首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The proliferation of the green marine alga Caulerpa taxifolia in the Mediterranean led us to investigate the toxic effects on marine organisms of caulerpenyne (Cyn), the major secondary metabolite synthesized by the alga. This study was performed on sea urchin eggs (Paracentrotus lividus) and isolated hepatocytes from the sea bream (Sparus aurata), in which accumulation of the toxins by metabolic processes may be of significance. Cyn provoked an acidification of seawater containing both unfertilized and fertilized eggs, as revealed by a titrable efflux of protons. The pHi in unfertilized eggs continuously increased in the presence of Cyn, whereas there was a biphasic response in both fertilized eggs and isolated hepatocytes, with a decrease of the pHi followed by recovery to the initial value. Cyn inhibited the accumulation of 14C-methylamine in acidic granules present in the cortical zone of sea urchin eggs. Dicyclocarbodiimide (DCCD), a well-known H+-ATPase inhibitor, provoked a similar inhibition. Both molecules increased pH in the acidic compartments of isolated bream hepatocytes. These results suggest that Cyn inhibits intracellular sequestration of protons and thus liberates protons into the cell cytoplasm from which they leak toward the extracellular medium. © 1997 John Wiley & Sons, Inc.  相似文献   

2.
Caulerpa taxifolia, an invasive species elsewhere in the world, is native to Moreton Bay where its distribution has been increasing in recent years. In Australia, dense beds of C. taxifolia are predominantly found in areas of low light and high nutrients (low water quality). Monitoring data from Moreton Bay suggests that native C. taxifolia is not directly replacing seagrass, but that there is a successional trend of seagrass loss and subsequent C. taxifolia colonization. The current study examined responses of C. taxifolia in relation to changes in environmental conditions using ambient water quality and a light/nutrient manipulative experiment. In the ambient water quality experiment we found that C. taxifolia grew significantly faster in areas with higher light (lower turbidity). The manipulative experiment demonstrated that nutrients stimulate C. taxifolia growth, however, light availability and seasonality appear to influence the response of C. taxifolia growth to nutrients in Moreton Bay. These findings suggest that C. taxifolia is unlikely to colonize seagrass beds in areas with high light and low nutrients; however, in areas with moderate light and moderate to high nutrients C. taxifolia and seagrass are likely to coexist.  相似文献   

3.
In 1984, Caulerpa taxifolia (Vahl) C. Agardh was reported along the coast of Monaco. Over the past decade it has spread along 60 km of the Mediterranean coastline and presently represents a potential risk to biodiversity. Several explanations have been advanced regarding the presence of C. taxifolia in the Mediterranean. One hypothesis maintains that the alga was introduced accidentally into the sea at Monaco, where it has been used as a decorative alga in aquaria. Caulerpa taxifolia has not been reported in earlier marine floras of the Mediterranean, and its sudden appearance has suggested that it may be a recent introduction. Another hypothesis proposes that C. taxifolia and Caulerpa mexicana Sonder ex Kützing are morphological variants of one another and hence conspecific taxa. Caulerpa mexicana has been found in the eastern Mediterranean since at least 1941. In order to establish the taxonomic identities of these taxa, individuals from five populations of C. taxifolia and four populations of C. mexicana were collected from within and outside of the Mediterranean. Comparative DNA sequence analysis of the nuclear ribosomal cistron, including the 3′-end of the 18S, ITS1, 5.8S, and ITS2 regions, show clear phylogenetic separation of the two taxa using parsimony and maximum likelihood analyses. Separation is maintained whether the analyses are based on just the more conserved 18S data or just the fast- evolving spacers. The two species are thus not conspecific. For specimens of uncertain identity (i.e. taxifolia–mexicana intermediates), a PCR diagnostic amplification can easily be performed because the ITS1 in C. taxifolia is 36 nucleotides shorter than the ITS1 in C. mexicana. Whether or not C. taxifolia has been present for a longer period of time in the marine flora, either as a cryptic endemic species or as the result of one or more introductions, represents an additional hypothesis that will require identification of biogeographic populations from throughout the world, as well as a population-level study of the Mediterranean region.  相似文献   

