peninsula in which the fronds are atypically delicate were described by Setchell & Gardner as f. gracilis , to which was assigned a population from Santa Catalina Island. After comparing populations from various parts of the range of the species, including all of the Channel Islands, we conclude that two subspecies may be recognized. In subsp. compressa , which includes f. gracilis as a growth form and occurs chiefly on the mainland, the frond is robust with long tapered receptacles. In the variant subspecies, which is chiefly insular but also occurs on the coast of northern Baja California, the typical frond has slender axes as in f. gracilis , but is more densely branched and has short ellipsoidal receptacles. Comparison of nucleotide sequences from the ITS regions of rDNA revealed an identical pattern for subsp. compressa from Baja California and central California, including populations assignable to f. gracilis. By contrast, the pattern for the variant subspecies differed by 2 bp (0.3%) from that of subsp. compressa.  相似文献   

7.
Silvetia compressa ( J. Agardh) Serrão et al. is a common member of the upper intertidal fucoid community on the Pacific coast of America from Humboldt County, California, to Punta Baja, Baja California, Mexico. A relatively narrow range of morphological variability is exhibited by most mainland populations, regardless of latitude, but some mainland populations and all insular populations participate in a complex pattern that we have attempted to analyze. A few populations on the Monterey Peninsula in which the fronds are atypically delicate were described by Setchell & Gardner as f. gracilis, to which was assigned a population from Santa Catalina Island. After comparing populations from various parts of the range of the species, including all of the Channel Islands, we conclude that two subspecies may be recognized. In subsp. compressa, which includes f. gracilis as a growth form and occurs chiefly on the mainland, the frond is robust with long tapered receptacles. In the variant subspecies, which is chiefly insular but also occurs on the coast of northern Baja California, the typical frond has slender axes as in f. gracilis, but is more densely branched and has short ellipsoidal receptacles. Comparison of nucleotide sequences from the ITS regions of rDNA revealed an identical pattern for subsp. compressa from Baja California and central California, including populations assignable to f. gracilis. By contrast, the pattern for the variant subspecies differed by 2 bp (0.3%) from that of subsp. compressa.  相似文献   

8.
Island foxes (Urocyon littoralis) are endemic to six of the eight California Channel Islands (USA). The island fox is classified as a threatened species by the State of California, and recently three of the six subspecies have experienced abrupt population declines. As part of a continuing effort to determine the cause of the declines, we tested island fox serum samples collected in 1988 (n = 176) and 1997-98 (n = 156) over the entire geographic range of the species for seroprevalence of canine heartworm (Dirofilaria immitis) antigen. Using a commercially available enzyme-linked immunosorbent assay (PetChek, Idexx Laboratories, Westbrook, Maine, USA) we detected heartworm antigen in four of the six populations of island foxes. On San Miguel and Santa Rosa Islands, seroprevalence in adult foxes was >85% (n = 62) in 1988 and increased to 100% (n = 24) in 1997-98. On Santa Cruz Island, seroprevalence in adult foxes decreased from 83% (n = 30) to 58% (n = 26), whereas on San Nicolas Island, seroprevalence increased from 25% (n = 32) to 77% (n = 30) during the same period. All of the pups assayed (n = 33) were seronegative. The seroprevalences of heartworm reported herein for the four populations of island foxes are the highest yet reported for a fox species. However, additional demographic data reported elsewhere suggests that heartworm has not been a major factor in the recent declines of island fox populations.  相似文献   

9.

Island populations are at higher risk of extinction than mainland populations. Therefore, understanding the factors that facilitate connectivity is particularly pressing for the conservation of island taxa. Sceloporus occidentalis becki, the Island Fence Lizard, is an endemic taxon restricted to the Northern Channel Islands, part of a nearshore archipelago in Southern California, USA. Since the Last Glacial Maximum, fence lizard habitat on the Northern Channel Islands has decreased with rising sea levels and increasing temperatures that have reduced the availability of woody vegetation. More recently, the introduction (and subsequent removal) of invasive ungulates over the last 170 years and recovery of vegetation has resulted in further dramatic habitat modification. Given the potential for genetic bottlenecks, the history of habitat alteration, and topographic and landscape complexity, we used landscape and population genetic approaches to characterize patterns of genetic diversity and structure of Island Fence Lizards on Santa Cruz Island, the largest of the Northern Channel Islands. Our analyses revealed shallow population structure across the island, low effective population size (Ne?=??~?200), and evidence for a recent genetic bottleneck. Landscape genetic analyses showed that connectivity is facilitated by tree canopy cover and shrubland, as well as by intermediate temperatures, emphasizing the importance of woody vegetation and habitats with variable thermal regimes as the climate warms. Combined, these population and landscape genetic analyses suggest that the Island Fence Lizard is of greater conservation concern than currently appreciated, and increased conservation management focus is warranted for this island endemic.

  相似文献   

10.
Polymorphic nuclear microsatellite loci were used to characterize genetic variation in contemporary and historic populations of the San Clemente Island loggerhead shrike (Lanius ludovicianus mearnsi), an endangered bird with a current population of 30 individuals that is endemic to to one of the California Channel Islands. We also compared the population of the shrike with two contemporary populations of the still abundant subspecies, L. l. gambeli, which live 120 km away on the adjacent mainland. The current population of L. l. mearnsi has 60 per cent of the genetic variation of the mainland shrike populations and is strongly differentiated from them. Comparison of living birds with 19 birds collected in 1915 shows that most of the variation within the island population was lost before the recent 90 per cent decline in population size, and the 20 per cent decrease in variation this century is probably attributable to genetic drift. Mitochondrial DNA control region sequence data from 80 year old specimens show that there may have been limited introgression to L. l. mearnsi, this century, from another island subspecies, L. l. anthonyi, found in the northern Channel Islands. Today, gene flow between L. l. mearnsi and mainland L. l. gambel is very low, even though a few mainland birds visit the island annually. The island subspecies population has evolved sufficient genetic independence to justify ongoing conservation efforts to counter demographic collapse and genetic erosion; the course of genetic erosion can now be monitored non-invasively, as demonstrated by this study, based on DNA amplified from feathers.  相似文献   

11.
A maize-based iron- and protein-deficient diet is commonly cited as the most important cause of porotic hyperostosis among American Indian agriculturalists. An alternative to this maize dependence hypothesis is suggested by the analysis of 432 crania from the nonagricultural, fish-dependent population of the Channel Island area of southern California. Cribra orbitalia, a form of porotic hyperostosis associated with iron deficiency anemia, is just as common among these fisherpeople, whose diet was rich in iron and essential amino acids, as it is among maize-dependent agriculturalists. Northern Channel Island crania have much more cribra orbitalia than those from the California mainland. The highest incidence is on San Miguel, a small geographically isolated island with a shortage of fresh water and terrestrial resources. The Indians who lived on Santa Cruz, the largest of the northern Channel Islands with the greatest diversity of terrestrial plants and animals, have less cribra orbitalia than those who lived on Santa Rosa or San Miguel Island. This geographical distribution appears to be explained by island-mainland and interisland differences in water contamination, exposure to fish-borne parasites, and nutritional adequacy of the diet. The prevalence of porotic hyperostosis in a population with a heavy dietary dependence on marine resources shows that among prehistoric American Indians, this condition is not always associated with an iron- and protein-deficient diet of cultigens. It seems likely that high nutrient losses associated with diarrheal disease are often more significant in the etiology of porotic hyperostosis than a low dietary intake of essential nutrients.  相似文献   

12.
Deer mice, Peromyscus maniculatus, collected over 90 years from three California Channel Islands, were examined for evidence of morphological change. Rapid morphological change has occurred in the endemic subspecies from Santa Barbara (P. m. elusus), Anacapa (P. m. anacapae), and Santa Cruz Island (P. m. santacruzae). Data were divided into two temporal classes, 1897–1941 and 1955–1988. Of the 16 morphological characters measured, between five and 10 measures changed significantly (P ? 0.05) with temporal class in each subspecies, and multivariate test statistics were significant (P ? 0.05) for all three subspecies. For each subspecies, depth of braincase, total length, tail length, and hind foot length became smaller over time, except depth of braincase, which became larger in P. m. elusus. The rates of change dramatically exceed those estimated from paleontological records and are even higher than those reported in some experimental selection studies. Temporal change in two characters exceeds differentiation between subspecies. Although changing, each subspecies remained well differentiated, and incorporation of temporal change allowed correct classification of most specimens. Unlike nearly all previous reports of rapid evolution, the changes in these populations were not associated with a founder events or recent introductions. This study demonstrates that rapid phenotypic change can occur in long-established natural populations and temporal stability of morphological characters in such populations, even over short evolutionary time periods, cannot be assumed.  相似文献   