4.
The Caulerpa taxifolia is excellent marine green algae, which produced enormous bioactive compounds with more biological activities. Also, it is an excellent source for synthesis of Ag NPs with increased bioactivity against various infections. In our study, the marine algae marine algae Caulerpa taxifolia mediated Ag NPs was synthesized effectively. The synthesized Ag NPs was characterized well using UV-spectrometer and X-ray powder diffraction (XRD) and confirmed as synthesized particle was Ag NPs. The available structure of the Ag NPs was morphologically identified by scanning electron microscope (SEM), and exact minimum size, polydispersive spherical shape of the entire Ag NPs structure was confirmed by Transmission electron microscope (TEM). Further, the anti-cancer efficiency of biosynthesized Ag NPs against A549 lung cancer cells was found at 40 µg/mL concentration by cytotoxicity experiment. In addition, the phase contrast images of the result were supported the Ag NPs, which damaged the A549 morphologically clearly. Finally, florescence microscopic images were effectively proved the anti-cancerous effect against A549 lung cancer cells due to the condensed morphology of increased death cells. All the confirmed in-vitro results were clearly stated that the Caulerpa taxifolia mediated Ag NPs has superior anti-cancer agent against A549 lung cancer cells.  相似文献   

5.
Biological invasions modify the quality and supply of detrital subsidies to aquatic and terrestrial ecosystems. Where the invader has very different traits to native species, major changes in associated consumer communities may result, as a consequence of differences in their nutritional value and effects on the sedimentary habitat. We assessed how the replacement of seagrasses with the invasive alga Caulerpa taxifolia in modified Australian estuaries influences invertebrate communities of mudflats that are subsidized by detritus from submerged aquatic vegetation. Two months after experimental enrichment of sediments with high (60?g dry weight per 0.25?m2 plot) or low (30?g dry weight) quantities of either non-native C. taxifolia or native Posidonia australis or Zostera capricorni detritus, there were positive effects of detrital addition on invertebrate abundance that occurred irrespective of the resource added. By 4?months after addition, however, detritus from invasive C. taxifolia had produced effects on benthic communities that could not be replicated by detritus from either of the native seagrasses. Plots receiving the high loading of C. taxifolia detritus contained fewer invertebrates than plots of the other treatments, perhaps due to the induction of sediment hypoxia. The pattern, however, reversed at low detrital loading, with the plots receiving 30?g of C. taxifolia containing more invertebrates and more taxa than the other plots, presumably due to the greater resource availability for detritivores. Our results demonstrate that replacement of native seagrass with invasive algal detritus can have large impacts on sediment-dwelling communities.  相似文献   

6.
Invasive algae alter the structure and function of ecosystems. The red algae Lophocladia lallemandii grows in the West Mediterranean epiphyting the green algae Caulerpa taxifolia, another invasive alga. Our aim was to determine whether the invasive algae Lophocladia, recently introduced in the West Mediterranean, induces oxidative stress and an antioxidant response in Caulerpa taxifolia. We measured the caulerpenyne production, the activities of antioxidant enzymes and the levels of markers of lipid peroxidation in Caulerpa taxifolia. Caulerpenyne concentration was significantly higher in Caulerpa taxifolia epiphytized by Lophocladia. End-products of lipid peroxidation -malondialdehyde (MDA) and 4-hydroxinonenal (4-HNE)- were significantly increased in Caulerpa taxifolia samples from the station with Lophocladia. Antioxidant enzyme activities -catalase and superoxide dismutase (SOD)-, as well as H2O2 production significantly increased in the Lophocladia station compared to the control station. The activities of catalase and SOD determined in Lophocladia lallemandii showed no significant differences between Lophocladia living alone and Lophocladia epiphytating Caulerpa taxifolia. Caulerpa taxifolia epiphytized by Lophocladia lallemandii responded by increasing the caulerpenyne and H2O2 production and the antioxidant enzymes activities as a defensive mechanism against the new invasive algae.  相似文献   