13.
Mitochondrial DNA (mtDNA) from 131 deer mice, Peromyscus maniculatus, collected on the eight California Channel Islands and from seven southern California mainland locations, was isolated and analyzed for restriction endonuclease fragment polymorphisms. A total of 26 mtDNA genotypes were distinguishable among the deer mice sampled. All of the island samples had mtDNA restriction-fragment patterns not found among the mainland samples. Distributions of specific restriction-fragment patterns provide evidence for at least four separate colonization events to the Channel Islands. The estimated percentage of sequence divergence between all mtDNA's in this study was less than 1%, suggesting that colonization of the islands occurred fairly recently, probably within the last 500,000 years. Levels of mtDNA heterogeneity were much lower within island populations than within mainland populations.  相似文献   

14.
Electrophoretic variants at 28 genetic loci were analyzed in subspecies of Peromyscus maniculatus endemic to the Channel Islands off the California coast. The genetic variability within insular populations was calculated. These deer mice have relatively high levels of polymorphism for insular populations. The mean heterozygosity per individual varies in the populations, being much higher on one of the islands than the others. Nei's measure of genetic distance between groups compared on the basis of electrophoretic variants was used. His estimate of time of divergence of these groups, based on genetic distance, is applicable particularly to closely related groups. The length of time each island population has been isolated from the others was calculated and found to be consistent with the periods of isolation estimated on the basis of geological data.  相似文献   

15.
This article identifies and discusses seven new cases of complete maxillary canine‐premolar transposition in ancient populations from the Santa Barbara Channel region of California. A high frequency of this tooth transposition has been previously documented within a single prehistoric cemetery on one of the Channel Islands. A total of 966 crania representing 30 local sites and about 7,000 years of human occupation were examined, revealing an abnormally high prevalence of this transposition trait among islanders during the Early period of southern California prehistory (~5500–600 B.C.). One of the affected crania is from a cemetery more than 7,000‐years‐old and constitutes the earliest case of tooth transposition in humans so far reported. The results are consistent with findings by other studies that have indicated inbreeding among the early Channel Islands groups. Together with the normal transposition rates among mainland populations, the decreasing prevalence of maxillary canine‐first premolar transposition among island populations across the Holocene suggests that inbreeding on the northern Channel Islands had all but ceased by the end of the first millennium B.C., most likely as a result of increased cross‐channel migration and interaction. Am J Phys Anthropol 143:155–160, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
Understanding the forces that drive genotypic and phenotypic change in wild populations is a central goal of evolutionary biology. We examined exome variation in populations of deer mice from two of the California Channel Islands: Peromyscus maniculatus elusus from Santa Barbara Island and P. m. santacruzae from Santa Cruz Island exhibit significant differences in olfactory predator recognition, activity timing, aggressive behavior, morphology, prevalence of Sin Nombre virus, and population densities. We characterized variation in protein‐coding regions using exome capture and sequencing of 25 mice from Santa Barbara Island and 22 mice from Santa Cruz Island. We identified and examined 386,256 SNPs using three complementary methods (BayeScan, pcadapt, and LFMM). We found strong differences in molecular variation between the two populations and 710 outlier SNPs in protein‐coding genes that were detected by all three methods. We identified 35 candidate genes from this outlier set that were related to differences in phenotypes between island populations. Enrichment analyses demonstrated that patterns of molecular variation were associated with biological processes related to response to chemical stimuli and regulation of immune processes. Candidate genes associated with olfaction (Gfy, Tlr2, Vmn13r2, numerous olfactory receptor genes), circadian activity (Cry1), anxiety (Brca1), immunity (Cd28, Eif2ak4, Il12a, Syne1), aggression (Cyp19a, Lama2), and body size (Bc16, Syne1) exhibited non‐synonymous mutations predicted to have moderate to large effects. Variation in olfaction‐related genes, including a stop codon in the Santa Barbara Island population, suggests loss of predator‐recognition traits at the molecular level, consistent with a lack of behavioral aversion to fox feces. These findings also suggest that divergent pathogen prevalence and population density may have influenced adaptive immunity and behavioral phenotypes, such as reduced aggression. Overall, our study indicates that ecological differences between islands are associated with signatures of selection in protein‐coding genes underlying phenotypes that promote success in those environments.  相似文献   