7.
《Aquatic Botany》2007,87(3):196-202
We use two experiments to assess the role of anthropogenic activities in disseminating the invasive alga, Caulerpa taxifolia. First, we tested the hypothesis that the removal of fragments of C. taxifolia from an estuary would be dependent on anchor type (sand versus rock) and anchor attachment (chain versus rope). Second, we hypothesised that the viability of different sized clumps (1, 5 and 10 g dry weight) of C. taxifolia would be dependent on aerial exposure (1 h, 1 day and 3 days) and environmental conditions (sun versus shade, damp rope versus no rope). Fragments of C. taxifolia were consistently removed by anchors regardless of the anchor type; overall, 82% of anchors lowered into C. taxifolia beds removed fragments. Rock and sand anchors removed similar sized clumps of C. taxifolia (up to 15 g dry weight), while chain attachments removed significantly larger clumps compared to ropes (up to 0.5 g dry weight). Once removed from the water, fragment survivorship increased with clump size, protection from desiccation (i.e. greatest under damp shaded ropes) and decreased with length of aerial exposure. Most shaded clumps survived 1 h of aerial exposure, while none, irrespective of their size, survived 3 days. Our study confirms that the anchoring of vessels removes fragments of C. taxifolia from estuaries and that conditions inside anchor lockers may enhance fragment survivorship. Thus, vessels may be an important vector for dispersal of C. taxifolia within and between estuaries.  相似文献   

8.
Caulerpa taxifolia and C. racemosa are tropical green algae now found in the Mediterranean, where the former was accidentally introduced and the latter presumably also introduced; both species have spread rapidly and invaded a variety of habitats. Since 1996, the two algae have co-inhabited a region along the Tuscan coast near Livorno. The present study has been carried out to evaluate the invasive capacity of the two species. After one year, the increase in surface area was 67.5 % for C. taxifolia and 284.8 % for C. racemosa, while the increase in patch number was 11.4 % and 121.4 % respectively. The stolon growth of the two algae followed a similar trend, as is showing the same temporal variations with the maximum growth rate between August and October. At the end of the study period, the increase in stolon length and number was significantly higher in C. racemosa than in C. taxifolia. The results of the present study show a higher invasive potential in C. racemosa than in C. taxifolia, although further studies are necessary to evaluate the competition between the two algae and the effect of their simultaneous presence on the benthic community.  相似文献   

9.
Free-drifting fragments represent an abundant potential source of recruits to the invasive alga, Caulerpa taxifolia. Here we examine how this fragment pool interacts with real and artificial habitat structure in estuarine environments. Specifically, we tested two hypotheses; (i) the fragment pool was unrelated to the structural complexity of Caulerpa beds and, (ii) fragment accumulation and retention was unrelated to canopy height of seagrass meadows. We examined fragment accumulation and retention using artificial seagrass units (ASUs) mimicking seagrasses with long (20 cm) leaves (Posidonia/Zostera) and short (5 cm) leaves (Halophila spp.). Both hypotheses were rejected. Fragment biomass was a positive function of the blade height and cover of Caulerpa taxifolia. ASUs with structure had greater fragment accumulation than controls, but we did not detect differences between ASUs of different canopy heights. However, fragment accumulation within ASUs was strongly affected by site, with the site experiencing the strongest tidal flows accumulating the most fragments. Structurally complex ASUs also retained more fragments relative to the bare control, but the degree of complexity did not affect retention and we could not distinguish between ASUs of different canopy height and the procedural control (metal frame lacking ‘leaves’). Overall, we conclude that the entanglement of C. taxifolia fragments is facilitated by structurally complex habitat and likely contributes to the successful establishment of this invader.  相似文献   

10.
A decrease in seagrass cover and a commensurate increase in Caulerpa taxifolia distribution in Moreton Bay have prompted concern for the impact that habitat change may have on faunal communities. Therefore, it is important to understand the patterns of habitat use. We examined habitat selection of three common seagrass species: double-ended pipefish (Syngnathoides biaculeatus), eastern trumpeter (Pelates quadrilineatus), and fan-bellied leatherjacket (Monacanthus chinensis) using a mesocosm experiment. Fish were given three possible habitat pairings (1) seagrass and C. taxifolia, (2) seagrass and unvegetated, and (3) C. taxifolia and unvegetated. Observation trials were conducted during the day and night over two days. In all trials, fish preferred vegetated habitat (seagrass or C. taxifolia) over unvegetated habitat (sand). In seagrass and C. taxifolia trials, all species preferred seagrass significantly over C. taxifolia. Habitat use patterns did not differ between day and night trials. Caulerpa taxifolia provides a valuable structured habitat in the absence of seagrass; however, it is unclear if C. taxifolia meadows provide other resource benefits to fishes beyond that of shelter.  相似文献   

11.
Caulerpa spp. are clonal green marine algae which often act as invasive species when growing outside their native biogeographical borders. Over the two past decades, Caulerpa taxifolia has spread along the Mediterranean coast, presently occurring at 70 sites and covering nearly 3,000 ha of subtidal area. New genetic markers (microsatellites) have been developed to assess clonal structure and genetic diversity of recently established populations of the invasive species C. taxifolia and Caulerpa racemosa in comparison with populations of the native Caulerpa prolifera in the Mediterranean. Our results show that nine polymorphic markers have been developed for C. prolifera, seven for C. taxifolia, and three for C. racemosa. Genetic diversity in Caulerpa was assessed in two geographical scales: one at a population scale where 40 thalli units were collected from C. prolifera in Cala d’Or, Mallorca, Spain, and another at a species scale, where 30 sample units were analyzed for C. prolifera, 24 for C. taxifolia, and 24 for C. racemosa from different sites in the Mediterranean, Atlantic, and Pacific Ocean. Number of alleles, expected heterozygosity, and marker amplification success are provided in each case.  相似文献   

12.
《Aquatic Botany》2005,82(2):71-81
Beds of the invasive alga Caulerpa taxifolia were observed to be buried with sediment after heavy rainfall, and it was proposed that burial and subsequent uncovering could help explain rapid changes in the sizes of beds of C. taxifolia. Responses of C. taxifolia fragments to the different extents of burial and for different durations (2, 6, 17 days) were investigated in the laboratory. Once uncovered, fragments in all treatments began to grow, and by 92 days partially buried fragments were not significantly different from controls in terms of the numbers of stolon meristems or total stolon length. Fragments buried totally were severely affected, but nevertheless, 35% of the fragments survived total burial for 17 days, and began to recover slowly when the sediment was removed. C. taxifolia can, therefore, persist for long periods under sediments, meaning that, in areas where burial is likely, the actual distribution of the species may be underestimated. Moreover, any potential control technique needs to penetrate sediments to be totally effective.  相似文献   

13.
Caulerpa taxifolia is one of the most important and best-studied alien species in the Mediterranean Sea. The present study reveals the macrobenthic assemblages associated with C. taxifolia from the region. We found 26 species from Polychaeta, 31 species from Crustacea, 22 species from Mollusca and 5 species from Echinodermata. In conclusion, C. taxifolia in İskenderun Bay can be considered an ecosystem engineer that modifies local habitats and also enhances biodiversity.  相似文献   

14.
Francour  P.  Harmelin-Vivien  M.  Harmelin  J. G.  Duclerc  J. 《Hydrobiologia》1995,300(1):345-353
After its accidental introduction in the French waters of the Mediterranean, the green seaweed Caulerpa taxifolia is now spreading along the coast of the Alpes-Maritimes, invading various biotopes (rock, sand and Posidonia oceanica seagrass beds). During the spring and fall of 1992, we evaluated the impact of C. taxifolia on the infralittoral ichthyofauna of Cap Martin (Menton) and compared invaded and reference sites, in shallow (3–8 m) and deep (11–25 m) stations. Caulerpa taxifolia apparently does not have any effect on the composition and global species richness of the ichthyofauna. Therefore, no exclusion phenomenon has been observed and fish behavior has remained normal (feeding habits, reproduction, recruitment). However, fish density and biomass are slightly lower in the colonized sites. Negative regression was observed, in shallow sites during the spring season, between the percentage of substrate invaded by C. taxifolia and the average density of fish assemblages (slope= –0.13, r=0.26, p<0.01). Despite these observations, C. taxifolia meadows seem to be a favorable environment for the recruitment of some species of Labridae (Coris julis, Symphodus ocellatus), Sparidae (Diplodus annularis) and Serranidae (Serranus cabrilla) in the fall.The relative importance of C. taxifolia as environmental parameter and of other habitat characteristics (structural complexity, substrate slope, hydrodynamism, depth, fishing pressure) is discussed to explain these differences. The results of this first study indicate that there exists no simple relation between the presence of C. taxifolia and fish assemblages.  相似文献   