17.
Lyonothamnus floribundus , or island ironwood, is a relictual endemic species found on only four of the eight California Channel Islands. It has been suggested that this species is capable of clonal growth, although the extent of clonality has not been determined. We have used random amplified polymorphic DNA (RAPD) analysis to examine clonality and genetic diversity in L. floribundus . We found that groves are largely genetically distinct clones, indicating that they are not remnants of a once larger clonal forest. Our data also indicate that the population size of L. floribundus on Santa Cruz Island is closer to 1125 individuals, rather than 32 000 based on the number of trunks. The extensive clonality in this species may have a severe impact on its ability to reproduce sexually owing to limitation of pollinator movements among flowers within a single individual. In addition, our data indicate that the two subspecies of L. floribundus are very closely related rather than being two distinct lineages dating to the Miocene, as indicated by the fossil record.  相似文献   

18.
The genetic structure of black abalone populations in the southern California Islands and central California coast was investigated by protein electrophoresis. Detailed sampling of San Nicolas Island (SN) permitted investigation of microgeographic genetic differentiation among local geomorphological features. In addition, temporal genetic differentiation was assessed by comparing juveniles and adults at three islands, San Miguel (SM), Santa Cruz (SC) and San Nicolas (SN). Mainland and island locations were genetically differentiated based on allele frequency differences and the presence of private alleles in some island populations. Although microgeographic genetic structure among sites on SN was weak and not statistically significant, heterozygosity varied among sites, with diversity decreasing from west to east. In addition, investigation among cohorts showed that adults were genetically differentiated among island locations, whereas no differences among juveniles were detected. Genetic differentiation between adult and juvenile abalones was detected at SC but not SM or SN. These data are generally consistent with local recruitment augmented by relatively more gene flow among island populations than among island and mainland populations, and possible selection acting on immigrant recruits.  相似文献   

19.
The California Floristic Province is home to more than 8000 species of beetles, yet their geographical patterns of supra- and infraspecific diversity remain largely unexplored. In this paper, we investigate the phylogeography and population demographics of a flightless ground beetle, Calathus ruficollis (Coleoptera: Carabidae), in southern California. We sampled 136 specimens from 25 localities divided into 10 populations using a fragment of the mitochondrial cytochrome oxidase I gene. We tested several hypotheses, including the association of geography with particular clades and populations, the degree of differentiation among regions, and the expansion of populations. Parsimony and Bayesian phylogenetic analyses along with nested clade analysis and amova indicate a deep split between the southern Sierra Nevada population and populations south and west. This split corresponds closely to the split between subspecies C. ruficollis ignicollis (southern Sierra Nevada) and C. ruficollis ruficollis . Populations otherwise exhibit limited geographical structure, though F st values indicate some local differentiation. Mismatch distributions and Fu's F s indicate range expansion of several populations, suggesting that some structure may have been obscured by recent exchange. The population of C. ruficollis on Santa Cruz Island, which might have been expected to be isolated, shares several haplotypes with mainland populations, appearing to represent multiple colonizations.  相似文献   

20.
Abstract.  Hybridization with closely related taxa poses a significant threat to endangered subspecies (e.g. outbreeding depression, inbreeding) and confounds efforts to manage and conserve these taxa through a loss of taxonomic identity, in part because of the practical necessity of defining subspecies in a typological manner. We examined nine morphological characters in 167 post-juvenile museum specimens to determine if loggerhead shrikes Lanius ludovicianus Linnaeus 1766 on San Clemente Island (off the coast of California) remain diagnosable as L. l. mearnsi Ridgway (1903); an island endemic listed as endangered by the United States Fish and Wildlife Service. Four recent shrike specimens from the island were compared to historical specimens using a bivariate scatter plot and a discriminant function (the latter was used to classify recent specimens post hoc). The few recent specimens were not diagnosable as L. l. mearnsi , but instead appear to be intergrades between L. l. mearnsi and L. l. anthonyi Mearns 1898 (the subspecies endemic to Santa Cruz, Santa Catalina, Santa Rosa and Anacapa islands), and are perhaps closer to pure anthonyi . Our data and the species' natural history and distribution suggest that shrikes currently on San Clemente Island are the result of genetic 'swamping' of mearnsi by anthonyi . Under a necessarily typological definition of a subspecies, it is evident that mearnsi is probably no longer diagnosable. However, we conclude that protection of the entire Channel Islands population of the loggerhead shrike would be the best management strategy, as the species has declined drastically throughout the islands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号