15.
Habitat‐forming invasive species have complex impacts on native communities. Positive above ground and negative below ground impacts are reported, suggesting that habitat‐forming invasive species may affect community components differently. Furthermore, such effects may vary depending on the density of the invader. We determined the responses of community components to different densities of the invasive green alga Caulerpa taxifolia in southeastern Australia. Initially we investigated differences in soft‐sediment faunal communities (above and below ground) across a biomass gradient at two invaded sites. Caulerpa taxifolia biomass was positively associated with the composition and abundance of the epifaunal community, but negatively correlated with the abundance of infauna. To examine the response of common community members in more detail, we caged two species of mollusk (the infaunal bivalve, Anadara trapezia and the epifaunal gastropod, Batillaria australis) across the same biomass gradient to determine lethal and sublethal effects of C. taxifolia biomass on individuals. Survivorship of A. trapezia was low when C. taxifolia was above 300 g m?2. Negative sublethal effects were also density‐dependent with A. trapezia tissue weight being lowest above this same C. taxifolia biomass. The proportion of B. australis surviving was unaffected by C. taxifolia biomass. However, the total number of live B. australis recovered in cages increased as C. taxifolia biomass increased, providing further evidence of positive density dependent effects (in line with the survey data) of C. taxifolia on epifauna. Finally, we removed C. taxifolia from plots of differing C. taxifolia biomass and followed community change for 5 months. Community change following C. taxifolia removal was also density dependent as recovery 5 months post‐removal depended on the initial biomass of C. taxifolia, suggesting a lag in the recovery of communities due to residual environmental effects post‐removal (i.e. hysteresis). We have shown that the effects of a habitat‐forming invasive species are biomass dependent and also affect community components differently, suggesting that, globally, the impact of these types of invaders may be context dependent.  相似文献   

16.
The marine alga Caulerpa taxifolia Vahl (C. Agardh), recognized globally as one of the most prolific non-native species introductions, has been introduced to several temperate locations from where it has since rapidly expanded. C. taxifolia is protected by a toxin (terpenoid) in its tissues that limits grazing by native herbivores. Sacoglossan molluscs of the genus Elysia are among the few organisms that graze C. taxifolia; however, little is known about their feeding ecology. In the current study, we quantified the grazing rates of Elysia tomentosa on native C. taxifolia (Moreton Bay, Queensland) and introduced C. taxifolia (Botany Bay and Lake Conjola, New South Wales). Grazing rates were similar at Moreton Bay sites and Botany Bay; however, they were significantly lower in Lake Conjola. At the maximum observed grazing rate, slugs ate their body weight in C. taxifolia (dry weight) every 18–24 h. Differences in grazing rates between locations may be explained by differences in C. taxifolia morphology rather than native or introduced origin. Handling editor: J. Padisak  相似文献   

17.
The application of the Geographic Profiling technique (with the “Rossmo formula”) proved to be effective in assessing the spreading origin of invading species of Caulerpa in the Mediterranean. Geoprofiling is a technique more frequently used in criminology. We applied this method to an algal invasion for the first time. The method was calibrated with the distribution data of Caulerpa taxifolia, whose spreading in the Mediterranean Sea started from the aquarium of Monaco. This is the first time that Geographic Profiling is calibrated on a data set of sites of presence of a biological invader, of which the spreading origin is known. The application on Caulerpa racemosa var. cylindracea showed that the probable spreading center of the alga should be located in Western Sicily for the Mediterranean and in the southern part of Tenerife for the Canary Islands (Las Galletas, a fishing village). The spreading centers correspond to areas with ports, indicating that the spreading of this alga should be related to (fishing) boats. This result confirmed the opinion of other authors. The parameters used in the Rossmo Formula, obtained through calibration with the known origin of C. taxifolia invasion for identifying the origin of the spread of C. racemosa var. cylindracea may be extended to other algae with similar propagation mode and similar habitat requirements.  相似文献   

18.
We conducted a survey of 63 public aquariums in Japan by means of a questionnaire asking if a green seaweed, Caulerpa taxifolia, was cultured or exhibited in aquariums under the network of the public aquarium association of Japan in 1997. Of 51 aquariums, 16 cultured or exhibited C. taxifolia. Most of the public aquariums possessing C. taxifolia purchased them from aquarium shops or received them from another public aquarium as a donation. Notojima aquarium reported temporal establishment of C. taxifolia in the Sea of Japan between the summer and autumn of 1992 and 1993. C. taxifolia was released into the sea from a 1 m3 cage that was submerged in an open pool. Two colonies with diameters less than 2 m were found near the mouth of a water outflow pipe in both years. Molecular analysis of the ITS rDNA gene of the aquarium strain of Notojima clarified that the seaweed is the same as the aquarium-Mediterranean and Californian invasive strain. Unsuccessful establishment of the invasive strain of C. taxifolia in the Sea of Japan is probably due to water temperatures in winter that are lethal for C. taxifolia. C. taxifolia remains present in many public and private aquariums. If C. taxifoliawere to be released in more temperate waters of Japan, there would be a high risk of establishment and, thus, impact on the marine ecosystem. This suggests that the trade, culture and exhibition of C. taxifolia should be strongly avoided to reduce the chances of accidental release of this harmful species.  相似文献   

19.
Caulerpa taxifolia (Vahl) C. Agardh (Ulvophyceae, Caulerpales) is an alga of tropical origin that was accidentally introduced into the Mediterranean sea in 1984, where this species can reach an abundance that has never been described in tropical endemic regions. It is known that caulerpacean algae can develop an efficient strategy against grazers consisting of the synthesis of repulsive of toxic secondary metabolites: we report here the first study of the toxicity of purified secondary metabolites and raw extracts fromC. taxifolia from the Mediterranean.Toxicity was evaluated on three models: mice (lethality), mammalian cells in culture (cytotoxicity) and sea urchin eggs (disturbance of cell proliferation). Aqueous extracts are only active on fibroblasts and mice. In the three toxicity models a seasonal variation of toxicity is observed for the crude methanol extract as well as a decrease of this activity whenC. taxifolia from the Mediterranean is kept in aquaria. Pure compounds exhibit different toxicity depending on the assay. 10,11-epoxycaulerpenyne is the most active substance on mice and fibroblasts whereas taxifolial A and D are inactive or only weakly toxic. Among the four tested compounds caulerpenyne, the major metabolite ofC. taxifolia, is the most active on sea urchin eggs. Caulerpenyne may therefore represent an ecological risk for microorganisms and the eggs of multicellular animals living close to this alga. The ecological impact of this toxicity on marine organisms and the interaction of this alga with the herbivorous fauna are discussed.  相似文献   

20.
Two reciprocal experiments testing for the effects of nutrient addition in the sediment and competitive interactions between the native seagrass Cymodocea nodosa (Ucria) Ascherson and the introduced alga Caulerpa taxifolia (Vahl) C. Agardh were performed. This study was conducted for 13 months (August 1995 until September 1996) in a bay on the south coast of Elba Island (Italy). Each experiment consisted of the manipulation of the level of nutrients (addition vs. control) and the manipulation of the neighbours (presence vs. removal). Response variables were blade density and size for one experiment and shoot density and leaf length of seagrass in the other. Results indicated that the presence of Caulerpa taxifolia did not affect significantly Cymodocea nodosa shoot density and the increased nutrient availability in the sediment did not alter this pattern. Neither the removal of the canopy of the seagrass nor the fertilization of the sediment has influenced significantly the density of the alga. Both species, where co-occurring, show larger size than where the neighbour is removed. Hence, results of this study suggest that the two species on the long term are likely to coexist and that the high nutrient supply of the sediment would not enhance the probability of success neither of the seagrass nor of the alga. Predictions made on the basis of short-term results, that high nutrient loads of the substratum would have represented an even more suitable condition for C. taxifolia to colonize C. nodosa beds and that on the long-term the alga has a high probability of success, did not occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号